Document Type
Article
Department
Environmental Science
Publication Date
9-17-2011
Abstract
In order to constrain the rate of magnetic enhancement in soils, we investigated modern soils from five fluvial terraces in the eastern Wind River Range, Wyoming. Profiles up to 1.2 m deep were sampled in 5-cm intervals from hand-dug pits or natural riverbank exposures. Soils formed in fluvial terraces correlated to the Sacajawea Ridge (730–610 ka BP), Bull Lake (130–100 ka BP) and Pinedale-age (∼20 ka BP) glacial advances. One soil profile formed in Holocene-age sediment. Abundance, mineralogy, and grain size of magnetic minerals were estimated through magnetic measurements. Magnetic enhancement of the A-horizon as well as an increase in fine-grained magnetic minerals occurred mostly in Bull Lake profiles but was absent from the older profile. Such low rates of magnetic enhancement may limit the temporal resolution of paleosol-based paleoclimate reconstructions in semiarid regions even where high sedimentation rates result in multiple paleosols. A loss of ferrimagnetic and an increase in antiferromagnetic minerals occurred with age. Our findings suggest either the conversion of ferrimagnetic minerals to weakly magnetic hematite with progressing soil age, or the presence of ferrimagnetic minerals as an intermediate product of pedogenesis. Absolute and relative hematite abundance increase with age, making both useful proxies for soil age and the dating of regional glacial deposits. All coercivity proxies are consistent with each other, which suggests that observed changes in HIRM and S-ratio are representative of real changes in hematite abundance rather than shifts in coercivity distributions, even though the modified L-ratio varies widely.
Comments
Originally published in Geochemistry Geophysics Geosystems, 12, no. 1 (2011), doi: 10.1029/2011GC003728. http://www.agu.org/pubs/crossref/2011/2011GC003728.shtml
Full text will be available following a 6 month post-publication embargo, per publisher's archiving policies.