Document Type
Article
Department
Physics
Publication Date
2012
Abstract
Research by one of the authors suggested that the critical mass of constant-density neutron stars will be greater than eight solar masses when the majority of their neutrons group into bosons that form a Bose-Einstein condensate, provided the bosons interact with each other and have scattering lengths on the order of a picometer. That analysis was able to use Newtonian theory for the condensate with scattering lengths on this order, but general relativity provides a more fundamental analysis. In this paper, we determine the equilibrium states of a static, spherically-symmetric variable-density mixture of a degenerate gas of noninteracting neutrons and a Bose-Einstein condensate using general relativity. We use a Klein-Gordan Lagrangian density with a Gross-Pitaevskii term for the condensate and an effective field for the neutrons. We show that a new class of compact stars can exist with masses above the Oppenheimer-Volkoff limit, provided the scattering length of the bosons is large enough. These stars have no internal singularities, obey causality, and demonstrate a quantum mechanism consistent with general relativity that could prevent collapsed stars from becoming black holes.
Comments
Originally published under Open Access terms as D. Cox, R. Mallett and M. Silverman, "Quantum Stabilization of General-Relativistic Variable-Density Degenerate Stars," Journal of Modern Physics, Vol. 3 No. 7, 2012, pp. 561-569. doi: 10.4236/jmp.2012.37077
Publisher version available from: http://www.scirp.org/journal/PaperInformation.aspx?PaperID=21104