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Figure 5: The accuracy of a participant being correctly classified into their respective group 

sampling theta rhythm (blue) and by chance (orange) for each group at every electrode location 
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Figure 6: Compumedics Neuroscan 64-channel Quik-Cap with Healthy Group electrode locations 

shown in red (all rhythms sampled) 
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Figure 7: Compumedics Neuroscan 64-channel Quik-Cap with mABI Group electrode locations 

shown in red (theta rhythm sampled) 
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Figure 8: Compumedics Neuroscan 64-channel Quik-Cap with sABI Group electrode locations 

shown in red (theta rhythm sampled) 
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Figure 9: A superior view diagram of the human brain with HA, mABI, and sABI predictive 

regions mapped accordingly 
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Discussion 

 

Rationale 

Mild brain injuries are the most common but are the least well understood and the most 

difficult to diagnose (Ianof, & Anghinah, 2017; Mckee & Daneshvar, 2015). Because of this, 

mABI may go undiagnosed and untreated, resulting in delayed recovery or social deficit. The latter 

is exasperated by misdiagnosis, which can lead to unnecessary intervention for contrived 

behavioral, cognitive, and somatic problems (Zasler, 1993). Due to high incidence, potential for 

disability, and resulting economic impact, brain injury–– especially mABI––is considered a silent 

epidemic (Ianof & Anghinah, 2017). Thus, a reliable way of quickly diagnosing such injury is 

necessary to alleviate negative outcomes. Electrophysiological differences have been found to 

exist between degrees of ABI, allowing for the EEG to be conceptualized as a diagnostic tool. 

However, previous studies have exclusively examined time-locked EEG ERPs. In the current study 

we utilized a Fourier transform to study the novel question of whether there are properties in the 

frequency domain that are distinctive between HA, mABI, and sABI groups that are not 

immediately apparent in the traditional data analytic approach. We further examined whether such 

differences would be predictive of ABI severity. 

 

Interpretation of the Results 

 In examining the frequency domain of HA, mABI, and sABI groups, it was found that 

differences did exist. Given that each participant completed the same prospective memory task 

following a standardized protocol, it can be inferred that the observed differences were a result of 

ABI affecting the underlying neural systems involved in cognition. These differences led to a 
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predictive model (as discussed below) not accounted for by typical variability from participant to 

participant. As found through Pedro’s (2015) analysis of this population’s performance, the 

amount of disturbance in a participant’s ability to accurately complete the experimental tasks was 

commensurate with the severity of their brain injury. We found no evidence to refute this 

interpretation; however, our analysis does not allow us to confirm an additive effect when injury 

is more severe. Rather, the sABI group seems to have somewhat different brain regions that are 

predictive of injury compared with mABI. This does not represent a difference in the level of 

disturbance within the neural systems of participants, but a difference in the systems affected. It 

was because different neural systems were implicated in mABI and sABI that a predictive model 

was able to be created based on varying electrode locations implicated (See Table 3). Intergroup 

variance was significant enough to classify a participant with an unknown ABI status into their 

correct group with an accuracy of greater than 50% when sampling the theta rhythm in isolation 

(See Table 2). There was also evidence supporting the notion that the magnitude of difference from 

healthy baseline will be related to the severity of the brain injury. This can be seen in the overall 

increase in number of predictive locations for each group’s most predictive rhythm (See Figure 3 

& Table 3). Each predictive location was then mapped onto an EEG map by condition (See Figures 

6, 7, & 8) and collectively onto a brain image (See Figure 9). It can be seen that as ABI becomes 

more severe that, in addition to having more predictive region overall, the regions become more 

diffusely located. The locations of HA correlates are acutely located at medial areas in the parietal 

lobe, whereas correlates of ABI are somewhat shifted to frontal and occipital lobe regions. This is 

significant because these regions are where ABIs are most likely to be sustained (Rapp, et al., 

2015; Duff, 2004). The lateral predictive locations of sABIs offer further support for this 

interpretation. It would likely take severe trauma to be able see effects in these locations from 
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either frontal or occipital insult. Lastly, it is important to draw attention to the overlapping region 

indicative of HA and sABI. This region may indicate that a lack of injury is predictive of health 

or, more likely, that an injury at this location indicates severe trauma. However, either perspective 

justifies raising the question of why HA and sABI predictive sites overlap. This may be an 

unanticipated effect of using different brain rhythms in the predictive modeling of HA and people 

with ABI. Additionally, it may mean that sABI locations that are not also predictive of HA are 

regions that, while unlikely to be injured, are perhaps more likely to have similar activity and 

function despite mild injury. This overlap could further be an artifact of human error in a 

misclassification of an sABI individual as HA, which would have caused the medial parietal lobe 

to appear more significant in ABI prediction overall (See Limitations). 

 

Conclusions 

From the current study we found that neural systems underlying cognition are affected by 

brain injury in a way that is related to the severity of the injury. Furthermore, we found that 

intergroup frequency changes were significant enough to classify an unknown participant into their 

correct group and that the magnitude of difference from healthy baseline is also related to the 

severity of the brain injury. While further study is needed to determine the efficacy of utilizing 

EGG as a diagnostic tool in ABI, these results indicate promise in analyzing properties of the 

frequency domain, which are not apparent in traditional data analytic approach, but may be 

distinctive, thus predictive, in regard to ABI. 
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Further Study 

In order to confirm the findings above, it is important that further research be established 

in examining the relations between EEG frequency data and ABI. One future direction of this 

research could explore whether or not sonification would elucidate further predictive value from 

the frequency data of evoked potentials. As early as 1934, Adrian and Matthews attempted to 

convert EEG signal into sound. The notion of making EEG signal audible came early in the history 

of electroencephalography (Deuel, et al., 2017). This concept of transforming data into sound 

developed concurrently with neuroimaging techniques because the complexity and fast temporal 

dynamics of brain activity necessitated more intuitive ways to interpret intricate data. Sound offers 

a creative way to represent brain activity, which makes real-time EEG sonification useful in many 

applications (Valjamae, et al., 2013). Furthermore, techniques of sonification often elucidate 

sophisticated patterns of activity difficult to notice through traditional data analytics. Efforts 

toward real-time EEG sonification have yielded diagnostic alternatives to purely visual feedback 

along with possibilities of therapeutic biofeedback, and even artistic expression (Baier, Hermann, 

&Stephani, 2007; Deuel, et al., 2017). It is possible to create a brain-computer interface capable 

of audifying brain activity in real-time through digital instruments (Baier, Hermann, &Stephani, 

2007; Deuel, et al., 2017). This type of technology could enable non-professionals to make quick, 

accurate, and audible diagnoses in a variety of settings. This may be applied during sport 

competitions where medical personal may not be available or able to make a diagnosis of 

concussion or another ABI. Moreover, an interface like this may actually have therapeutic benefits 

through biofeedback (Bergstrom, et al., 2014). Perhaps, certain populations may find benefit in the 

act of using such a device in a collaborative symphonic setting with others. Those disabled through 
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progressive neurodegenerative disease may experience a rise in affect or an improvement in their 

quality of life due to such an experience (Deuel, et al., 2017). 

 

Limitations 

 While this study may indicate the promise of EEG as a diagnostic tool, it is important to 

recognize sample size as a major limitation of this study. While the function we created to classify 

unknown participants was accurate for our dataset, we are unsure of its generalizability. Due to the 

small number of participants in any one group, we decided not to set aside participants to test our 

network. For this reason, it is possible that the accuracy observed in predicting a participant’s 

group within this dataset may be specialized to this dataset. However, the diverse range of our 

participants’ ABI etiologies does give us some confidence that our results are generalizable to 

other datasets (See Table 1). Furthermore, there was one appreciated instance of human error, 

which may have affected the results of this investigation. Previously collected data were taken 

from pre-assembled files listing the participant groups as such: HA (n = 35), mABI (n = 16), and 

sABI (n = 29). This differs from the demographic information gathered from Pedro, 2015 (See 

Table 1). One participant was omitted from our study entirely and one sABI individual was 

incorrectly identified as either HA or mABI. It was not possible to know which participants were 

left out or misclassified as data was deidentified. This discrepancy was not realized until post-

analysis comparisons were made. It is also important to consider that there are changes in brain 

activity during the weeks post ABI (Rapp, et al., 2015). Time between ABI and EEG recording 

was not a variable considered when recruiting participants and, therefore, may have confounded 

our results. Lastly, it is worth noting here that EEG has limitations including those relating to 
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source localization and the inverse problem of working back EEG data to estimate sources that fit 

the relative measurements (Grech, et al., 2008).  
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