Document Type

Article

Department

​​Biology

Publication Date

6-2021

Abstract

Theoreticians who first observed alternative stable states in simple ecological models warned of grave implications for unexpected and irreversible collapses of natural systems (i.e., regime shifts). Recent ecosystem-level shifts engendering considerable economic losses have validated this concern, positioning bistability at the vanguard of coupled human-environment systems management. While the perturbations that induce regime shifts are known, the ecological forces that uphold alternative stable states are often unresolved or complex and system specific. Thus, the search continues for general mechanisms that can produce alternative stable states under realistic conditions. Integrating model predictions with long-term zooplankton community experiments, we show that the core feature of ontogenetic development, food-dependent maturation, enables a single community to reach different configurations within the same constant environment. In one configuration, predators regulate prey to foster coexistence, while in the other, prey counterintuitively exclude their predators via maturation-limiting competition. The concordance of these findings with the unique outcome and underlying mechanism of a general model provides empirical evidence that developmental change, a fundamental property of life, can support bistability of natural systems.

Comments

Author's post-print. Published version available: https://doi.org/10.1086/714049

Publication Title

The American Naturalist

Volume

197

DOI

10.1086/714049

Included in

Life Sciences Commons

Share

COinS