Trinity College Trinity College Digital Repository Faculty Scholarship 3-2011 # Strict Topologies On Spaces of Vector-valued Functions Terje Hõim David A. Robbins Trinity College, david.robbins@trincoll.edu Follow this and additional works at: http://digitalrepository.trincoll.edu/facpub Part of the Mathematics Commons ## Strict topologies on spaces of vector-valued functions Terje Hõim and D. A. Robbins ABSTRACT. Let X be a completely regular Hausdorff space, and $\{E_x:x\in X\}$ a collection of non-trivial locally convex topological vector spaces indexed by X. Let $\mathcal{E}=\bigcup_{x\in X}^{\bullet}E_x$ be their disjoint union. We investigate a species of strict topology on a vector space \mathcal{F} of choice functions $\sigma:X\to\mathcal{E}$ ($\sigma(x)\in E_x$), and obtain Stone–Weierstrass and spectral synthesis analogues. We also obtain completeness results in some special cases #### 1. Introduction Let X be a completely regular Hausdorff space, and let E be a topological vector space. The space C(X,E) of continuous functions from X to E can be topologized in a variety of ways, see e.g. the paper [10] by L.A. Khan. Our goal in this paper is to extend, as far as we can, results of Khan and others to the situation where the continuous functions on X take their values in spaces which may vary with $x \in X$. We will use methods from the theory of bundles of topological vector spaces. By X we will always mean a Hausdorff topological space; unless otherwise specified, X will also be completely regular. We will say that a complex-valued function a on X vanishes at infinity if for each $\varepsilon > 0$ there exists a compact $K \subset X$ such that $|a(x)| < \varepsilon$ whenever $x \notin K$. (Clearly, if such a function a is continuous (or if $x \mapsto |a(x)|$ is upper semicontinuous), it is bounded.) If g is any function defined on X, and if $C \subset X$, we denote by g_C the restriction of g to g. If g is a collection of functions on g, set $g \in G$ if $g \in G$. If g is a topological space, then g will denote the closure of g contains a complex of g contains a containing g contains Received November 14, 2010. $^{2010\} Mathematics\ Subject\ Classification.\ 46A05,\ 46H25.$ Key words and phrases. Strict topology, bundles of topological vector spaces. We consider the following situation, which parallels that discussed in [9], and which we repeat here for convenience: let $\{E_x : x \in X\}$ be a collection of non-trivial Hausdorff topological vector spaces (over the same ground field, \mathbb{R} or \mathbb{C}), indexed by the completely regular space X. Let $$\mathcal{E} = \bigcup \{ E_x : x \in X \}$$ be the disjoint union of the E_x , and let $\pi: \mathcal{E} \to X$ be the natural projection. Assume further that on \mathcal{E} we have a set \mathfrak{W} of functions w such that for each $x \in X$, $\{w^x: w \in \mathfrak{W}\}$ is a family of seminorms which generates the topology on E_x (where w^x is the restriction of w to E_x). Finally, let \mathcal{F} be a vector space of choice functions $\sigma: X \to \mathcal{E}$ (i.e. $\sigma(x) \in E_x$ for all x) such that the following conditions hold: - C1) for each $x \in X$, $\phi_x(\mathcal{F}) = \{\sigma(x) : \sigma \in \mathcal{F}\} = E_x$ (in this case, \mathcal{F} is said to be full; ϕ_x is the evaluation map at x); - C2) \mathcal{F} is a $C_b(X)$ -module; - C3) for each $\sigma \in \mathcal{F}$ and $w \in \mathfrak{W}$, the numerical function $x \mapsto w^x(\sigma(x))$ is upper semicontinuous and bounded on X; and - C4) \mathcal{F} is closed in the seminorm topology determined by \mathfrak{W} , as described below. For each $w \in \mathfrak{W}$, we define a seminorm \widehat{w} on \mathcal{F} by $$\widehat{w}(\sigma) = \sup_{x \in X} \left\{ w^x(\sigma(x)) \right\}.$$ Since the map $x \mapsto w^x(\sigma(x))$ is upper semicontinuous and bounded, the \widehat{w} $(w \in \mathfrak{W})$ determine a locally convex topology on \mathcal{F} , where the sets $$N(\sigma, \widehat{w}, \varepsilon) = \{ \tau \in \mathcal{F} : \widehat{w}(\sigma - \tau) < \varepsilon \}$$ form a subbasis for this topology on \mathcal{F} , as $w \in \mathfrak{W}$ and $\varepsilon > 0$ vary. As in [9] it can be easily checked that the multiplication $(a, \sigma) \mapsto a\sigma$ is jointly continuous from $C_b(X) \times \mathcal{F}$ to \mathcal{F} (where $C_b(X)$ is given its sup-norm topology), so that \mathcal{F} is a topological $C_b(X)$ -module. The topology on \mathcal{F} is thus that of uniform convergence with respect to each of the seminorms \widehat{w} ($w \in \mathfrak{W}$); given \mathcal{F} and \mathfrak{W} , we denote the space by (\mathcal{F}, u) . We note that these functions w ($w \in \mathfrak{W}$) also determine a topology on the fibered space \mathcal{E} . Here, a neighborhood around $z \in E_x \subset \mathcal{E}$ is given by tubes of the form $$T(U, \sigma, w, \varepsilon) = \{ z' \in \mathcal{E} : w^{\pi(z')}(\sigma(\pi(z')) - z') < \varepsilon \text{ and } \pi(z') \in U \},$$ where U is an open neighborhood of $x, w \in \mathfrak{W}, \varepsilon > 0$, and $\sigma \in \mathcal{F}$ is any element such that $\sigma(x) = z$. By [4, Proposition 5.8], (\mathcal{F}, u) is then topologically and algebraically isomorphic to a subspace of the section space $\Gamma(\pi)$ of sections of a bundle $\pi: \mathcal{E} \to X$ of topological vector spaces. (A section is a continuous choice function.) Moreover, for each compact $K \subset X$, $\mathcal{F}_K = \{\sigma_K : \sigma \in \mathcal{F}\}$, is by [4, Theorem 5.9] algebraically and topologically isomorphic to the space $\Gamma(\pi_K)$ of sections of the restriction bundle $\pi_K : \mathcal{E}_K \to K$. We refer the reader to [4, Chapter 5] for details of the construction of such bundles. Intuitively, if $\sigma \in \mathcal{F}$, we can think of $\sigma(x)$ as moving continuously through the spaces E_x as x moves continuously through X. (See also the introduction to [8] and various of its references, especially [6].) If $\pi: \mathcal{E} \to X$ is the bundle determined by \mathcal{F} and \mathfrak{W} , we define $\Gamma_b(\pi)$, the space of bounded sections of the bundle, by $$\Gamma_b(\pi) = \{ \sigma \in \Gamma(\pi) : \widehat{w}(\sigma) < \infty \text{ for all } w \in \mathfrak{W} \}.$$ In accord with the above notation, we denote $\Gamma_b(\pi)$ under the bundle topology determined by \mathcal{F} and \mathfrak{W} as $(\Gamma_b(\pi), u)$. Thus, a net $(\sigma_{\lambda}) \subset \Gamma_b(\pi)$ converges to $\sigma \in \Gamma_b(\pi)$ in the u-topology if and only if for each $\varepsilon > 0$ and $w \in \mathfrak{W}$ we have $\widehat{w}(\sigma_{\lambda} - \sigma) < \varepsilon$ (i.e. $\sigma_{\lambda} \in N(\sigma, \widehat{w}, \varepsilon)$) if λ is sufficiently large. Note that, as usual, we may think of \mathfrak{W} as being a cone: if $\alpha > 0$ and $w, w' \in \mathfrak{W}$, then $\alpha w + w' \in \mathfrak{W}$, where $(\alpha w + w')^x(z) = \alpha w^x(z) + w'^x(z)$, for $z \in E_x \subset \mathcal{E}$. Now, let S_0 be the set of non-negative upper semicontinuous functions on X which vanish at infinity. Certainly S_0 is closed under addition and multiplication. Let $$\mathfrak{V} = \mathcal{S}_0 \cdot \mathfrak{W} = \{aw : a \in \mathcal{S}_0; w \in \mathfrak{W}\},\$$ where aw is defined by $(aw)^x = a(x)w^x$. Define $$\widehat{aw}(\sigma) = \sup_{x \in X} \{a(x)w^x(\sigma(x))\} \le ||a|| \, \widehat{w}(\sigma).$$ It is then easily checked that seminorms of the form $\widehat{aw} \in \mathfrak{V}$ generate a locally convex linear topology on $\Gamma_b(\pi)$ (and hence on \mathcal{F}), and that the numerical function $x \mapsto v^x(\sigma(x)) = a(x)w^x(\sigma(x))$ is upper semicontinuous and vanishes at infinity on X for each $\sigma \in \Gamma_b(\pi)$. We call this locally convex topology on $\Gamma_b(\pi)$ the strict topology, and denote the space by $(\Gamma_b(\pi), \beta)$. We may consider \mathfrak{V} also to be a cone. Continuing, let \mathfrak{K} be a compact cover of X which is closed under finite unions. Given \mathcal{F} and \mathfrak{W} , we note that χ_K , the characteristic function of $K \in \mathfrak{K}$, is in \mathcal{S}_0 . We can then define the topology of compact convergence in $\Gamma_b(\pi)$ with respect to \mathfrak{K} via the seminorms $$(\widehat{\chi_K w})(\sigma) = \widehat{w}_K(\sigma) = \sup_{x \in K} w^x(\sigma(x)) = \sup_{x \in K} \{\chi_K(x)w^x(\sigma(x))\},$$ where $K \in \mathfrak{K}$ and $w \in \mathfrak{W}$. Again, these seminorms describe a locally convex linear topology on $\Gamma_b(\pi)$. Two particular instances of \mathfrak{K} are worth noting: if \mathfrak{K} is the collection of all compact subsets of X, we denote the resulting topology on $\Gamma_b(\pi)$ by κ , which is the topology of compact convergence in $\Gamma_b(\pi)$ with respect to \mathfrak{W} . If \mathfrak{K} is the collection of all finite subsets of X, the resulting topology is that of pointwise convergence, and denoted by p. It is evident that for a given \mathcal{F} and \mathfrak{W} , *u*-convergence in $\Gamma_b(\pi)$ implies β -convergence, which in turn implies κ -convergence, which finally implies p-convergence. It is time for some examples, which are analogous to those in [9]. - 1) If E is a locally convex topological vector space, whose topology is generated by seminorms $\psi \in \Psi$, then $\mathcal{F} = C_b(X, E)$ is the space of bounded continuous functions $\sigma: X \to E$. It is a subspace of C(X, E), the space of all such continuous functions, which we can identify with the space of sections of the trivial bundle $\pi: \mathcal{E} \to X$, where $E_x = E$ for all $x \in X$ and the topology on \mathcal{E} is homeomorphic to $X \times E$ (if $z \in E_x \subset \mathcal{E}$, then $z \leftrightarrow (x, z) \in X \times E$). This is the situation studied in [10]. - 2) For each $x \in X = \mathbb{R}$, let $E_x = \mathbb{C}$, and let $\mathcal{F} = c_0(X)$ be the closure in the sup norm of the set of functions with finite support. Here, \mathfrak{W} is a singleton ($\mathfrak{W} = \{|\cdot|\}$), and \mathcal{F} is u-closed, hence u-complete, in $\Gamma_b(\pi)$, but not β -closed; see [9] for details. - 3) If X is completely regular, and if each E_x is a Banach space, and if $\pi : \mathcal{E} \to X$ is a bundle of Banach spaces in the sense of [4] and other references below, then $\mathfrak{W} = \{\|\cdot\|\}$, and \mathfrak{V} gives us the strict topology on $\Gamma_b(\pi)$, the space of bounded sections of the bundle. - 4) If X is completely regular, let $\mathcal{F} = C_b(X)$. The family of seminorms is $\mathfrak{W} = \{|\cdot|\}$, each $E_x = \mathbb{C}$, and the strict topology β defined by $\mathfrak{V} = \mathcal{S}_0 \cdot \mathfrak{W}$ is among those which have played a part in studying $C_b(X)$ with the strict topology. With these examples in mind, we can put the current situation in a larger context. Given \mathcal{F} and \mathfrak{W} which satisfy conditions C1) – C4), then as we have seen they determine a bundle $\pi: \mathcal{E} \to X$ of topological vector spaces, with a section space $\Gamma(\pi)$. The constant-fiber instance of this general situation is the space C(X,E) of all continuous functions from X to the (constant) locally convex space E, in the following way. Suppose that the topology of E is determined by a family Ψ of seminorms, and that $C_b(X,E) = \{\sigma \in C(X,E): \psi(\sigma(x)) < \infty \text{ for all } \psi \in \Psi \}$. Then the family of seminorms $\widehat{\Psi}$ on $\mathcal{E} = \bigcup_{x \in X} E$, where for $\psi \in \Psi$ we define $\widehat{\psi} \in \widehat{\Psi}$ by $$\widehat{\psi}(\sigma) = \sup_{x \in X} \psi^x(\sigma(x)) = \sup_{x \in X} \psi(\sigma(x))$$ for $\psi \in \Psi$ and $\sigma \in C_b(X, E)$, together with $C_b(X, E)$, satisfy conditions C1) – C4). As in [10], we can then let $\mathcal{S} \subset \mathcal{B}(X)$ (where $\mathcal{B}(X)$ is the space of bounded real functions on X), be a cone of non-negative functions on X, and consider the resulting topologies on C(X, E) or its subspaces generated by $\mathcal{S} \cdot \Psi$. So, for example, if \mathcal{S} is the space of non-negative upper semicontinuous functions which vanish at infinity (i.e. $S = S_0$), we get the strict topology on $\Gamma_b(\pi)$, as defined here. Or, if S is the space of functions with compact support, we get the κ -topology. Along these lines, as in [9], we point out that several definitions for the strict topology β on $C_b(X)$ have been investigated over the years: e.g. in [3] X is assumed to be locally compact and S is taken to be $C_0(X)$, the space of continuous functions on X which vanish at infinity. In [2] X is completely regular and S is the space of non-negative bounded functions which vanish at infinity (again, our S_0). In [1] and [15] S is the space of positive upper semicontinuous functions vanishing at infinity, and it is noted that for $C_b(X)$ this is equivalent to using the bounded positive functions which vanish at infinity. See also [10] in this regard. Because upper semicontinuity of the seminorms is crucial in the development of our results, we will use S_0 in order to retain the upper semicontinuity of functions in \mathfrak{V} . It is the case, however, that in the end, as with C(X, E), we could eliminate upper semicontinuity, as the following brief development shows. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $\pi: \mathcal{E} \to X$ be the bundle determined by \mathcal{F} and \mathfrak{W} . Let $\mathcal{S} \subset \mathcal{B}(X)$ be any cone of non-negative bounded functions on X, and suppose that for no $x \in X$ does a(x) = 0 for all $a \in \mathcal{S}$. Then $\mathcal{S} \cdot \mathfrak{W}$ determines a topology on $\Gamma_b(\pi)$ in the evident fashion. (That the functions in \mathcal{S} do not all vanish at any $x \in X$ allows us to maintain the condition that topology on each E_x is determined by $(\mathcal{S} \cdot \mathfrak{W})^x = \{a(x)w^x: a \in \mathcal{S}; w \in \mathfrak{W}\}$.) Suppose that $\mathcal{S}_1 \subset \mathcal{S}_2 \subset \mathcal{B}(X)$ are two such cones. Evidently, the topology on $\Gamma_b(\pi)$ determined by $\mathcal{S}_1 \cdot \mathfrak{W}$ is weaker than the topology on $\Gamma_b(\pi)$ determined by $\mathcal{S}_2 \cdot \mathfrak{W}$; i.e. convergence of a net $(\sigma_{\lambda}) \subset \Gamma_b(\pi)$ with respect to $\mathcal{S}_2 \cdot \mathfrak{W}$ implies convergence of the net with respect to $\mathcal{S}_1 \cdot \mathfrak{W}$. The following Lemma is based on [10, Lemma 3.2]. **Lemma 1.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $S_1, S_2 \subset \mathcal{B}(X)$ be sets of non-negative functions. Suppose that for each $a_1 \in S_1$ there exist $\delta > 0$ and $a_2 \in S_2$ such that $a_1(x) < \delta a_2(x)$ for all $x \in X$. Then the $S_1 \cdot \mathfrak{W}$ topology on $\Gamma_b(\pi)$ is weaker than the $S_2 \cdot \mathfrak{W}$ topology on $\Gamma_b(\pi)$. *Proof.* A typical subbasic $S_1 \cdot \mathfrak{W}$ -neighborhood of 0 in $\Gamma_b(\pi)$ is of the form $N(0, \widehat{a_1w}, \varepsilon)$, where $a_1w \in S_1 \cdot \mathfrak{W}$ and $\varepsilon > 0$. Choose $\delta > 0$ and $a_2 \in S_2$ such that $a_1(x) < \delta a_2(x)$ for all $x \in X$, and consider the $S_2 \cdot \mathfrak{W}$ -neighborhood of 0 given by $N(0, \widehat{a_2w}, \varepsilon/\delta)$. If $\sigma \in N(0, \widehat{a_2w}, \varepsilon/\delta)$, then for all $x \in X$ we have $$a_1(x)w^x(\sigma(x)) \le \delta a_2(x)w^x(\sigma(x)) < \varepsilon,$$ so that $\widehat{a_1w}(\sigma) < \varepsilon$, and thus $\sigma \in N(0, \widehat{a_1w}, \varepsilon)$. As a consequence, any $S_1 \cdot \mathfrak{W}$ -neighborhood of 0 contains an $S_2 \cdot \mathfrak{W}$ -neighborhood of 0, so that the $S_1 \cdot \mathfrak{W}$ topology is weaker than the $S_2 \cdot \mathfrak{W}$ topology. **Lemma 2.** Let $a_1 \in \mathcal{B}_0(X)$, the space of bounded non-negative functions on X which vanish at infinity. Then there exists an upper semicontinuous function a_2 on X, vanishing at infinity, and $\delta > 0$, such that $a_1(x) < \delta a_2(x)$ for all $x \in X$. *Proof.* See the proof of [10, Theorem 3.7]. Corollary 3. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4). Let S_0 be the cone of non-negative upper semicontinuous functions on X which vanish at infinity. Then the $S_0 \cdot \mathfrak{W}$ - and $\mathcal{B}_0(X) \cdot \mathfrak{W}$ -topologies on $\Gamma_b(\pi)$ are equivalent. *Proof.* Apply the remark preceding Lemma 1, and then Lemmas 1 and 2. \Box Corollary 4. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and suppose that X is compact. Then the u-, β -, and κ -topologies coincide on $\Gamma(\pi) = \Gamma_b(\pi)$. *Proof.* We have already noted that $\kappa \subset \beta \subset u$. It suffices to show that $u \subset \kappa$; but for this, note that $\chi_X = 1$. I.e. $\{\chi_X\} \cdot \mathfrak{W} = \mathfrak{W} \subset \mathcal{S} \cdot \mathfrak{W}$, where \mathcal{S} is the set of non-negative upper semicontinuous functions with compact support. #### 2. Stone–Weierstrass and spectral synthesis results We first prove some general results which have analogies in the theory of bundles of Banach spaces. **Lemma 5.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and suppose that $K \subset X$ is compact. Suppose that $M \subset \mathcal{F}$ is a $C_b(X)$ -submodule of \mathcal{F} such that $M_x = \phi_x(M) = \{\sigma(x) : \sigma \in M\}$ is dense in E_x for each $x \in K$. Then $M_K = \{\sigma_K : \sigma \in M\}$ is dense in $\mathcal{F}_K = \{\tau_K : \tau \in \mathcal{F}\}$ in the β_K -topology determined by $\mathfrak{V}_K = \{x \mapsto v^x(\cdot) : v \in \mathfrak{V}, x \in K\}$. *Proof.* This is a variant of [4, Theorem 4.2]. Suppose that $v \in \mathfrak{V}$ and $\varepsilon > 0$ are given. Let $\sigma \in \mathcal{F}$. We will construct $\tau \in M$ such that $v^y(\tau(y) - \sigma(y)) < \varepsilon$ for all $y \in K$. Let $x \in K$. Since M_x is dense in E_x , there exists $z \in M_x$ such that $v^x(z - \sigma(x)) < \varepsilon$. Consequently, there exists $\tau_x \in M$ such that $\tau_x(x) = z$. For each $x \in X$, choose a neighborhood U_x of x such that if $y \in U_x$, then $v^y(\tau_x(y) - \sigma(y)) < \varepsilon$. Choose a finite subcover $U_{x_j} = U_j$ (j = 1, ..., k) from among the U_x . From [2, Lemma 2.1] we can choose continuous functions $a_j : X \to [0,1]$ such that 1) each a_j is supported on U_j ; 2) $\sum_{j=1}^k a_j(x) = 1$ for $x \in K$; and 3) $\sum_{j=1}^{k} a_j(x) \le 1$ for all $x \in X$. Set $\tau = \sum_{j=1}^{k} a_j \tau_{x_j} \in M$. Then it is easily checked that $v^y(\tau(y) - \sigma(y)) < \varepsilon$ for all $y \in K$, i.e. $\widehat{v}(\tau - \sigma) < \varepsilon$. \square **Proposition 6.** Suppose that \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above. Suppose also that $M \subset \mathcal{F}$ is a $C_b(X)$ -submodule of \mathcal{F} such that $M_x =$ $\phi_x(M) = \{\sigma(x) : \sigma \in M\}$ is dense in E_x for each $x \in X$. Then M is β -dense in \mathcal{F} . *Proof.* Let $v \in \mathfrak{V}$ and $\varepsilon > 0$ be given, and let $\sigma \in \mathcal{F}$. Then there exists compact $K \subset X$ such that $v^y(\sigma(y)) < \varepsilon$ whenever $y \notin K$. By the preceding Lemma, there exists $\tau \in M$ such that $v^y(\tau(y) - \sigma(y)) < \varepsilon$ for all $y \in K$. By the upper semicontinuity, we can choose a neighborhood U of K such that in fact $v^y(\tau(y) - \sigma(y)) < \varepsilon$ for all $y \in U$. Since X is completely regular, we can also choose a continuous $a: X \to [0,1]$ such that a(K) = 1 and $a(X \setminus U) = 0$. Then $a\tau \in M$, and it can be checked that $v^y((a\tau)(y) - \sigma(y)) < \varepsilon$ for all $y \in X$; i.e. that $\widehat{v}(a\tau - \sigma) < \varepsilon$. Note that this Stone–Weierstrass result is an extension of those to be found in e.g. [16, Theorem 3] and [10]. Corollary 7 (See [16], Section 3). Suppose that \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, with $E_x = E$ for some fixed topological vector space E. Let $\mathcal{F}' \subset \mathcal{F}$ be a $C_b(X)$ -submodule of \mathcal{F} such that for each $x \in X$ and each closed subspace $T \subset E$ of codimension 1, there exists $\sigma \in \mathcal{F}'$ such that $\sigma(x) \notin T$. Then \mathcal{F}' is β -dense in \mathcal{F} . Proof. We need only show that $\mathcal{F}'_x = \phi_x(\mathcal{F}')$ is dense in E for each $x \in X$. If not, then for some $x \in X$, $\overline{\mathcal{F}'_x} \subset E$ is a proper closed subspace, and so for a fixed $z \in E \setminus \overline{\mathcal{F}'_x}$, by the Hahn–Banach theorem there is a continuous functional $f \in E^*$ (the continuous dual of E) such that $\overline{\mathcal{F}'_x} \subset \ker f$ and f(z) = 1. But $\ker f$ is a closed subspace of codimension 1, and so there exists $\sigma \in \mathcal{F}'$ such that $z = \sigma(x) \notin \ker f$, and hence $\sigma(x) \notin \mathcal{F}'_x$, a contradiction. \square We can also prove a spectral synthesis-type result extending that in [13], and analogous to that in [9, Proposition 10]. Suppose that \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above. It is easy to see that the evaluation map $\phi_x: \mathcal{F} \to E_x$, $\sigma \mapsto \sigma(x)$, is continuous. Hence, if $f_x \in E_x^*$, the composition $f_x \circ \phi_x$ is also continuous. Note that for $\sigma \in \mathcal{F}$ and $a \in C_b(X)$, we have $(f_x \circ \phi_x)(a\sigma) = a(x)f_x(\sigma(x))$. From this, it follows that $\ker(f_x \circ \phi_x)$ is a closed submodule of \mathcal{F} of codimension 1; i.e. a maximal closed submodule. It turns out that all closed submodules of \mathcal{F} of codimension 1 arise in this fashion. **Lemma 8.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, and suppose that $M \subset \mathcal{F}$ is a β -closed proper submodule. Then there exists $x \in X$ such that $\overline{\phi_x(M)} = \overline{M_x}$ is a closed proper subspace of E_x . *Proof.* Clearly, M_x is a subspace of E_x , and hence so is $\overline{M_x}$. Suppose, if possible, that for all $x \in X$ we have $\overline{M_x} = E_x$. But now M satisfies the conditions of Proposition 6 above, so that M is dense in \mathcal{F} ; since M is closed, this forces $M = \mathcal{F}$, a contradiction. Corollary 9. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, and suppose that $0 \neq g \in \mathcal{F}^*$, with $M = \ker g$ a submodule of \mathcal{F} . Then there exists $x \in X$ such that $\overline{M_x}$ is a proper subspace of E_x . **Proposition 10.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, and suppose that $g \in \mathcal{F}^*$, and that $M = \ker g$ a is submodule of \mathcal{F} . Then there exist unique $x \in X$ and $f_x \in E_x^*$ such that $g = f_x \circ \phi_x$. *Proof.* Since M is a closed proper submodule of \mathcal{F} , there exists $x \in X$ such that $\overline{M_x}$ is a closed proper subspace of E_x . Then $\frac{E_x}{\overline{M_x}} \neq 0$. The evaluation $\phi_x: \mathcal{F} \to E_x$ maps M into M_x , so there is a unique linear map $\xi: \frac{\mathcal{F}}{M} \to \frac{E_x}{\overline{M_x}}$ which makes this diagram commute: $$\begin{array}{ccc} \mathcal{F} & \xrightarrow{\phi_x} & E_x \\ \delta \downarrow & & \downarrow \delta_x \\ \frac{\mathcal{F}}{M} & \xrightarrow{\xi} & \frac{E_x}{M_x} \end{array}$$ (where δ and δ_x are the quotient maps). Since $\phi_x : \mathcal{F} \to E_x$ is surjective (recall that \mathcal{F} was chosen to be full), so is ξ . But $\frac{\mathcal{F}}{M}$ is one-dimensional, and as a consequence so also is $\frac{E_x}{\overline{M}_x}$. In particular, then, \overline{M}_x is a closed subspace of codimension 1, and so it is the kernel of some non-zero functional $f_x \in E_x^*$, i.e. $\overline{M_x} = \ker f_x$. Clearly, $f_x \circ \phi_x$ is non-trivial. Moreover, if $\sigma \in M$, then $\sigma(x) \in M_x \subset \overline{M_x}$, and so $(f_x \circ \phi_x)(\sigma) = 0$; therefore $M = \ker g \subset \ker (f_x \circ \phi_x)$. But since both M and $\ker (f_x \circ \phi_x)$ are closed and maximal, this forces $M = \ker (f_x \circ \phi_x)$. Thus, there exists $\alpha \neq 0$ such that $g = \alpha (f_x \circ \phi_x) = (\alpha f_x) \circ \phi_x$; since $\alpha f_x \in E_x^*$, we are done. For a subspace $\mathcal{F}' \subset \mathcal{F}$ and $x \in X$, set $\mathcal{F}'^x = \{\sigma \in \mathcal{F} : \sigma(x) \in \overline{\mathcal{F}'_x}\}$. Then \mathcal{F}'^x is a β -closed submodule of \mathcal{F} . [For, if $\sigma \in \mathcal{F}$ and $a \in C_b(X)$, we have $(a\sigma)(x) = a(x)\sigma(x) \in \overline{\mathcal{F}'_x}$ whenever $\sigma(x) \in \overline{\mathcal{F}'_x}$; i.e. $a\sigma \in \mathcal{F}'^x$ whenever $\sigma \in \mathcal{F}'^x$. Moreover, fix $x \in X$. If τ is in the β -closure of \mathcal{F}'^x , then for each $v \in \mathfrak{V}$ and $\varepsilon > 0$, there exists $\sigma \in \mathcal{F}'^x$ such that $\widehat{v}(\tau - \sigma) < \varepsilon$; in particular $v^x(\tau(x) - \sigma(x)) < \varepsilon$. But $\sigma(x) \in \overline{\mathcal{F}'_x}$, and hence so does $\tau(x) \in \overline{\mathcal{F}'_x}$. Thus $\tau \in \mathcal{F}'^x$.] We use this remark to prove the following. Corollary 11. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, and suppose that $M \subset \mathcal{F}$ is a β -closed submodule. Then $M = \bigcap_{x \in X} (\overline{M_x})^x$. *Proof.* Set $M'=\bigcap_{x\in X}(\overline{M_x})^x$. Since it is clear that $M\subset M',$ we claim that $M'\subset M.$ As noted immediately above, each $(\overline{M_x})^x$ is a closed submodule of \mathcal{F} . Let $\sigma \in M', v \in \mathfrak{V}$, and $\varepsilon > 0$. Choose compact $K \subset X$ such that $v^x(\sigma(x)) < \frac{\varepsilon}{2} = \varepsilon'$ if $x \notin K$. For each $x \in K$, since $\sigma(x) \in \overline{M_x}$, there exists $\tau_x \in M$ such that $v^y(\sigma(x) - \tau_x(x)) < \varepsilon'$. From the upper semicontinuity of the seminorms, there exists for each $x \in K$ an open neighborhood U_x of x such that if $y \in U_x$ then $v^y(\sigma(y) - \tau_x(y)) < \varepsilon'$. Choose a finite subcover $U_{x_j} = U_j$ of K. Again using [2, Lemma 1], we can choose continuous functions $a_j : X \to [0, 1]$ (k = 1, ..., n) such that 1) $\sum_{j=1}^n a_j(y) = 1$ for $y \in K$; 2) a_j is supported on U_j for each j = 1, ..., n; and 3) $\sum_{j=1}^n a_j(y) \le 1$ for each $j \in X$. Let $\tau = \sum_{j=1}^{n} a_j \tau_{x_j}$, and let $y \in X$. There are the following three possibilities. 1) If $y \in K$, then $$v^{y}(\sigma(y) - \tau(y)) = v^{y} \left(\sum_{j=1}^{n} a_{j}(y) (\sigma(y) - \tau_{x_{j}}(y)) \right)$$ $$\leq \sum_{j=1}^{n} a_{j}(y) v^{y} (\sigma(y) - \tau_{x_{j}}(y))$$ $$< \varepsilon.$$ 2) If $$y \in \bigcup_{j=1}^{n} U_j \setminus K$$, then $$v^{y}(\sigma(y) - \tau(y)) = v^{y} \left(\sum_{j=1}^{n} a_{j}(y)(\sigma(y) - \tau_{x_{j}}(y)) + \left(1 - \sum_{j=1}^{n} a_{j}(y) \right) \sigma(y) \right)$$ $$\leq v^{y} \left(\sum_{j=1}^{n} a_{j}(y)(\sigma(y) - \tau_{x_{j}}(y)) \right)$$ $$+ \left(1 - \sum_{j=1}^{n} a_{j}(y) \right) v^{y}(\sigma(y))$$ $$< \varepsilon' + \varepsilon'$$ $$< \varepsilon$$ (because $y \in U_j$ for some j and $\sum_{j=1}^n a_j(y) \le 1$, but $y \notin K$). 3) If $$y \in X \setminus \bigcup_{j=1}^{n} U_j$$, then $$v^{y}(\sigma(y) - \tau(y)) = v^{y} \left(\sigma(y) - \sum_{j=1}^{n} a_{j}(y) \tau_{x_{j}}(y) \right)$$ $$= v^{y}(\sigma(y))$$ $$< \varepsilon'$$ $$< \varepsilon$$ (since a(y) = 0 for all $y \notin \bigcup_{j=1}^{n} U_j$). Thus, for all $y \in X$, we have $v^y(\sigma(y) - \tau(y)) < \varepsilon$, and so $\tau \in N(\sigma, \widehat{v}, \varepsilon)$. This forces $M' \subset M$. **Proposition 12.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4) above, and suppose that $M \subset \mathcal{F}$ is a β -closed submodule. Then M is the intersection of all β -closed maximal submodules which contain it. *Proof.* Our proof is obtained by translating the language of [9, Proposition 10] into our current situation. Set $P = \{x \in X : \overline{M_x} \text{ is a proper subspace of } E_x\}$. Note in general that for $g \in \mathcal{F}^*$, with $g = f_x \circ \phi_x$ for $f_x \in E_x^*$ and $x \in P$, we have the following: $M \subset \ker g$, if and only if $M_x \subset \ker f_x$, if and only if $\overline{M_x} \subset \ker f_x$, if and only if $\overline{(M_x)}^x \subset \ker (f_x \circ \phi_x)$. But when $x \in P$, $\overline{M_x} \subset E_x$ is a subspace, and so from the Hahn–Banach theorem we have $\overline{M_x} = \bigcap \{\ker f_x : f_x \in E_x^* \text{ and } \overline{M_x} \subset \ker f_x\}$. Thus, if $x \in P$, we have $$(\overline{M_x})^x = \bigcap \{ \ker(f_x \circ \phi_x) : f_x \in E_x^* \text{ and } \overline{M_x} \subset \ker f_x \}$$ $$= \bigcap \{ \ker g : g = f_x \circ \phi_x \in \mathcal{F}^* \text{ and } (\overline{M_x})^x \subset \ker g \}.$$ Finally, $$M = \bigcap_{x \in X} (\overline{M_x})^x = \bigcap_{x \in P} (\overline{M_x})^x$$ $$= \bigcap_{x \in P} \{\ker g : g = f_x \circ \phi_x \in \mathcal{F}^* \text{ and } (\overline{M_x})^x \subset \ker g\}$$ $$= \bigcap_{x \in X} \{\ker g : g = f_x \circ \phi_x \in \mathcal{F}^* \text{ and } M \subset \ker g\}.$$ This result is analogous to [16, Theorem 5]. If X is compact, the above result translates into the following well-known fact that C(X) satisfies spectral synthesis. **Corollary 13.** Let X be compact. Then C(X) satisfies spectral synthesis; i.e. each closed ideal in C(X) is the intersection of the closed maximal ideals which contain it. *Proof.* A $$C(X)$$ -submodule of $C(X)$ is an ideal. The corollary above points out the necessity in Proposition 12 that M be a submodule: if, for example, X = [0,1], then for the Lebesgue measure $\mu \in C(X)^*$, ker μ is obviously a closed maximal subspace, but is not contained in any closed maximal ideal (equivalently in this situation, closed maximal submodule). (See also [13], where this spectral synthesis result is proved for section spaces $\Gamma(\pi)$, where $\pi: \mathcal{E} \to X$ is a Banach bundle over the compact base space X.) #### 3. Completeness and other results for strict topologies We now consider various questions regarding strict topologies on spaces of vector-valued functions. Recall from the Introduction that if \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), then there is a bundle $\pi : \mathcal{E} \to X$, with fibers E_x , such that \mathcal{F} is a subspace of the space $\Gamma_b(\pi)$ of bounded sections, which in turn is a subspace of $\Gamma(\pi)$, the space of all sections of π . Our first results involve completeness. **Proposition 14.** Let X be locally compact, and let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4). Suppose that for each $x \in X$, E_x is complete, and let $\Gamma_b(\pi)$ be the space of bounded sections of the bundle $\pi : \mathcal{E} \to X$ whose topology is determined by \mathcal{F} and \mathfrak{W} . Then $(\Gamma_b(\pi), \beta)$ is complete. Proof. Let (σ_{λ}) be a Cauchy net in $(\Gamma_b(\pi), \beta)$. Then given $\varepsilon > 0$ and $v \in \mathfrak{V}$, there exists λ_0 such that if $\lambda, \lambda' \geq \lambda_0$, then $\widehat{v}(\sigma_{\lambda} - \sigma_{\lambda'}) < \varepsilon$. In particular, for each $x \in X$, $v^x(\sigma_{\lambda}(x) - \sigma_{\lambda'}(x)) < \varepsilon$, so that $(\sigma_{\lambda}(x))$ is Cauchy in E_x for each $x \in X$, and hence converges pointwise, say to $\sigma(x) \in E_x$. Suppose that σ (defined pointwise) is unbounded. Then there exist $v \in \mathfrak{V}$ and a sequence $(x_n) \subset X$ such that $v(\sigma(x_n)) > 2n$. On the other hand, there exists λ_0 such that if $\lambda, \lambda' \geq \lambda_0$, then $\widehat{v}(\sigma_{\lambda} - \sigma_{\lambda'}) < n$; in particular, $v^{x_n}(\sigma_{\lambda}(x_n) - \sigma_{\lambda_0}(x_n)) < n$ for all n. Then $\lim_{\lambda} v^{x_n}(\sigma_{\lambda}(x_n) - \sigma_{\lambda_0}(x_n)) = v^{x_n}(\sigma(x_n) - \sigma_{\lambda_0}(x_n)) \leq n$ for all n, and so $v^{x_n}(\sigma_{\lambda_0}(x_n)) > n$, a contradiction since $\sigma_{\lambda_0} \in \Gamma_b(\pi)$. We now claim σ is continuous. Let $x \in X$, and let K be a compact neighborhood of x. Let $w \in \mathfrak{W}$ and $\varepsilon > 0$. Then there exists λ_0 such that if $\lambda, \lambda' \geq \lambda_0$ then $$\widehat{\chi_K w}(\sigma_{\lambda} - \sigma_{\lambda'}) = \sup_{x \in K} w^x(\sigma_{\lambda} - \sigma_{\lambda'}) = \widehat{w_K}(\sigma_{\lambda} - \sigma_{\lambda'}) < \varepsilon;$$ i.e. (σ_{λ}) is u_K -Cauchy on K. Hence by [4, Theorem 5.9], (σ_{λ}) converges uniformly to σ_K , the restriction of σ to K. But since K is a neighborhood of x, σ_K and thus σ are continuous at x. **Proposition 15.** Let X be first countable, and let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4). Suppose that for each $x \in X$, E_x is complete, and let $\Gamma_b(\pi)$ be the space of bounded sections of the bundle $\pi : \mathcal{E} \to X$ whose topology is determined by \mathcal{F} and \mathfrak{W} . Then $(\Gamma_b(\pi), \beta)$ is complete. *Proof.* Let (σ_{λ}) be a β -Cauchy sequence in $\Gamma_b(\pi)$. As above, the pointwise limit σ is bounded. We claim σ is continuous. If, say, σ is discontinuous at $x \in X$, then there exist $\varepsilon > 0$, $v \in \mathfrak{V}$, $\tau \in \Gamma_b(\pi)$ with $\tau(x) = \sigma(x)$, an open neighborhood U of x, and a sequence (x_n) of distinct points with $x_n \to x$ such that $\sigma(x_n) \notin T = T(U, \tau, v, \varepsilon)$. Since (x_n) is eventually in U, this is equivalent to saying (by passing to a subsequence if necessary), that $v^{x_n}(\sigma(x_n) - \tau(x_n)) \geq \varepsilon$ for all n. Let $a = \chi_B$, the characteristic function of the compact set $B = \{x_n : n \in \mathbb{N}\} \cup \{x\}$. Then a is upper semicontinuous and vanishes at infinity. Since (σ_{λ}) is β -Cauchy, and since $av \in \mathfrak{V}$ (because S_0 is closed under multiplication) there exists λ_0 such that if $\lambda, \lambda' \geq \lambda_0$, then $\widehat{av}(\sigma_{\lambda} - \sigma_{\lambda'}) < \varepsilon/2$. Hence, $\sup_{y \in B} \{v^y(\sigma_{\lambda}(y) - \sigma_{\lambda_0}(y))\} < \varepsilon/2$ whenever $\lambda \geq \lambda_0$. Passing to the limit in λ , we have $\sup_{y \in B} \{v^y(\sigma(y) - \sigma_{\lambda_0}(y))\} \leq \varepsilon/2$, or $v^{x_n}(\sigma(x_n) - \sigma_{\lambda_0}(x_n)) \leq \varepsilon/2$ for all n. This forces $v^{x_n}(\sigma_{\lambda_0}(x_n) - \tau(x_n)) > \varepsilon/2$ for all n. However, $\sigma_{\lambda_0} \in \Gamma_b(\pi)$, and since $x_n \to x$, we must have $\sigma_{\lambda_0}(x_n) \in T(U, \tau, v, \varepsilon/2)$ for large n. This is a contradiction, since x_n will be in U eventually, but $v^{x_n}(\sigma_{\lambda_0}(x_n) - \tau(x_n)) > \varepsilon/2$ implies that $\sigma_{\lambda_0}(x_n) \notin T$. Hence, σ is continuous. Suppose now that \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), with the following provisos: each E_x is a Banach space, and $\mathfrak{W} = \{\|\cdot\|\}$ is a singleton. Then the bundle $\pi: \mathcal{E} \to X$ determined by \mathcal{F} and \mathfrak{W} is a bundle of Banach spaces (Banach bundle), and $\Gamma_b(\pi)$ is complete in the sup norm. Moreover, from [9, Corollary 15], if $\pi: \mathcal{E} \to X$ is a Banach bundle, and if $K \subset X$ is compact, then for $\tau \in \Gamma(\pi_K)$, the section space of the restriction bundle $\pi_K: \mathcal{E}_K \to X$, there is a norm-preserving extension $\tau' \in \Gamma_b(\pi)$ of τ . Generally speaking, in $\Gamma(\pi)$ for a Banach bundle, the function $x \mapsto \|\sigma(x)\|$ is upper semicontinuous for all $\sigma \in \Gamma(\pi)$; if this function should happen to be continuous for all $\sigma \in \Gamma(\pi)$, call π a continuous bundle. Recall that a topological space X is a k^* -space if whenever $a: X \to \mathbb{R}$ is a bounded function such that a_K (the restriction of a to K) is in C(K) for each compact $K \subset X$, then also $a \in C(X)$. **Proposition 16.** Suppose that $\pi : \mathcal{E} \to X$ is a continuously-normed bundle of Banach spaces, and that $(\Gamma_b(\pi), \beta)$ is complete. Suppose also that for each compact $K \subset X$, there exists $\sigma^K \in \Gamma(\pi)$ such that $\|\sigma^K(x)\| > 0$ for all $x \in K$. Then X is a k^* -space. Proof. Note first that there do exist continuously normed bundles where no (global) section is bounded away from 0; see [8, Example 2], so the assumption is necessary. Let $a: X \to \mathbb{R}$ be bounded, with $a(x) \geq 0$ for all x, and suppose that for each compact $K \subset X$, $a_K \in C(K)$. For a given compact K, choose $\sigma^K \in \Gamma_b(\pi)$ such that $\|\sigma^K(x)\| > 0$ for all $x \in K$; then $(\sigma^K)_K \in \Gamma(\pi_K)$. By multiplying by an appropriate $b_K \in C(K)$ (which is possible because $x \mapsto \|\sigma^K(x)\|$ is bounded away from 0 on K), we may as well assume that $\|(\sigma^K)_K(x)\| = a(x) = a_K(x) \leq \|a\|$ for each $x \in K$. Let τ^K be a norm-preserving extension of $(\sigma^K)_K$ to all of X; then $\tau^K \in \Gamma_b(\pi)$, and $x \mapsto \|\tau^K(x)\|$ extends a_K to all of X, preserving the norm. Order $\Re = \{ \overset{\circ}{K} \subset X : K \text{ is compact} \}$ by inclusion, and consider the resulting net $\{ \tau^K \in \Gamma_b(\pi) : K \in \Re \}$. Let $v \in \mathfrak{V}$, let $\varepsilon > 0$, and choose $K_0 \in \Re$ such that $v(x) < \frac{\varepsilon}{2 \|a\| + 1}$ for $x \notin K_0$. Suppose that $K, K' \supset K_0$. We then have: $$v(x) \| \tau^{K}(x) - \tau^{K'}(x) \| \begin{cases} = 0, & \text{if } x \in K_0 \ (\tau^{K} \text{ and } \tau^{K'} \text{ both extend } \tau^{K_0}), \\ < v(x) (\| \tau^{K}(x) \| + \| \tau^{K'}(x) \|) \\ < v(x) \cdot 2 \| a \| < \varepsilon, & \text{if } x \notin K_0. \end{cases}$$ So, $\{\tau^K\}$ is a Cauchy net in $(\Gamma_b(\pi), \beta)$, and hence converges to some $\tau \in \Gamma_b(\pi)$. Necessarily we have $\|\tau(x)\| = a(x)$, and so $a \in C_b(X)$. Finally, if a is any bounded function on X, we can write $a = a^+ - a^-$ in the usual fashion, and obtain $a \in C(X)$. Corollary 17. If $(C_b(X), \beta)$ is complete, then X is a k^* -space. Corollary 18. Let $\pi: \mathcal{E} \to X$ be a continuously normed bundle of commutative Banach algebras E_x with identities e_x , and suppose that the identity selection $e \in \Gamma_b(\pi)$, where $e(x) = e_x$. If $(\Gamma_b(\pi), \beta)$ is complete, then X is a k^* -space. *Proof.* We refer the reader to e.g. [12] or [9] for the somewhat natural definition of a bundle of Banach algebras. Immediately to hand, for each compact $K \subset X$, we have $||e(x)|| = ||e_x|| \ge 1$ for all $x \in K$, so e is bounded away from 0. Corollary 19. Let $\pi: \mathcal{E} \to X$ be the trivial bundle over X with constant fiber the Banach space E. If $(\Gamma_b(X), \beta)$ is complete, then X is a k^* -space. *Proof.* $\Gamma_b(\pi)$ is isometrically isomorphic to $C_b(X, E)$, the space of continuous and bounded E-valued functions on X. Contrast this to the situation with $(C_b(X), \beta)$: this space is complete if and only if X is a k^* -space ([7, Theorem 1]). I.e. completeness of $(C_b(X), \beta)$ depends intrinsically on the topology of X. The inability to characterize completeness of $(\Gamma_b(\pi), \beta)$ in such a fashion would not be surprising, because even in the class of all Banach bundles $\pi : \mathcal{E} \to X$, the topology of \mathcal{E} , and hence the description of $\Gamma_b(\pi)$, even though it is related to that of X, does not determine the topology of X. For example, if X is compact and infinite, then there are at least two highly non-homeomorphic bundles over X with scalar fibers, namely the trivial bundle $\pi_1 : \mathcal{E}_1 \to X$, where $\mathcal{E}_1 = X \times \mathbb{R}$ with the product topology, and $\pi_2 : \mathcal{E}_2 \to X$, where $\mathcal{E}_2 = X \times \mathbb{R}$ with the spiky topology. We now discuss the beginnings of a notion of compactness within $(\Gamma_b(\pi), \beta)$. **Proposition 20.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $\pi : \mathcal{E} \to X$ be the bundle determined by them. Then a set $B \subset \Gamma_b(\pi)$ is u-bounded if and only if it is β -bounded. Proof. This mimics the proof of [10, Theorem 3.4.(iii)]; only one direction needs to be shown. Suppose that $B \subset \Gamma_b(\pi)$ is β -bounded but not u-bounded. Then there exist $w \in \mathfrak{W}$, and a subbasic neighborhood $N(0, \widehat{w}, \varepsilon)$ such that $B \not\subset n^2 \cdot N(0, \widehat{w}, \varepsilon)$ for any n. Thus, we can find a sequence $(\sigma_n) \subset B$ such that $\sigma_n \not\in n^2 \cdot N(0, w^x, \varepsilon) \subset E_x$. Hence there is a sequence $(x_n) \subset X$ such that $w^{x_n}(\sigma_n(x_n)) \geq n^2 \varepsilon$. Let $a(x_n) = 1/n$ (assuming no repetition on the x's), and a(x) = 0 otherwise. Then a vanishes at infinity. Consider the β -neighborhood $N(0, \widehat{aw}, \varepsilon)$ of 0. Since $(aw)^{x_n}(\sigma_n(x_n)) \geq n\varepsilon$, it follows that $\widehat{aw}(\sigma_n) \geq n\varepsilon$, and so $\sigma_n \not\in n \cdot N(0, \widehat{aw}, \varepsilon)$ for any n. Thus, $B \not\subset n \cdot N(0, \widehat{aw}, \varepsilon)$ for any n, which is a contradiction. **Proposition 21.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $\pi: \mathcal{E} \to X$ be the bundle determined by them. Let (σ_n) be a net in $\Gamma_b(\pi)$ such that 1) (σ_n) is u-bounded; 2) that for each compact $K \subset X$, $\sigma_n \xrightarrow{u_K} \sigma_K$, where σ_K is the restriction to K of $\sigma \in \Gamma_b(\pi)$. Then $\sigma_n \xrightarrow{\beta} \sigma$. Proof. Let $v = aw \in \mathfrak{V}$, and let $\varepsilon > 0$ be given. There exists a compact set $K \subset X$ such that $a(x) < \frac{\varepsilon}{\sup_n \left\{\widehat{w}(\sigma_n)\right\} + \widehat{w}(\sigma)}$ if $x \notin K$. We can choose N such that if $n \geq N$, then $\widehat{w_K}(\sigma_n - \sigma) < \frac{\varepsilon}{\|a\|}$. Then for $x \in X$ we have $$(aw)^{x} (\sigma_{n}(x) - \sigma(x)) = a(x)w^{x} (\sigma_{n}(x) - \sigma(x))$$ $$\leq \begin{cases} \|a\| \widehat{w_{K}}(\sigma_{n} - \sigma), & \text{if } n \geq N \text{ and if } x \in K, \\ \frac{\varepsilon \widehat{w_{K}}(\sigma_{n} - \sigma)}{\sup_{n} \{\widehat{w}(\sigma_{n})\} + \widehat{w}(\sigma)} < \varepsilon, & \text{if } n \geq N, x \notin K. \end{cases}$$ The converse is also true. **Proposition 22.** Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $\pi : \mathcal{E} \to X$ be the bundle determined by them. Suppose that $(\sigma_n) \subset \Gamma_b(\pi)$ is a net such that $\sigma_n \xrightarrow{\beta} \sigma \in \Gamma_b(\pi)$. Then (σ_n) is u-bounded, and $\sigma_n \xrightarrow{u_K} \sigma_K$ for each compact $K \subset X$. *Proof.* Suppose that $\sigma_n \xrightarrow{\beta} \sigma \in \Gamma_b(\pi)$. Then given $v = aw \in \mathfrak{V}$ and $\varepsilon > 0$, there exists N_v such that if $n \geq N_v$, then $\widehat{v}(\sigma_n - \sigma) < \varepsilon$. Thus, $\sup_n \widehat{v}(\sigma_n) < \infty$, and since $v \in \mathfrak{V}$ was arbitrary, $\{\sigma_n\}$ is β -bounded and hence u-bounded. Now, let $K \subset X$ be compact, and let $\varepsilon > 0$ and $w \in \mathfrak{W}$. Then $\chi_K w \in \mathfrak{V}$, and so for sufficiently large n we have $\widehat{v}(\sigma_n - \sigma) = \sup_{x \in K} w^x(\sigma_n(x) - \sigma(x)) = \widehat{w_K}(\sigma_n - \sigma) < \varepsilon$. But this is what we mean by u_K -convergence. Corollary 23. Let \mathcal{F} and \mathfrak{W} satisfy conditions C1) – C4), and let $\pi : \mathcal{E} \to X$ be the bundle determined by them. Let (σ_{λ}) be a net in $\Gamma_b(\pi)$. Then $\sigma_{\lambda} \xrightarrow{\beta} \sigma \in \Gamma_b(\pi)$ if and only if 1) for each $w \in \mathfrak{W}$ there exists λ_w such that $(\widehat{w}(\sigma_{\lambda}))_{\lambda \geq \lambda_w}$ is bounded (in \mathbb{R}); and 2) $(\sigma_{\lambda})_K \xrightarrow{u_K} \sigma_K$ on each compact $K \subset X$. These results are evidently trying to lead toward an Arzelà–Ascoli type result regarding compactness in $(\Gamma_b(\pi), \beta)$: a set $B \subset \Gamma_b(\pi)$ is β -compact (if and only if, one hopes) it is closed and bounded, and it exhibits some sort of property which would reasonably be labelled uniform equicontinuity. But here is where a problem arises. Consider the space C(X, E). Here, there is a natural definition of equicontinuity: a family $B \subset C(X, E)$ is equicontinuous at x if given any neighborhood $\mathcal N$ of 0 in E, there exists a neighborhood U of x such that for all $\sigma \in B$, $\sigma(x) - \sigma(y) \in \mathcal N$ whenever $x, y \in U$. Because $\sigma(x)$ and $\sigma(y)$ both are in E, the subtraction makes sense. Yet a straightforward attempt to apply this to our more general situation fails. We could, for example, try: $B \subset \Gamma_b(\pi)$ is equicontinuous at x provided that for each $w \in \mathfrak W$ and $\varepsilon > 0$, there exists a neighborhood U of x such that if $x, y \in U$, then — what? Since $\sigma(x)$ and $\sigma(y)$ are in different spaces (given the context), $\sigma(x) - \sigma(y)$ is undefined. And to have both $\sigma(x), \sigma(y) \in T(U, \sigma, \widehat{v}, \varepsilon)$ says nothing more than σ is continuous. It is thus unclear how to proceed. **Acknowledgement.** The authors wish to thank the anonymous referee for his/her careful reading and editorial suggestions. #### References [1] J. Arhippainen and J. Kauppi, Generalization of the topological algebra $(C_b(X), \beta)$, Studia Math. **191** (2009), 247–262. - [2] H. Arizmendi-Peimbert, A. Carillo-Hoyo, and A. García, A spectral synthesis property for $(C_b(X), \beta)$, Comment. Math. 48 (2008), 121–127. - [3] R. C. Buck, Bounded continuous functions on a locally compact space, Michigan Math. J. 5 (1958), 95–104. - [4] G. Gierz, Bundles of Topological Vector Spaces and Their Duality, Lect. Notes in Math. 955, Springer-Verlag, Berlin, 1982. - [5] R. Giles, A generalization of the strict topology, Trans. Amer. Math. Soc. 161 (1971), 467–474. - [6] A.E. Gutman and A.V. Koptev, On the notion of the dual of a Banach bundle, Siberian Adv. Math. 9 (1999), 46–98. - [7] J. Hoffman-Jørgensen, A generalization of the strict topology, Math. Scand. 30 (1972),313–323. - [8] T. Hõim and D. A. Robbins, Isomorphisms into section spaces of Banach bundles, Quaest. Math. 30 (2007), 97–113. - [9] T. Hõim and D. A. Robbins, Spectral synthesis and other results in some topological algebras of vector-valued functions, Quaest. Math. (to appear) - [10] L. A. Khan, The strict topology on a space of vector-valued functions, Proc. Edinburgh Math. Soc. 22 (1979), 35–41. - [11] J. W. Kitchen and D. A. Robbins, Gelfand Representation of Banach Modules, Dissertationes Math. (Rozprawy Mat.) 203 (1982). - [12] J. W. Kitchen and D. A. Robbins, Sectional representation of Banach modules, Pacific J. Math. 109 (1983), 135–156. - [13] J. W. Kitchen and D. A. Robbins, Two notions of spectral synthesis for Banach modules, Tamkang J. Math. 16 (1985), 59–65. - [14] J. W. Kitchen and D. A. Robbins, Maximal ideals in algebras of vector-valued functions, Internat. J. Math. Math. Sci. 19 (1996), 549-554. - [15] W. Summers, Weighted approximation for modules of continuous functions, Bull. Amer. Mat. Soc. **79** (1973), 386–388. - [16] C. Todd, Stone-Weierstrass theorems for the strict topology, Proc. Amer. Math. Soc. 16 (1965), 654–659. Department of Mathematics, Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA $E ext{-}mail\ address: thoim@fau.edu}$ DEPARTMENT OF MATHEMATICS, TRINITY COLLEGE, HARTFORD, CT 06106, USA E-mail address: david.robbins@trincoll.edu