Document Type

Article

Department

​Mathematics

Publication Date

3-1-2021

Abstract

We study the dynamics of coupled oscillator networks with higher-order interactions and their ability to store information. In particular, the fixed points of these oscillator systems consist of two clusters of oscillators that become entrained at opposite phases, mapping easily to information more commonly represented by sequences of 0’s and 1’s. While 2 such fixed point states exist in a l system of N oscillators, we find that a relatively small fraction of these are stable, as chosen by the network topology. To understand the memory selection of such oscillator networks, we derive a stability criterion to identify precisely which states are stable, i.e., which pieces of information are supported by the network. We also investigate the process by which the system can switch between different stable states when a random perturbation is applied that may force the system into the basin of attraction of another stable state. N

Publication Title

JPhys Complexity

Volume

2

Issue

1

DOI

10.1088/2632-072X/abbd4c

Share

COinS