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ABSTRACT 

Ponds are ecologically important as centers for biodiversity, and those within urbanized 

watersheds typically have altered hydrology, morphology, and water chemistry. The accumulation 

of heavy metals, such as mercury (Hg), in subaqueous pond sediments has the potential to harm 

pond ecosystems, but the behavior of Hg in urban ponds is poorly understood. I investigated spatial 

variability of mercury accumulation within the sediments of two urban ponds: Beachland Park 

Pond in West Hartford, CT, USA, and Keney Park Pond, in Hartford, CT, USA. I collected 5 

samples from 14 distinct sites around each pond’s perimeter. I analyzed the fine (<63 µm) fractions 

of each sediment sample directly for total Hg. In Beachland Park Pond, mean Hg concentration 

exceeded the Threshold Effect Concentration (TEC) at four sample sites, and the Probable Effect 

Concentration (PEC) at a site on the northeastern shore of the pond. An analysis of variance 

(ANOVA) and post hoc Tukey test revealed that mean mercury concentration at this site differed 

significantly from all other sites (F = 4.635, df = 13, 56, p < 0.0001). In Keney Park Pond, mean 

Hg concentration exceeded TEC at one site in the southwestern corner of the pond. The statistical 

analysis revealed that this site differed significantly from most others (F = 42.4, df = 13, 56, p < 2 

x 10-16). The relative lack of variability among most sample sites was to be expected due to 

ubiquitous atmospheric deposition of mercury, and additional mercury sources must be considered 

for the sites which exceed the TEC. More research is needed to investigate sources of Hg in areas 

of high concentration, as well as temporal variation in mercury concentration. 
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INTRODUCTION 

 Ponds are ecologically important and can provide a vast number of ecosystem services 

(Moore and Hunt 2012, Céréghino et al. 2014). They influence hydrologic regulation by reducing 

flooding and increasing groundwater recharge (de Groot 2006, Moore and Hunt 2012). Additional 

services provided by ponds include carbon sequestration, increased biodiversity, and cultural 

services (Moore and Hunt 2012). Ponds act as potential refuges for wildlife and chemically active 

sites for nutrient and water cycling within a watershed (Williams et al. 2004, Hamer et al. 2012, 

Le Viol et al. 2012, Moore and Hunt 2012, Céréghino et al. 2014). The role of ponds as possible 

centers of biodiversity is especially important, because research has shown that ponds frequently 

have more species present than other lentic bodies of water (Williams et al. 2004, Céréghino et al. 

2014). Ponds have the potential to supply a wide variety of food resources and habitats for wildlife, 

as well as to provide opportunities for productive interaction between aquatic and terrestrial biota 

(Moreno-Opo et al. 2011, Céréghino et al. 2014). 

 Naturally occurring ponds which exist within highly urbanized watersheds are typically 

impacted by land-use change, and constructed ponds also have altered hydrology based on their 

intended purposes (Mason and Sullivan 1998, Persson et al. 1999). One of the predominant effects 

of urbanization is increased pollution from runoff as a result of increased impervious surface cover 

(Arnold Jr. and Gibbons 1996, Mason and Sullivan 1998, Brabec et al. 2002). Urbanization and 

human industrial activities also contribute to increased pollution of urban watersheds through 

atmospheric deposition of contaminants, which can occur extremely far from the source of 

contamination (Mason and Sullivan 1998, Balcom et al. 2004). Ponds are dynamic systems within 

watersheds, but they also provide opportunities for contaminants to settle and accumulate in their 

sediments, due to the relative absence of flow (Lee et al. 1997, Karlsson et al. 2010). The degree 
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of contamination within urban pond sediments can be highly variable, depending on local and non-

local sources of pollution, as well as watershed morphology and hydrology (Axtmann and Luoma 

1991, Balcom et al. 2004, Bergeron et al. 2010). 

 One problematic environmental pollutant is mercury, which is most commonly found in its 

elemental form (Hg0 and Hg(II)) and in the significantly more toxic organic compound 

methylmercury (CH3Hg; Figure 1; Burbacher et al. 1990, Balcom et al. 2004, Estrade et al. 2010, 

Shao et al. 2011, Cheng et al. 2011, Chumchal and Drenner 2015). Mercury is toxic, volatile, and 

readily transported long distances, especially within the atmosphere (Balcom et al. 2004, Zahir et 

al. 2005, Estrade et al. 2010). Clinical studies have shown that mercury toxicity causes a variety 

of neurological disorders, as well as pulmonary and nephrological diseases (Ratcliffe et al. 1996, 

Tchounwou et al. 2003, Zahir et al. 2005, Mergler et al. 2007, Carvalho et al. 2008). In aquatic 

systems, it has been shown that some bacteria anaerobically convert mercury to methylmercury 

(Gilmour and Henry 1991, Boening 2000, Strickman and Mitchell 2017). In this form, mercury is 

a strong toxin that is more easily retained by organisms and bioaccumulated throughout 

ecosystems (Morel et al. 1998, Mason and Sullivan 1998, Mergler et al. 2007). Once mercury has 

entered an ecosystem and begins undergoing methylation by bacteria, the process of 

bioaccumulation and biomagnification begins, as it is retained in organisms and passed up the food 

chain to their predators (Morel et al. 1998). This bioavailability allows for accumulation of 

methylmercury in fish, which can directly impact any humans who consume the contaminated fish 

(Clarkson 1990, Mozaffarian and Rimm 2006). Methylmercury is also easily transferred between 

aquatic and terrestrial ecosystems by emergent aquatic insects (Chumchal and Drenner 2015).  
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Figure 1. Mercury (Hg) transport and bioaccumulation through human activity (Huber 1997). 

 

Atmospheric deposition of mercury accounts for a large percentage of overall 

environmental mercury contamination, with coal burning power plants being one of the main 

sources of atmospheric mercury (Driscoll et al. 2007, Evers et al. 2007). A 1994 study determined 

that 181 million kilograms of mercury had been deposited on soils from the atmosphere since 1890 

(Schroeder and Munthe 1998). Evers et al. (2007) found that the northeastern United States 

receives mercury contamination from the coal burning power plants found in the Midwest of the 

country, due to prevailing eastward wind patterns which transport atmospheric mercury. Mercury 

can also enter the environment from anthropogenic point sources in an area, such as insecticides, 
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fungicides, phosphate fertilizers, paint, plastics, cosmetics, batteries, and fireworks (Sutherland 

2000).  

There is not a very large body of research concerning mercury contamination levels within 

the sediments of ponds in urbanized watersheds, but one study found a relatively uniform 

distribution of mercury in the bottom sediments of ponds, lakes, streams, and rivers in the Polish 

city of Poznán (Boszke and Kowalski 2006). Another study assessed urban ponds in northern 

England to have overall poor ecological quality (Noble and Hassall 2015). Urban ponds within 

green spaces are likely to be used by people for recreational activities, such as fishing, which may 

be problematic if there are harmful levels of mercury in the ecosystem (Moore and Hunt 2012). 

This study was designed to evaluate the spatial distribution of mercury concentrations 

around the perimeter of two urban ponds in the greater metropolitan area of Hartford, CT, USA. I 

hypothesized that mercury would be present in all samples and have a generally uniform 

distribution due to widespread atmospheric deposition. I also hypothesized that the most likely 

locations in which mercury concentrations might stray from this uniform distribution would be 

nearest to each pond’s main inflow and outflow. 
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MATERIALS AND METHODS 

 

Study Sites 

 In order to assess the spatial distribution of mercury accumulation in urban recreational 

ponds, two study ponds were selected within the greater metropolitan area centered around 

Hartford, CT. Hartford has a long history of commerce and manufacturing due to its location close 

to the Connecticut River, and this resulted in a rapid increase in impervious surface cover, as well 

as the disposal of toxic industrial wastes into water bodies (Walsh et al. 2005, Sterner 2012). The 

area was surveyed for potential ponds using Google Earth (Google, Mountain View, California, 

USA) with three main criteria that the study ponds should be located in green spaces, should not 

be adjacent to agriculture and should not have have large inflows and/or outflows. The ponds 

selected for sediment sampling were Beachland Park Pond in West Hartford, CT (Figure 2), and 

Keney Park Pond (Figure 3) in Hartford, CT due to their fulfillment of these criteria and logistically 

manageable sizes. 
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Figure 2. Map of Beachland Park Pond, showing its location within West Hartford, CT, United 

States (CT DEEP and USGS 2005, CT DEEP 2016, Price 2018). 
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Figure 3. Map of Keney Park Pond, showing its location within Hartford, CT, United States (CT 

DEEP and USGS 2005, CT DEEP 2016, Price 2018). 
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Beachland Park covers an area of approximately 100,000 m2, and the pond itself covers 

approximately 6,025 m2. The periphery of the pond is approximately 30% forested land and 70% 

manicured lawn, with a paved park road directly adjacent to a thin strip of manicured lawn on 

about 50% of the perimeter. Beachland Park Pond was formerly part of the Vine Hill Dairy farm, 

where it was used to power a mill and for ice harvesting during the winter months, until 1932, 

when the area became a public park (ElmwoodCT 2014). The pond is adjacent to major roads and 

drains into the highly impacted Trout Brook by an overflow structure and connected subterranean 

channel. The pond has visibly murky water, and due to its proximity to and downward sloping 

direction from major roads, Beachland Park Pond is likely heavily impacted by stormwater runoff 

and urban pollutants. 

Keney Park covers an area of approximately 2.9 x 106 m2, and the pond itself covers 

approximately 14,800 m2. The periphery of the pond is about 30% manicured lawn or constructed 

viewing platforms and 70% forested land or undeveloped meadow. Keney Park Pond is relatively 

isolated from major roads within a large park system. The pond is fed by a natural spring beside a 

low dam on its southern end, drains into the open meadow to its west, and has visibly clear water. 

The CT Department of Energy and Environmental Protection stocks the pond with fish each year 

for recreational fishing (Alexopolous 1983, Morrison and Pelletier 2014). 

Perimeter surveys have revealed the presence of the American bullfrog (Lithobates 

catesbeianus) and the green frog (Lithobates clamitans) at Beachland Park Pond. The same survey 

found the American bullfrog, eastern painted turtle (Chrysemys picta picta), red-eared slider 

(Trachemys scripta elegans), bluegill (Lepomus macrochirus), and largemouth bass (Micropterus 

salmoides) in Keney Park Pond (Pitt and McLaughlin 2018). This could indicate that both ponds 

are used as wildlife refuges, with Keney Park Pond being potentially more biodiverse.  
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Sediment Sampling Methods 

 Sample collection took place over the course of two weeks in September 2018 at Beachland 

Park Pond, and in October 2018 at Keney Park Pond. The methodology was designed in order to 

map a high-resolution distribution of mercury in the pond sediments. Beginning at an arbitrary 

point on each pond’s perimeter, 5 grab samples of sediment were collected in Whirl-Pak sterile 

sampling bags (Nasco) from less than 1 m away from the bank. This process was repeated 

approximately every 20 meters, for a total of 14 sample sites and 70 individual sediment samples 

per pond. Sample site spacing was sometimes inconsistent due to obstacles such as large 

outgrowths of common cattail (Typha latifolia), and constructed features (e.g., viewing platforms). 

When an obstacle prevented consistent site spacing, the closest possible site beyond 20 m was 

sampled. The samples were stored at 4 °C until laboratory analysis. 

 

Sample Preparation 

 Each sediment sample was filtered through a 63-µm nylon sieve into a new 1-L #2 high-

density polyethylene (HDPE) Nalgene bottle (Nalge Nunc International Corporation, Rochester, 

New York, USA). The wet-sieving ensured a small and uniform grain size of sediments for 

analysis and was done because smaller grains have more surface area relative to their volume, and 

therefore can potentially adsorb more mercury (John and Leventhal 1995). Bottles of filtered 

sediment were allowed to settle in a refrigerator for 24 hours, then the slurries were transferred 

into 50 mL digiTUBEs (SCP Science). After another 24-hour settling period, excess water was 

removed from the digiTUBEs using plastic pipets, and the samples were frozen for 24 hours. All 

samples were then freeze-dried using a Labconco Freezone 6 Liter Benchtop Freeze Dryer 

(Labconco, Kansas City, Missouri, USA). 
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Sample Analysis 

 All freeze-dried sediment samples were analyzed for total mercury concentration using a 

Milestone Direct Mercury Analyzer (DMA-80; Milestone S.r.L., Sorisole, Italy). The instrument 

analyzed a 100 ppb mercury standard solution and reported within 10% error. For each sediment 

sample, between 0.001 g and 0.01 g was loaded in each nickel boat. Each distinct sample was run 

three times. A maximum of two out of three runs were performed within a single day to account 

for possible instrument drift, and the results were averaged. 

 

Statistical Analysis 

 Analysis of variance (ANOVA) tests were performed using R (R Core Team, Vienna, 

Austria) to test for differences among the 14 sample sites at Beachland Pond, and among the 14 

sample sites at Keney Pond. Mean Hg concentrations were compared to the consensus-based 

Threshold Effect Concentration (TEC) and Probable Effect Concentration (PEC) to assess 

environmental hazard. The TEC is the concentration below which a contaminant is unlikely to 

cause harmful effects, and the PEC is the concentration above which a contaminant is likely to 

cause harmful effects, in a freshwater ecosystem. For mercury, the TEC and PEC, respectively, 

are 180 ppb and 1,060 ppb (MacDonald et al. 2000). 
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RESULTS 

 

Beachland Park Pond 

Out of the 70 sediment samples analyzed, 21 exceeded the Consensus-based Threshold 

Effect Concentration (TEC) of 180 ppb, below which harmful effects are unlikely to be caused by 

mercury (MacDonald et al. 2000). Of those 21 samples, 6 also exceeded the Consensus-based 

Probable Effect Concentration (PEC) of 1,060 ppb, indicating that their mercury concentrations 

are likely to cause harmful effects (Table 1; MacDonald et al. 2000). 

Mean (± SD) mercury concentration for Site 1 (261.5 ± 89 ppb), Site 3 (630.8 ± 383 ppb), 

Site 4 (2270.3 ± 2237 ppb), and Site 14 (808.1 ± 474 ppb) exceeded the TEC (Figure 4). Site 4 

was the only site to also exceed the PEC of 1,060 ppb, with a mean concentration of almost double 

that value. A closer analysis of Site 4 (Figure 2) revealed that Sample 4_3 (6213.6 ppb) 

disproportionately affected the mean and standard deviation for the site overall, and the mean (± 

SD) of the remaining 4 samples was thus calculated for comparison (1284.5 ± 441 ppb). This value 

still exceeded the PEC. 

 There was a significant variation in mean mercury concentration among sampling sites, 

with Site 4 having significantly greater mercury concentrations than all other sites (F = 4.635, df 

= 13, 56, p < 0.0001). No other pairs of sites differed significantly from one another. 

The mean mercury concentrations for each site were mapped onto their geographic 

coordinates, revealing that the 4 sites which exceed the TEC are approximately clustered in the 

northeast corner of the pond (Figure 6). 
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Table 1. Mean mercury concentration and standard deviation based on three mercury analysis runs 

per sample in 70 samples of subaqueous sediment in Beachland Park Pond, West Hartford, CT. 

Sample Mean Hg 
Concentration
, ppb 

SD  Sample Mean Hg 
Concentration
, ppb 

SD 

1_1* 218.8 35.6  8_1 142.3 32.1 
1_2 179.5 11.9  8_2 83.4 5.3 
1_3* 342.2 98.0  8_3 124.8 1.9 
1_4* 371.8 107.7  8_4 86.9 11.3 
1_5* 195.0 15.4  8_5 101.4 12.0 
2_1 102.0 3.3  9_1 108.3 93.6 
2_2* 254.0 109.3  9_2 107.2 21.1 
2_3 149.6 44.4  9_3 41.8 10.7 
2_4 176.4 74.6  9_4 49.6 4.6 
2_5 162.2 35.9  9_5 72.3 27.3 
3_1* 363.1 26.7  10_1 32.2 1.6 
3_2* 368.1 29.5  10_2 28.7 1.7 
3_3* 796.5 47.3  10_3 29.2 1.2 
3_4* 395.0 20.9  10_4 37.9 12.3 
3_5*** 1231.6 57.4  10_5 40.4 2.5 
4_1*** 1774.3 242.1  11_1 57.0 3.8 
4_2* 864.3 5.4  11_2 54.5 5.0 
4_3*** 6213.6 1490.9  11_3 82.0 8.1 
4_4* 962.7 487.5  11_4 59.1 5.9 
4_5*** 1536.6 585.1  11_5 63.2 12.0 
5_1* 290.4 14.5  12_1 97.3 1.8 
5_2 156.6 26.5  12_2 104.7 13.5 
5_3 162.7 7.3  12_3 128.2 24.4 
5_4 64.2 9.1  12_4 107.2 7.3 
5_5 178.8 11.0  12_5 151.1 14.3 
6_1 64.2 5.9  13_1 140.5 69.5 
6_2 73.5 9.8  13_2 87.2 9.3 
6_3 43.4 8.6  13_3 106.6 20.7 
6_4 68.3 2.2  13_4 113.7 9.6 
6_5 73.7 14.9  13_5 125.1 16.7 
7_1 74.4 8.1  14_1*** 1217.9 197.6 
7_2 50.4 13.1  14_2* 536.8 45.6 
7_3 37.5 8.4  14_3* 538.8 68.2 
7_4 48.8 21.4  14_4*** 1411.2 275.7 
7_5 41.2 27.7  14_5* 335.7 13.5 
* Exceeds TEC, *** Exceeds PEC     
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Figure 4. Mean (± SD) mercury concentration in subaqueous sediment at 14 sample sites (5 

samples per site) in Beachland Park Pond. The Threshold Effect Concentration (TEC), below 

which [Hg] is unlikely to cause harmful effects, is marked as a horizontal black line. The Probable 

Effect Concentration (PEC), above which [Hg] is likely to cause harmful effects, is marked as a 

horizontal red line. 
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Figure 5. Mean (± SD) mercury concentration in subaqueous sediment in each of 5 samples (3 

mercury analysis runs per sample) at Site 4 in Beachland Park Pond. The Probable Effect 

Concentration (PEC), above which [Hg] is likely to cause harmful effects, is marked as a horizontal 

red line. 
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Figure 6. Map of mean mercury concentration in subaqueous sediment at 14 sample sites (spaced 

approximately 20 m apart) in Beachland Park Pond, classified by the TEC, PEC, and a point 

between them (CT DEEP and USGS 2005, CT DEEP 2016, Price 2018). 
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Keney Park Pond 

 Out of the 70 sediment samples analyzed, 5 exceeded the Consensus-based Threshold 

Effect Concentration (TEC), below which harmful effects are unlikely to be caused by mercury 

(MacDonald et al. 2000). None of them exceeded the Consensus-based Probable Effect 

Concentration (PEC; Table 2). 

Mean (± SD) mercury concentration exceeded the TEC at Site 11 only (244.5 ± 28 ppb; 

Figure 7). None of the sample sites exceeded the PEC. A closer analysis of Site 11 (Table 2) reveals 

that the five samples have relatively uniform mercury concentrations, all of which exceed the TEC. 

 There was a significant variation in mean mercury concentration among sampling sites, 

with Site 11 having significantly greater mercury concentrations than all other sites except Site 10, 

and Site 10 having significantly greater mercury concentrations than Sites 1, 2, 4, 6, and 12-14. 

 (F = 42.4, df = 13, 56, p < 2E-16). 

The mean mercury concentrations for each site were mapped onto their geographic 

coordinates, revealing that Site 11, which exceeds the TEC, is in the southwest corner of the 

pond, as well as the site with the second-highest mercury concentration, Site 10 (124.9 ± 8.0 ppb; 

Figure 8). 
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Table 2. Mean mercury concentration and standard deviation based on three mercury analysis runs 

per sample in 70 samples of subaqueous sediment in Keney Park Pond, Hartford, CT. 

Sample 

Mean Hg 
Concentration, 
ppb SD   Sample 

Mean Hg 
Concentration, 
ppb SD 

1_1 71.5 18.5  8_1 51.3 6.3 
1_2 52.1 6.9  8_2 91.6 18.7 
1_3 67.7 4.2  8_3 70.1 12.3 
1_4 61.3 4.9  8_4 64.2 8.4 
1_5 60.5 2.7  8_5 161.5 31.6 
2_1 56.7 5.6  9_1 89.0 9.7 
2_2 60.4 4.4  9_2 72.7 9.1 
2_3 25.1 5.1  9_3 89.9 29.7 
2_4 59.2 11.5  9_4 86.8 22.6 
2_5 44.6 5.1  9_5 79.4 24.4 
3_1 67.8 16.5  10_1 126.7 30.8 
3_2 109.3 74.4  10_2 116.4 29.9 
3_3 60.3 37.7  10_3 137.6 15.1 
3_4 98.8 47.8  10_4 121.3 13.7 
3_5 96.4 35.4  10_5 122.5 5.3 
4_1 22.8 9.0  11_1* 280.9 63.0 
4_2 30.7 2.5  11_2* 265.8 18.2 
4_3 35.4 15.2  11_3* 210.7 35.2 
4_4 31.8 11.6  11_4* 230.2 16.5 
4_5 36.5 22.4  11_5* 234.7 7.8 
5_1 72.7 19.6  12_1 57.1 12.9 
5_2 64.7 8.2  12_2 35.8 17.1 
5_3 109.4 34.1  12_3 31.0 9.2 
5_4 110.8 22.3  12_4 45.1 18.1 
5_5 107.0 20.4  12_5 36.9 12.4 
6_1 37.9 6.5  13_1 92.3 41.4 
6_2 36.5 3.7  13_2 29.6 1.1 
6_3 24.5 1.3  13_3 44.2 3.7 
6_4 59.2 28.4  13_4 46.2 4.6 
6_5 56.2 6.6  13_5 31.9 2.8 
7_1 82.9 3.6  14_1 32.8 9.2 
7_2 87.8 16.4  14_2 21.4 3.1 
7_3 109.4 26.1  14_3 21.4 4.3 
7_4 107.8 12.6  14_4 30.4 10.1 
7_5 90.7 3.7   14_5 24.1 2.7 
* Exceeds TEC      
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Figure 7. Mean (± SD) mercury concentration in subaqueous sediment at 14 sample sites (5 

samples per site) in Keney Park Pond. The TEC is marked as a horizontal black line. 
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Figure 8. Map of mean mercury concentration in subaqueous sediment at 14 sample sites (spaced 

approximately 20 m apart) in Keney Park Pond, classified by the TEC and two points below it 

(TEC/3 and 2TEC/3; CT DEEP and USGS 2005, CT DEEP 2016, Price 2018). 
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DISCUSSION 

 The data collected in this study for Beachland Park Pond reveals that 13 out of a possible 

91 pairs of sample sites showed significant variation, with Site 14 differing significantly from all 

other sites. In Keney Park Pond, 39 out of a possible 91 pairs of samples sites showed significant 

variation. The majority of this data supports previous findings and the hypothesis that mercury 

concentrations would be approximately consistent around the pond’s perimeter. The most 

significant pathway for environmental mercury contamination in the northeastern United States is 

atmospheric deposition, and due to prevailing wind patterns and mercury’s ability to travel long 

distances, much of this atmospheric mercury can be traced to coal burning power plants in the 

Midwest (Balcom et al. 2004, Driscoll et al. 2007, Evers et al. 2007). Due to the nonselective 

nature of atmospheric deposition as a source of mercury, it could be expected to find no significant 

variation in mercury concentration among sites within a single pond (Jeffries and Snyder 1981). 

In fact, research has found evidence of this lack of spatial variation (Wopereis et al. 1988, Boszke 

and Kowalski 2006, Strickman and Mitchell 2017).  

 Beachland Park Pond’s one visible outfall exists approximately halfway between Site 8 

and Site 9 (Figure 5), and the lack of significant variation in mercury concentration between either 

of those two sites and others further from the outfall supports previous research (Phillips et al. 

1997). For example, Phillips et al. (1997) found no variation in mercury concentrations between 

Barred sand bass (Paralabrax nebulifer) near an outfall and elsewhere. 

 Site 4, with a mean ± SD of 2270.3 ± 2237.2 ppb, may not be explained by atmospheric 

deposition alone. The northeastern corner of Beachland Park Pond is the location of a covered 

drain, where water drains downward out of the pond and into a subterranean channel that feeds 

into the nearby heavily impacted, urban stream, Trout Brook. This drain structure itself could be a 
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potential source of mercury, which is supported by the fact that Site 3, about 2 meters from the 

drain, exceeded the TEC (Figure 5). However, by far the highest mercury concentration was found 

at Site 4, which is further from the drain than both Site 2 and Site 3. 

 Sites 1-4 and 14 seem to show a gradient in mercury concentration, with the lowest 

concentration occurring at the center point, Site 2, and the highest concentrations occurring at the 

two points furthest from the center, Sites 4 and 14 (Figure 5). This cluster of sites is approximately 

centered on the large drain structure in the pond. Trout Brook, a partially-channelized urban 

stream, exhibits a flashy hydrograph following precipitation events and often has significant 

flooding (Walsh et al. 2005). Therefore, it is possible that when the stream is high enough, water 

could flow back through the channel and into Beachland Park Pond. This back-flooding could 

transport contaminants, including mercury, into the pond from the stream, and it is possible that 

the mercury concentration gradient in the northeastern area of the pond represents the extent to 

which mercury enters the pond from the stream during a flooding event before settling into the 

sediment. The very high concentrations on the edges of this region could be explained by the rapid 

influx of water when a flooding event starts, which can transport particles further than slower-

moving water (Puig et al. 2003). This initial wave of input would be followed by mercury-

contaminated particles beginning to settle around the farthest reaches into the pond of the 

floodwater, and as the flood recedes back towards the drain, mercury-contaminated particles would 

continue to settle, resulting in the shown concentration gradient (Figure 5).  

 Anecdotal evidence from a private citizen provides a third hypothesis for Beachland Park 

Pond. The citizen shared that the pond is sometimes treated for algae growth, and in the past some 

algicides and pesticides were organic mercury-containing compounds, until these were banned by 

the Environmental Protection Agency in 1976 (Fitzgerald and DerVartanian 1969, United Press 
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International 1976, Weiss-Magasic et al. 1997). Mercury has a tendency to remain in sediments 

for an extended period of time, so it is possible that historical use of these chemicals continues to 

impact the ecosystem (Saniewska et al. 2014). The proximity of roads to the northeastern corner 

of the pond make this a logistically good place from which to do the algicide treatment, and this 

may result in the elevated mercury concentrations from samples in that area. Additionally, the 

proximity of this part of the pond to roads, an example of an impervious surface, indicates there 

would be increased runoff into the pond near the sampling sites of concern (Semrod and Gourley 

2014). 

 Due to prevailing wind patterns and mercury’s ability to travel long distances, much of the 

atmospheric mercury in the northeastern United States can be traced to coal burning power plants 

in the Midwest (Balcom et al. 2004, Driscoll et al. 2007, Evers et al. 2007). It is possible that these 

common wind patterns are also contributing to the accumulation of mercury in the pond’s 

northeastern shore (Klink 1999). Atmospheric mercury deposited on the pond surface by these 

wind currents would be likely to accumulate on the northeastern shore as particles are driven 

against the sediment, whereas the opposite shore is protected from deposition by a barrier of 

forested land (visible in Figure 2), and therefore has lower mercury concentrations.  

 Keney Park Pond seems to be more easily explained by the initial hypotheses of the study. 

In general, the sampling sites in this pond have a relatively uniform distribution of mercury 

concentrations, which supports previous research and the mechanism of atmospheric deposition 

(Jeffries and Snyder 1981, Wopereis et al. 1988, Boszke and Kowalski 2006, Strickman and 

Mitchell 2017). Site 11, the only sampling site to exceed the TEC, is found in the southwestern 

corner of the pond (Figure 8). This does not support the hypothesis of wind patterns causing high 

accumulation in the northeastern part of ponds, as was proposed for Beachland Park Pond. 
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However, the data support the initial hypothesis of mercury concentrations being highest near the 

pond’s inflow and/or outflow. Site 11 is located directly in front of a low dam and corrugated metal 

tube which is the main entry point of water into the pond. Water enters here at a very low flow 

rate, and any mercury which may be present in the water is likely to settle quickly near this location 

(Lee et al. 1997, Karlsson et al. 2010). 

Further research is needed to investigate sources of mercury in areas of high concentration, 

as well as temporal variation in mercury concentration. An investigation of mercury concentrations 

in subaqueous sediments in the central area of the ponds could reveal more about the overall 

distribution, and a similar investigation of terrestrial sediments surrounding the ponds could also 

reveal more about mercury’s mechanism of transportation and accumulation in these urban pond 

systems. Expanding this study to more ponds in the region could allow for the development of a 

generalized predictive model of where mercury accumulates in urban pond ecosystems. 
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