








dynamical and structural parameters. Presenting our results in Fig. 4,
we first explore how the fraction of driver nodes depends on the cou-
pling strength by plotting in Fig. 4A nD versus K for both ER and SF
networks with mean degrees 〈k〉 = 4, 8, and 12 (blue circles, red trian-
gles, and green squares, respectively). Results for ER and SF networks
are plotted with unfilled and filled symbols, respectively, and each curve
represents an average of over 100 network realizations, each averaged
over 100 random natural frequency realizations. Although it is expected
that nD decreases monotonically with K, the curves’ dependence on
network topology and mean degree is nontrivial. In particular, the shape
of nD versus K depends more sensitively on the mean degree than the
topology, suggesting that network heterogeneity has little effect on over-
all control in comparison to average connectivity. In light of the sig-
nificant dependence of overall control on the coupling strength, we
investigate the coupling strength required to synchronize a network if
a limited amount of control is available. To this end, we calculate for
each family of networks the required coupling strengths K5%, K10%, and
K20% for which, on average, a fraction nD = 0.05, 0.1, and 0.2 will
achieve synchronization as a function of the average degree 〈k〉. We plot

the results in Fig. 4B. We point out again that ER and SF networks
behave very similarly on average, and that with a larger mean degree,
a smaller coupling strength is required to achieve synchronization.

DISCUSSION

The theoretical and practical aspects of the control of dynamical processes
remain important and ongoing areas of interdisciplinary research at
the intersection between mathematics, physics, biology, chemistry, en-
gineering, and the social sciences. The control of complex networks
and complex systems is particularly important because, together, they
comprise most of the world we live in (51); however, the nonlinear
nature of realistic dynamical processes and the complex network
topologies of real networks represent challenges for the scientific com-
munity. Building on concepts from classical linear control theory (12),
recent work has made significant advances in understanding structural
controllability (13, 14), and significant progress has been made in the
development of control mechanisms for networks of nonlinear
systems (23, 24, 28). Nonetheless, because of the problem-sensitive na-
ture of most real-world problems and applications requiring control
techniques, further progress in designing and implementing efficient
and effective control mechanisms for a wide range of problems with
practical constraints remains an important avenue of research.

Here, we have focused on the control of synchronization (that is,
consensus) in coupled oscillator networks. Our primary inspiration
has been advances in the research of power grid networks (52, 53).
In particular, recent studies have shown that certain power grids
known as microgrids can be treated as Kuramoto oscillator networks
(35, 39). Here, we have presented a control method that can easily be
applied to Kuramoto networks and other phase oscillator networks,
thus providing a control framework with potentially direct application
to these new technologies. Our method is based on identifying and
stabilizing a synchronized state for a given network via spectral prop-
erties of the Jacobian matrix, and we have demonstrated its effective-
ness on both ER and SF networks. We have observed that driver
nodes, that is, oscillators that require control, tend to balance (in ab-
solute value) large natural frequencies with small degrees. Furthermore,
the overall amount of control required to achieve synchronization de-
creases with both coupling strength and mean degree, whereas the
total effort required to attain a synchronized state depends sensitively
on the average connectivity of the network and the dynamical parameters,
but surprisingly little on the network topology and degree distribution.
These results enhance our understanding of and ability to understand,
optimize, and ultimately control synchronization in power grid net-
works [see, in particular, (5, 32)], and more generally complement im-
portant work on the control of network-coupled nonlinear dynamical
systems (26, 28, 29).

Although our central inspiration and target application are in the
area of power grid technology, synchronization phenomenon plays a
vital role in a variety of complex processes that occur in both natural
and manmade systems, including healthy cardiac behavior (54), func-
tionality of cell circuits (55), stability of pedestrian bridges (56), and
communications security (57). Given this broad range of applications,
we hypothesize that our findings here may potentially shed some light
on the control of synchronization in other contexts, such as cardiac
physiology and neuroscience. For instance, a large amount of research
has recently been devoted to the development of cardiac arrhythmia
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treatments that require minimal shock to knock out fatal asynchro-
nous behavior such as cardiac fibrillation (58) and the promotion of
normal brain oscillations (59) while repressing disorders such as
Parkinson’s disease, which are associated with abnormal oscillations (60).

MATERIALS AND METHODS

Steady-state solution
To derive the steady-state solution q* = K−1L†w, we begin with Eq. 2,
which represents the linearized dynamics of Eq. 1. Recall that this lin-
earization requires that we are searching for a synchronized state where
all oscillators are tightly packed in a single cluster, so we expect that
|qj − qi| ≪ 1. We also note that the mean frequency of all oscillators
is given by the mean natural frequency 〈w〉. For simplicity, we enter
the rotating frame q ↦ q + 〈w〉t, effectively setting the mean frequency
to zero. It is then convenient to write Eq. 2 in vector form, that is:

q̇ ≈ w − KLq ð5Þ

where L is the network Laplacian whose entries are defined Lij =
dij ∑l Ail − Aij. Although L has a zero eigenvalue, denoted l1 = 0, ren-
dering it noninvertible, it does have a pseudoinverse defined using its
other eigenvalues (which are nonzero provided that the network is
connected) and corresponding eigenvectors, L† ¼ ∑N

j¼2l
−1
j v jv jT

(46). Each eigenvector is normalized such that fv jgNj¼2 forms an or-
thonormal basis for the space of vectors in ℝN with zero mean. Thus,
both L and L† share a null space, which is spanned by the eigenvector v1º
1, and therefore map vectors onto the space of zero-mean vectors in ℝN.
With the pseudoinverse in hand, we can finally obtain the desired
steady-state solution by setting q = 0 and solving for q, which yields
the solution q* = K−1L†w, as desired.

General oscillator networks
Here, we present an example of a more general oscillator network
than that in Eq. 1 that can be controlled using the same method
detailed above. In particular, we generalize to account for an arbitrary
coupling function H(q), yielding:

q̇i ¼ wi þ K ∑
N

j¼1
AijHðqj − qiÞ ð6Þ

We assume that H(q) is 2p periodic and at least once continuously
differentiable. H need not satisfy H(0) = 0, and thus, coupling between
neighboring oscillators can be “frustrated” (47), denoting that even
when two oscillators are exactly equal, their interaction term does
not vanish. Provided that the coupling frustration is not too large, for
example, Hð0Þ= ffiffiffi

2
p

H ′ð0Þ≪1, a tightly clustered synchronized state is
attainable, and linearizing Eq. 6 yields:

q̇i ≈ wi þ KHð0Þki − KH ′ð0Þ∑
N

j¼1
Lijqj ð7Þ

By defining the quantities wei ¼ wi þ KHð0Þki and Ke ¼ KH ′ð0Þ, it
is easy to see that the linearized dynamics of Eq. 7 are of the same
form as Eq. 2, and therefore, the control method we present above can
be readily applied.

Gershgorin circle theorem
Definition. (Gershgorin discs) LetM be an N × N complex matrix. For
i = 1, …, N, let Ri = ∑j≠i |Mij| be the sum of absolute values of non-
diagonal elements of row i, and define D(Mii, Ri) closed disc of radius
Ri centered at Mii. Di = D(Mii, Ri) is the ith Gershgorin disc.
Theorem. (Gershgorin) All eigenvalues of the matrix M lie within the
union ∪Ni¼1Di of Gershgorin discs.
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