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Abstract	
	
Alterations	in	the	gut	bacteria	presence	and	abundance	have	been	noted	in	certain	
diseased	states	like	autism	spectrum	disorders	(ASD).		The	BTBR	T+tf/J	mouse	strain	
exhibits	the	three	core	behavioral	symptoms	of	ASD	and	is	thus	used	as	the	model	
organism	to	study	ASD	in	this	study.		Previous	studies	have	shown	that	a	high-fat,	
ketogenic	diet	significantly	improves	all	three	core	symptoms	of	ASD.		The	aim	of	this	
study	was	to	describe	differences	between	the	gut	bacteria	of	healthy	mice	on	standard	
and	ketogenic	diets	as	well	as	BTBR	mice	on	standard	and	ketogenic	diets.		In	
particular,	an	unidentified	species	was	found	to	be	significantly	present	only	in	the	
healthy	mice,	another	species	was	found	only	in	the	BTBR/standard	diet	group,	and	
another	only	in	the	BTBR/ketogenic	diet	group.		The	identities	of	these	three	bacterial	
species	could	not	be	classified	due	to	error	in	DNA	sample	preparation	and	time	
constraints,	but	a	protocol	was	created	to	check	the	identities	of	these	three	species	
using	PCR	and	gel	electrophoresis.		PCR	primers	were	created	for	10	bacterial	species	
based	on	Finegold	et	al.’s	work	with	the	gut	bacteria	in	autistic	individuals.		In	the	
future,	the	polymerase	chain	reactions	should	be	conducted	on	the	original	DNA	
samples	based	the	groups	in	which	they	were	present	in	each	study	and	the	sequencing	
defect	should	be	worked	out	in	order	to	classify	the	three	species	of	interest	in	a	more	
direct	manner.		This	protocol	would	use	PCR	to	help	determine	the	identities	of	these	
three	species	of	interest.	 	
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Introduction	

	 The	normal	flora	refers	to	the	diverse	array	of	microbial	species	that	regularly	

inhabit	mammalian	skin	and	mucous	membranes.		Certain	bacterial	genera	populate	

various	regions	of	the	human	body	at	different	stages	of	life	and	health	(Davis,	1996).		

The	composition	of	the	normal	flora	is	also	influenced	by	environment,	diet,	and	

antibiotic	history	(Ardeshir	et	al.,	2014).		Certain	diseases,	like	autism	spectrum	

disorders	(ASD),	have	been	associated	with	an	altered	flora	compared	to	healthy	

gastrointestinal	floras.		It	has	been	shown	that	a	ketogenic,	high-fat	diet	significantly	

improves	the	behavioral	symptoms	of	a	mouse	analog	of	ASD	(Ruskin	et	al.,	2013).		The	

purpose	of	this	study	was	to	determine	whether	the	gut	flora	of	the	mouse	model	of	

autism	would	also	be	altered	by	the	ketogenic	diet.	

In	humans,	the	gastrointestinal	tract	is	a	particularly	bacteria-rich	environment.		

Because	the	gut	microbiome	is	implicit	in	many	physiological	functions,	its	role	in	

diseased	states	has	been	widely	studied	(Schreiner,	2015).		The	gastrointestinal	flora	

has	been	associated	with	many	states	of	disease	including	cardiovascular	disease,	

inflammatory	bowel	disease,	obesity,	and	autism	spectrum	disorders	(Adams	et	al.,	

2011	and	Schreiner,	2015).		Although	there	are	numerous	studies	showing	correlations	

of	altered	gut	microbiome	composition	with	these	diseases,	it	is	difficult	to	determine	

whether	these	differences	in	the	flora	(between	healthy	and	diseased	individuals)	are	

the	causative	agents	or	effects	of	the	diseased	state;	or	even	significant	at	all	(Schreiner,	

2015).		This	uncertainty	stems	from	the	fact	that	the	microbiome	differs	between	

individuals	and	species	based	on	various	environmental	and	physiological	factors,	as	

well	as	the	individual’s	stage	of	life.		
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The	normal	flora,	or	the	microbiome,	are	organisms	that	maintain	an	important	

relationship	with	their	host	by	assisting	with	metabolic	processes	and	by	outcompeting	

pathogenic	bacteria	for	the	host’s	resources	(Davis,	1996	and	Schreiner	et	al.,	2015).		A	

1985	study	demonstrated	that	mice	whose	normal	flora	was	compromised	by	

antibiotics	were	more	susceptible	to	colonization	by	P.	aeruginosa,	a	pathogenic	

organism,	than	were	untreated	mice	(Hentges	et	al.,	1985).			

The	use	of	germ	free	animals	in	laboratory	experiments	has	further	enhanced	

our	understanding	of	the	importance	of	the	normal	flora	in	terms	of	immunity	and	

metabolism	(Davis,	1996).		Germ	free	animals	are	surgically	delivered	and	immediately	

placed	into	a	sterile	environment	so	that	the	normal	flora	is	unable	to	colonize	the	host.		

Germ	free	animals	have	exhibited	decreased	intestinal	motility,	reduced	epithelial	cell	

renewal	rates,	and	a	lack	of	immune	stimulation	as	compared	to	animals	with	the	

normal	micro-ecological	system,	indicating	that	the	bacteria	in	and	on	the	body	are	

involved	in	these	physiological	processes	(Davis,	1996).		

In	contrast	to	the	normal	flora,	dysbiosis	refers	to	an	imbalance	between	the	

beneficial	and	pathogenic	microbiota	and	their	host,	and	is	widely	believed	to	be	a	

factor	in	inflammatory	bowel	disease	among	the	other	diseases	that	are	associated	with	

altered	gut	flora	presence	(Adams	et	al.,	2011	and	Comito	et	al.,	2014).		The	

composition	and	the	quantity	of	the	bacteria	may	be	changed	in	a	state	of	dysbiosis.		For	

example,	species	of	the	Firmicutes	and	Bacteroides	genera	appear	to	be	present	in	

reduced	amounts	in	individuals	with	inflammatory	bowel	disease	as	compared	with	

healthy	individuals	(Comito	et	al.,	2014).		This	microbial	imbalance	activates	the	

inflammatory	immune	response	and	causes	inflammatory	cytokines	to	be	released,	
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potentially	causing	the	symptoms	of	the	disease	(Comito	et	al.,	2014).		However,	there	is	

no	true	consensus	on	whether	the	alterations	in	the	flora	are	a	cause	or	result	of	

inflammatory	bowel	disease.	

Autism	spectrum	disorders	(ASD)	have	also	been	linked	to	dysbiosis	of	the	

gastrointestinal	flora.		Individuals	with	an	ASD	can	experience	gastrointestinal	issues	

like	diarrhea,	constipation,	and	bloating	at	a	much	higher	rate	and	at	an	increased	

severity	than	rest	of	the	population	(Adams	et	al.,	2011).		The	changes	in	the	gut	

bacteria	of	individuals	with	ASD	may	be	contributing	to	these	gastrointestinal	

symptoms	of	ASD,	or	the	imbalance	of	bacteria	present	may	be	due	to	other	causes;	for	

now	its	role	in	ASD	remains	uncertain.		A	2005	study	found	that	there	are	increased	

levels	of	certain	Clostridium	clusters	I	and	II	species	(toxin-producing	species)	in	

children	with	ASD.			

The	gut	bacteria	are	likely	involved	in	the	gastrointestinal	symptoms	of	ASD	but	

possibly	the	behavioral	symptoms	as	well.		The	gastrointestinal	distress,	no	matter	its	

cause,	may	also	be	a	factor	leading	to	the	behavioral	symptoms	of	ASD.		The	

gastrointestinal	and	behavioral	symptoms	of	ASD	typically	present	themselves	

simultaneously,	indicating	a	clear	connection	between	the	two	(Parracho	et	al.,	2005).		

The	unpleasantness	of	the	gastrointestinal	issues	may	increase	the	severity	of	the	

behavioral	symptoms	of	ASD,	in	that	the	pain	and	discomfort	may	increase	frustration	

and	aggression,	and	decrease	ability	to	concentrate	and	communicate	effectively	

(Adams,	2011).		

Even	if	the	gut	bacteria	are	not	involved	in	the	gastrointestinal	issues,	they	may	

be	contributing	to	the	behavioral	aspects	of	ASD	by	way	of	the	gut-brain	axis	theory.		
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The	gut-brain	axis	(GBA)	refers	to	the	bidirectional	signaling	between	the	

gastrointestinal	flora	and	the	brain	(Cryan	and	O’Mahony,	2010).		A	theory	proposed	by	

one	study	is	that	the	toxins	produced	by	the	increased	Clostridium	levels	communicate	

with	afferent	nerves,	which	factor	into	the	autistic	symptoms	by	communicating	

ineffectively	with	the	central	nervous	system	(Parracho	et	al.,	2005).			

The	potential	pathway	for	the	communication	from	the	gut	bacteria	to	the	

central	nervous	system	was	identified	by	a	1998	study.		The	vagus	nerve	runs	from	the	

abdomen	to	the	brainstem,	allowing	neurotoxins	and	other	secretions	produced	by	gut	

bacteria	to	affect	the	brain,	specifically	toxins	like	tetanus	toxin,	produced	by	

Clostridium	tetani	(Bolte,	1998).		This	correlation	between	the	gastrointestinal	

symptoms	and	the	behavioral	symptoms	widely	seen	in	ASD	individuals	makes	the	

need	to	study	the	gastrointestinal	microbiota	of	these	individuals	extremely	important.	

The	development	of	a	mouse	analog	for	autistic	symptoms	has	become	an	

invaluable	tool	in	studying	ASD.		The	strain	of	mouse	is	the	BTBR	T+tf/J.		These	mice	are	

scientifically	accepted	as	experimental	models	that	may	be	used	to	study	ASD	because	

they	exhibit	the	core	behavioral	symptoms	of	autism:	low	sociability,	repetitive	

behaviors,	and	communication	deficits	(McFarlane,	2007).			

A	2013	study	by	Ruskin	et	al.	used	the	BTBR	strain	to	determine	the	effect	of	a	

ketogenic	diet	on	the	three	aforementioned	core	symptoms	of	autism.		Ketogenic	diets	

are	high	in	fat	and	low	in	carbohydrates	and	have	been	shown	to	dramatically	improve	

seizures,	a	common	comorbidity	of	ASD,	in	children	and	adults	(Neal	et	al.,	2008;	Sirven	

et	al.,	1999).		The	ketogenic	diet	redirects	the	body’s	primary	fuel	from	glucose	to	

ketone	bodies,	thereby	increasing	blood	ketone	levels	and	mitochondrial	functioning	
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while	decreasing	blood	glucose	levels	(Ruskin	et	al.,	2013).		Ruskin	et	al.	found	that	this	

diet	type	significantly	improved	all	three	of	the	core	behavioral	symptoms	of	BTBR	

mice	(2013).	

	 ASD	are	extremely	prevalent	disorders;	currently	1	in	68	children	suffer	from	

them	and	the	rate	is	rising	(Autism	Speaks,	2016).		Individuals	with	ASD	experience	

ongoing	difficulties	with	social	functioning	and	while	behavioral	therapy	and	diet	

restrictions	help	to	assimilate	individuals	with	ASD	into	society,	they	are	not	cures	nor	

do	they	work	for	every	individual.		Our	inability	to	cure	ASD	makes	these	disorders	

mysterious:	researchers	and	the	public	alike	are	desperate	to	learn	more	about	its	

causes	and	comorbidities,	which	makes	the	use	of	BTBR	strain	mice	an	indispensable	

tool.	

	 A	recent	study	also	made	use	of	the	BTBR	strain	and	the	ketogenic	diet	to	show	

that	diet	rather	than	genotype	was	the	major	force	behind	gut	microbial	changes	and	

that	the	ketogenic	diet	decreases	total	microbial	levels	(Klein	et	al.,	2016).		The	same	

study	also	identified	Clostridium	leptum	as	the	bacterial	species	most	involved	in	the	

host	metabolism	(Klein	et	al.,	2016).		A	thesis	study	at	Trinity	College	used	BTBR	mice	

and	a	ketogenic	diet	to	observe	differences	in	the	gut	flora	between	healthy	and	BTBR	

mice,	and	with	or	without	a	ketogenic	diet	(Labe,	2016).		Both	of	these	studies	isolated	

bacterial	DNA	from	mice	fecal	samples	and	used	PCR	to	amplify	the	16S	rRNA	gene	

(Klein	et	al.	and	Labe).		The	16S	rRNA	gene	is	the	most	common	genetic	marker	for	

studying	bacterial	phylogeny	due	to	its	presence	in	all	bacterial	species,	conserved	gene	

function,	and	variable	regions	that	help	differentiate	genus	and	species	(Janda	and	

Abbott,	2007).	
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	 Based	on	previous	work,	there	is	an	apparent	connection	between	ASD	and	the	

gut	flora	and	the	ketogenic	diet	has	shown	promise	in	alleviating	the	core	behavioral	

symptoms	of	ASD	in	BTBR	mice.	This	study	looks	at	the	potential	connection	between	

the	gut	flora	of	BTBR	mice	and	ketogenic	diet,	and	continues	the	work	of	Trinity	College	

alumna	Shelby	Labe.	Labe	isolated	the	bacterial	DNA	from	fecal	samples	from	healthy	

mice	on	standard	diets,	healthy	mice	on	ketogenic	diets,	BTBR	mice	on	standard	diets,	

and	BTBR	mice	on	ketogenic	diets.	The	introduction	of	the	ketogenic	diet	increased	the	

amount	of	bacterial	species	diversity	in	the	fecal	samples	as	compared	to	mice	on	the	

standard	diet	and	increased	the	overall	abundance	of	bacteria	in	the	healthy	mice	only	

as	compared	to	the	BTBR	mice.	

	 Comparisons	were	made	between	the	four	experimental	groups	with	tRFLP	

analysis,	which	showed	the	distinct	(though	unidentified)	bacterial	species	present	in	

the	fecal	DNA	samples.	There	were	28	unidentified	bacterial	species	that	were	common	

between	at	least	two	of	the	experimental	groups.	Ten	species	were	present	in	all	

experimental	groups,	nine	were	present	in	the	control	group	(healthy	mice,	standard	

diet),	five	were	present	in	the	BTBR	mice	on	either	diet,	and	one	was	present	in	both	

mice	strains	on	the	standard	diet.	There	was	a	single	bacterial	species	found	each	in	the	

BTBR/ketogenic	diet	group,	the	BTBR/standard	diet	group,	and	the	normal	mice	on	

both	diets.	These	final	three	unidentified	bacterial	species	are	potentially	significant	

because	they	were	unique	to	only	one	of	the	mice	groups.	

	 Species	M	(arbitrarily	labeled	by	Labe)	was	found	in	the	healthy	mice	on	both	

diets,	but	not	significantly	in	the	BTBR	mice	fecal	samples	(Figure	1).	This	occurrence	

indicates	a	possible	significance	in	that	its	absence	from	the	gut	flora	of	the	BTBR	mice.	
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Since	it	was	found	significantly	in	the	healthy	mice,	species	M	appears	to	a	part	of	the	

normal	flora.		Since	the	BTBR	mice	groups	are	lacking	this	species,	it	may	be	important	

in	normal	gut-brain	interactions.	

Species	G	was	present	in	BTBR	mice	on	the	standard	diet	and	not	significantly	in	

the	healthy	mice	fecal	samples	(Figure	1).		This	indicates	its	presence	in	the	

gastrointestinal	tract	is	positively	correlated	with	the	BTBR	mice,	which	display	the	

autistic	behavioral	symptoms.	Whether	the	correlation	between	the	presence	of	this	

bacterium	and	the	autistic	symptoms	is	a	cause	or	result	of	unhealthy	gut-brain	

reactions	or	whether	it	is	simply	coincidence	is	unknown.		

Species	D	was	present	in	BTBR	mice	on	the	ketogenic	diet,	but	not	significantly	

present	in	the	healthy	mice	(Figure	1).		The	BTBR	mice	on	the	ketogenic	diet	had	

significantly	improved	behavioral	symptoms	(Ruskin,	2013).		This	points	to	the	

possibility	that	species	D	may	be	a	bacteria	that	is	not	a	regular	member	of	the	normal	

flora,	but	may	act	like	one	or	contribute	in	some	way	to	re-stabilizing	healthy	gut-brain	

interactions	from	the	state	of	dysbiosis.	

										Figure	1:	Bacterial	species	present	in	mice	experimental	groups	

	
	 Fig.	1:	Bacterial	species	M	is	significantly	present	in	healthy	mice,	independent		
	 of	diet	type.	Species	G	is	significantly	present	in	BTBR	mice	on	the	standard	diet.		
	 Species	D	is	significantly	present	in	the	BTBR	mice	on	the	ketogenic,	high-fat	diet.	
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The	hope	of	this	study	was	to	discover	what	species	D,	G,	and	M	are	and	to	learn	

more	about	how	they	exist	and	metabolize	in	their	host	environment.		Learning	this	

information	will	help	narrow	down	whether	those	species	have	the	potential	to	affect	

gut-brain	interactions	that	may	be	prevalent	in	autism	spectrum	disorders.		

	 The	objective	of	this	study	was	to	further	our	knowledge	of	the	gastrointestinal	

flora	in	autism	spectrum	disorders,	the	gut-brain	axis,	and	the	effect	of	the	ketogenic	

diet	on	ASD	by	identifying	the	presence	of	particular	bacterial	species	in	the	

gastrointestinal	tract	of	a	mice	model	of	ASD	as	compared	to	healthy	mice.		Sequencing	

the	16s	rRNA	gene	of	species	M,	G,	and	D,	along	with	further	investigation	and	literature	

review,	would	classify	the	species	and	help	to	discover	whether	their	metabolic	

products	have	an	effect	on	gut-brain	interactions	or	the	gastrointestinal	symptoms	seen	

in	ASD.		

Materials	and	Methods	

Sample	selection	

	 Bacterial	DNA	was	isolated	from	fecal	samples	of	BTBR	mice	on	standard	and	

ketogenic	diets	and	normal	mice	on	standard	and	ketogenic	diets	using	MO	BIO	

PowerFecal®	DNA	Isolation	Kit	(Labe,	2016).		Labe	used	restriction	enzyme	HaeIII	to	

cut	the	isolated	bacterial	DNA	and	used	Terminal	Restriction	Fragment	Length	

Polymorphisms	(tRFLP)	to	determine	similarities	and	differences	between	the	

experimental	mouse	groups.		DNA	samples	were	selected	for	PCR	amplification	by	

determining	which	samples	from	each	experimental	group	contained	species	D,	G,	and	

M	as	defined	by	Labe’s	thesis	(2016).		The	D,	G,	and	M	bacterial	DNA	found	in	the	mice	
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fecal	samples	were	also	chosen	based	on	their	concentration	of	DNA	(found	using	the	

Trinity	College	Nanodrop)	and	their	appearance	on	a	0.8%	agarose	gel.		There	were	

four	mice	fecal	samples	studied	that	were	from	BTBR	mice	on	ketogenic	diets	(species	

D);	four	from	BTBR	mice	on	standard	diets	(species	G);	and	four	from	healthy	mice	to	

study	species	M	(two	on	standard	diets,	two	on	ketogenic	diets).	

Polymerase	Chain	Reaction	

The	section	of	DNA	amplified	was	the	16s	rRNA	gene.		The	primers	were	

unlabeled;	the	forward	primer	used	was	27F-	5’AGAGTTTGATCCTGGCTCAG-3’	and	the	

reverse	primer	used	was	926R-5’-CCGTCAATTCMTTTRAGTTT-3’	(Figure	2).		The	

polymerase	chain	reactions	were	placed	in	a	thermocycler	with	settings	for	95°C	initial	

denaturation,	50°C	primer	annealing,	and	72°C	extension	for	35	cycles.		The	results	

were	checked	on	a	0.8%	agarose	gel.		The	QIAquick®	PCR	Purification	Kit	was	used	to	

remove	unused	primers	from	the	PCR	products.		The	Trinity	College	Biology	

Department	Nanodrop	was	used	to	quantify	the	DNA	present.	

Figure	2:	Universal	primers		

	
Fig.	2:	The	approximate	binding	locations	of	the	27F	and	926R	primers	are	shown		
in	red	on	a	model	of	the	16s	rRNA	gene.		The	expected	PCR	product	size	with		
these	primers	is	approximately	1000	base	pairs.	
	

Cloning	of	16s	rRNA	to	plasmids	

	 The	cloning	was	done	with	the	TOPO®	TA	Cloning®	Kit	for	Sequencing.		The	

purified	PCR	product	was	mixed	with	water,	a	salt	solution	and	the	TOPO®	plasmid	
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vector.		This	reaction	was	incubated	at	room	temperature	for	5	minutes	then	incubated	

on	ice.	

Transformation	of	TOPO®	vector	

	 The	cells	transformed	were	One	Shot	R	Mach1™	-	T1®	chemically	competent	

Escherichia	coli	cells.		A	portion	of	the	cloning	reaction	was	put	into	a	vial	of	the	

competent	E.	coli	cells.		Following	a	5-minute	incubation	period	on	ice,	the	cells	were	

heat	shocked	for	30	seconds	and	transferred	immediately	back	to	ice.		The	cells	were	

shaken	for	1	hour	at	37°C.		

	 Luria-Bertani	broth	(LB)	plates	with	50	μg/μL	kanamycin	were	warmed	in	a	

37°C	incubator	for	30	minutes	prior	to	plating	the	transformation	reactions.		The	

kanamycin	presence	ensured	that	only	cells	with	the	plasmid	vector	would	grow,	due	to	

a	kanamycin	resistance	gene	being	present	on	the	TOPO®	vector,	but	not	in	the	One	

Shot	R	Mach1™	-	T1R	cells.		Ten	microliters	of	the	transformation	reaction	were	diluted	

in	200	μL	of	LB,	and	100	μL	of	this	dilution	was	spread	onto	the	pre-warmed	plates.		

	 The	plates	were	incubated	at	37°C	for	8-12	hours.	Isolated	colonies	from	each	

transformation	reaction	were	selected	and	grown	further	on	a	grid	LB/kanamycin	

plate.		

Plasmid	minipreps	

	 Isolated	colonies	were	grown	overnight	in	5	mL	of	LB	broth	with	50	μg/μL	

kanamycin.	The	cultures	were	shaken	at	37°C	for	approximately	12	hours	at	80rpm.		

Four	milliliters	of	the	overnight	cultures	were	used	for	each	plasmid	preparation.	The	
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cells	were	pelleted	by	centrifuging	at	8000	rpm	for	two	minutes.		The	samples	were	

then	prepared	using	the	QIAprep®	Spin	Miniprep	kit.		

Plasmid	samples	were	concentrated	using	Savant	Speed	Vac®Plus	(SC110A),	

then	diluted	in	20	μL	of	TE	buffer.		The	DNA	in	the	samples	was	quantified	using	the	

Trinity	College	Biology	Department	Nanodrop.	

Sanger	sequencing	of	16s	rRNA	gene	

	 The	plasmid	samples	(n=44)	were	sent	to	the	Yale	University	DNA	Analysis	

Facility	to	be	sequenced.		There	were	17	plasmid	samples	containing	the	16s	rRNA	gene	

of	species	G,	17	plasmids	samples	containing	the	16s	rRNA	gene	of	species	M,	and	10	

plasmid	samples	containing	the	16s	rRNA	gene	of	species	D.		The	samples	were	placed	

into	individual	wells	of	a	96-well	plate,	at	low	concentrations	of	approximately	500-700	

nanograms	of	DNA	and	high	concentrations	of	approximately	700-1000	nanograms	of	

DNA.		The	forward	M13	primer,	which	has	a	site	slightly	upstream	from	the	16s	rRNA	

integration	site,	was	also	put	in	the	wells.		The	samples	were	to	be	analyzed	using	

Sanger	sequencing	techniques.		

Sequence	analysis	

	 Had	the	Yale	Facility’s	Sanger	sequencing	been	successful,	the	sequences	would	

have	been	analyzed	using	the	nucleotide	Basic	Local	Alignment	Search	Tool	(nBLAST)	

on	the	National	Center	for	Biotechnology	Information	(NCBI).	

Species	selection	for	PCR	screening	

	 Since	sequencing	the	16s	rRNA	genes	in	the	TOPO®	vector	was	unsuccessful	on	

two	separate	occasions,	the	next	step	was	to	search	previous	related	studies	for	
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bacterial	species	that	could	align	with	the	characteristics	of	species	D,	G,	and	M.		Once	

chosen,	the	16s	rRNA	genes	of	the	selected	species	were	found	using	the	Center	for	

Microbial	Ecology’s	Hierarchy	Browser	(Michigan	State	University,	2014).		

PCR	primer	design	

	 PCR	analysis	was	attempted	to	determine	whether	the	16s	rRNA	gene	segments	in	

the	plasmids	were	those	of	certain	bacteria	species	deemed	significant	by	previous	

studies.			Using	PCR	amplification	with	primers	specific	to	those	significant	bacteria	

species	would	determine	whether	those	species	were	present	in	the	samples	I	had	

prepared	initially	for	sequencing.		Primers	were	designed	for	11	bacteria	species.		The	

primers	were	designed	with	help	from	the	OligoAnalyzer	3.1	from	Integrated	DNA	

Technologies.			

Using	PCR	to	screen	for	specific	bacteria	

	 The	PCR	reactions	would	utilize	the	designed	primers,	Taq	polymerase,	dNTPs,	and	

the	previously	prepared	plasmids.		The	reactions	would	have	been	conducted	in	the	

Thermocycler	for	30	rounds	with	the	settings	in	Table	1.			

Table	1:	Polymerase	Chain	Reaction	set	up	for	specific	primer	pairs	
Bacteria	 Denaturing	Temp.	 Annealing	Temp.	 Primer	Extension	Temp.	
C.	boltea	 95°C	 51°C	 72°C	
C.	leptum		 95°C	 54.7°C	 72°C	
C.	perfringens	 95°C	 46.8°C	 72°C	
C.	disporicum	 95°C	 47.5°C	 72°C	
C.	tertium	 95°C	 48°C	 72°C	
B.	longum	 95°C	 46.7°C	 72°C	
B.	angulatum	 95°C	 48.5°C	 72°C	
R.	ablus	 95°C	 52°C	 72°C	
D.	piger	 95°C	 50.9°C	 72°C	
B.	vulgatus	 95°C	 47.3°C	 72°C	
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	 Unfortunately,	testing	for	the	presence	of	these	species	in	the	44	plasmid	samples	

was	never	completed	due	to	time	constraints.		If	there	had	been	sufficient	time	to	do	the	

polymerase	chain	reactions,	the	PCR	products	would	have	been	analyzed	using	a	0.8%	

agarose	gel	with	a	1	kb	(Table	1).		The	gel	would	display	an	approximate	size	of	the	PCR	

product	that	could	be	compared	to	the	expected	product	size	as	determined	by	the	

primer	selection.	

Results	

Sequence	analysis	

	 As	noted	in	the	“Methods,”	the	16s	rRNA	genes	were	unable	to	be	sequenced	by	

the	Yale	DNA	Analysis	Facilities,	for	reasons	explored	in	the	discussion	section.	

Therefore,	I	was	unable	to	analyze	the	sequences	of	the	genes	belonging	to	species	D,	G,	

and	M.	

Species	selection	for	PCR	screening	

	 By	delving	into	related	studies	done	by	researchers	over	the	past	decade	or	so,	I	

was	able	to	determine	several	bacterial	species	that	could	potentially	be	the	identities	

of	species	D,	G,	and	M.		The	species	that	have	been	previously	tagged	as	being	different	

between	healthy	and	ASD	individuals,	and	therefore	potentially	important	in	ASD,	are	

shown	in	Table	2.		
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Table	2:	Potentially	important	bacteria	investigated	
Present only in  
ASD individuals 

 
Source 

Present only in 
healthy individuals 

 
Source 

Bacteroides vulgatus Finegold et al., 2010 Clostridium disporicum Finegold et al., 2002 
Clostridium boltea Finegold et al., 2010 Clostridium tertium Finegold et al., 2002 
C. perfringens Finegold et al., 2017 Clostridium leptum Finegold et al., 2010 
Desulfovibrio piger Finegold et al., 2010 Ruminococcus albus Finegold et al., 2002 
---------------------------- ----------------------------- Bifidobacterium longum Finegold et al., 2010 
---------------------------- ----------------------------- B. angulatum Finegold et al., 2010 
	

	 Two	possible	bacterial	pathways	for	affecting	ASD	are	production	of	toxins	and	

secretion	of	metabolic	wastes	(Finegold,	2002).		A	2010	study	by	Finegold	et	al.	

identified	Clostridium	boltea	as	a	species	that	is	overabundant	in	the	gut	flora	of	

children	with	ASD	(Table	2).		In	the	same	study,	Bacteroides	vulgatus	and	Desulfovibrio	

piger	were	also	found	in	a	significantly	greater	abundance	in	the	severely	autistic	group	

(Table	2).		In	a	more	recent	study	by	Finegold	et	al.,	Clostridium	perfringens	was	found	

to	be	significantly	more	abundant	in	autistic	children	than	the	control	children	(Table	

2).			

	 Clostridium	is	a	known	toxin-producing	genus,	which	could	contribute	to	species	

of	it	being	in	the	ASD	groups	and	not	in	the	healthy	groups	(Fingegold	et	al.,	2010).		

Clostridium	perfringens	in	particular	is	known	to	produce	at	least	four	different	toxins	

that	have	been	shown	to	be	implicit	in	other	gastrointestinal	diseases	(Finegold	et	al.,	

2017).		Both	Bacteroides	and	Desulfovibrio	species	can	produce	lipopolysaccharide,	a	

virulent	factor	not	found	in	the	gram-positive	species	seen	in	the	gastrointestinal	tract	

(Finegold	et	al.,	2010).		In	addition,	Desulfovibrio	species	can	produce	hydrogen	sulfide,	

a	metabolic	waste,	which	could	account	for	or	contribute	to	some	ASD	symptoms	

(Finegold	et	al,	2010).		
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	 In	the	2010	Finegold	et	al.	study,	Bifidobacterium	longum,	Bifidobacterium	

angulatum,	and	Clostridium	leptum	were	found	to	be	significantly	more	prominent	in	

the	healthy	group	than	the	ASD	group	(Table	2).		Clostridium	is	a	highly	varied	genus,	

which	accounts	for	species	of	it	being	in	both	groups	(Song	et	al.,	2002).		The	

Bifidobacterium	genus	produces	exopolysaccharides,	which	are	fermentable	substrates	

that	can	be	used	by	other	members	of	the	normal	flora	(Finegold	et	al.,	2002).		Another	

study	showed	that	Clostridium	disporicum,	Clostridium	tertium,	and	Ruminococcus	albus	

were	all	missing	from	the	guts	of	autistic	children	as	well	(Finegold	et	al.,	2002;	Table	

2).		R.	albus	seems	to	be	an	anomaly	for	the	Ruminococcus	genus,	which	is	also	a	known	

toxin-producing	genus	not	normally	found	in	the	normal	flora	(Finegold	et	al,	2002).	

	 Each	of	the	aforementioned	species	would	have	been	a	good	candidate	for	

screening	the	prepared	plasmid	samples	using	the	PCR	screening	technique.			

PCR	Screening	primer	design	

	 Primers	were	designed	for	the	PCR	amplification	of	the	16s	rRNA	genes	of	the	

species	shown	in	Table	2.		Conducting	PCR	with	the	DNA	of	species	D,	G,	and	M	as	the	

template	DNA	and	the	primers	being	specific	to	species	already	identified	as	being	

different	between	healthy	and	autistic	groups	would	help	to	identify	or	rule	out	the	

bacteria	in	Table	2	as	being	the	identities	of	species	D,	G,	and	M.		Gel	electrophoresing	

the	PCR	products	and	comparing	the	band	size	with	the	expected	product	size	

(determined	by	the	primer	set	used)	would	allow	this	affirmation	or	denial	of	the	

species	in	Table	2	as	being	the	identities	of	species	D,	G,	and	M.	
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	 Primers	were	designed	based	on	sequence	similarity	to	bacteria	of	the	same	

genus,	length,	hairpin	likelihood,	self-dimer	likelihood,	heterodimer	likelihood,	melting	

temperature	agreement,	GC-content,	GC-clamp	presence,	and	product	length	(Table	3).			

Table	3:	Primer	Design	Criteria	
Criterion	 Value		
Sequence	similarity	to	bacteria	in	same	genus	 >	10%	difference	
Length	 15-25	base	pairs	
Hairpin	 ΔG	<	3.0	
Self	Dimer	 ΔG	<	5.0	
Heterodimer	 ΔG	<	6.0	
Melting	temperature	 Within	2°C	of	the	other	
GC	Content	 40-65%	
Presence	of	GC	Clamp	 Full	or	partial	
PCR	Product	Length	 500-1500	base	pairs	
	

PCR	Primers	 	

	 The	primers	were	designed	for	PCR	on	the	freshly	prepared	plasmid	samples,	

but	it	was	difficult	finding	primers	that	were	within	the	sequence	that	the	original	PCR	

produced	with	the	universal	primers.		The	forward	universal	primer,	27F,	binds	slightly	

upstream	of	the	16s	rRNA	so	all	of	the	designed	primers	were	within	its	boundaries.		

The	reverse	universal	primer,	however,	binds	to	the	800-900	base	region	of	the	gene.			

The	16s	rRNA	gene	is	approximately	1500	base	pairs	in	total,	so	looking	for	primers	in	

the	region	inside	the	reverse	universal	primer	limited	the	options	significantly.			Each	

reverse	primer	that	I	designed	lies	outside	of	the	segment	created	by	the	initial	PCR,	so	

the	reactions	would	have	had	to	be	done	on	the	original	DNA	samples,	although	they	

were	older.		The	designed	primers	and	their	expected	PCR	product	lengths	are	shown	in	

Table	4.		

	
	



GASTROINTESTINAL	FLORA	IN	BTBR-STRAIN	MICE	ON	KETOGENIC	DIET	 	
	 	

21	

Figure	3:	Designed	primers	

	
Fig.	3:	Unlike	the	universal	primers	(Fig.	2),	the	designed	primers	are	specific	to	certain	sequences	in	the	
16s	rRNA	gene	that	correspond	with	a	specific	bacterial	species.		The	designed	primers	bind	to	different		
parts	of	the	16s	rRNA	gene,	and	each	primer	set	has	a	different	PCR	product	size.	
	

Table	4:	Designed	Primer	Sequence	and	Product	Length	
Species	 Forward	Primer	(5’	à3’)	 Reverse	Primer	(5’	à3’)	 Product	

Length	
C.	boltea	 CCAAAGCGACGATCAGTAGC	 GCGTTGCTGACTCCCATG	 1097	bp	

C.	leptum		 CCGCATAAGACCTCAGTACCGC	 GGGATTTGCTTGCCTTCACAGGG		 1042	bp	

C.	perfringens	 CATCATTCAACCAAAGGAGC	 CAAGGGATGTCAAGTGTAGG	 743	bp	

C.	disporicum	 CAGGGACGATAATGACGG	 CCAGTTACGGGTAATTCAGG	 514	bp	

C.	tertium	 CCGCATAACATTACATTTTCGC	 GGTTCTCCTACGGCTACC	 1453	bp	

B.	longum	 GGCACTTTGTGTTGAGTG	 CTCGACTGCGTGAAGG	 837	bp	

B.	angulatum	 CTGGGAAAGATTTTATCGGTATGG		 CGCCTTCATGGAGTCG	 1079	bp	

R.	ablus	 CGAGCGAAAGAGTGCTTGC	 CGACTGCTTCCTCCTTGC	 1332	bp	

D.	piger	 GCGGCGTGCTTAACACAT	 CCTCACGGTATCGCTGC	 1204	bp	

B.	vulgatus	 CGTCTACTCTTGGACAGC	 CGATGGCAGTCTTGTCAG	 986	bp	

	

	 The	DNA	of	species	G	and	D	would	have	been	the	template	DNA	in	polymerase	

chain	reactions	done	with	the	primers	designed	for	Clostridium	boltea,	Bacteroides	

vulgatus,	Desulfovibrio	piger,	and	Clostridium	perfringens	(Table	4).		The	characteristics	

of	the	primer	sets	specific	to	these	four	bacteria	are	shown	in	Table	5.			
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Table	5:	Primer	characteristics	for	bacteria	previously	seen	in	ASD	individuals		

Species	
Clostridium	
boltea	

Bacteroides	
vulgatus	

Desulfovibrio	
piger	

Clostridium	
perfringens	

Sequence	
difference	%	

15%	from															
C.	disporicum	

33.33%	from													
B.	pyogenes		

0%	from																			
D.	intestinalis	

35%	from																		
C.	disporicum	

GC	%,	clamp	 55%,	yes	 55.6%,	yes	 55.6%,	yes	 45%,	partial	

Length	 20	bp	 18	bp	 18	bp	 20	bp	
Hairpin	 ΔG=-1.07	 ΔG=-0.75	 ΔG=-1.84	 ΔG=-0.19	
Self	Dimer	 ΔG=-4.62	 ΔG=-3.61	 ΔG=-4.85	 ΔG=-3.14	
Melting	Temp	 56.0°C	 52.3°C	 56.6°C	 51.8°C	
Sequence	
difference		

27.8%	from												
C.	disporicum	

22.22%	from												
B.	pyogenes	

17.6%	from													
D.	intestinalis	

20%	from																	
C.	disporicum	

GC	%,	clamp	 61.1%,	yes	 55.6%,	yes	 64.7%,	yes	 50%,	yes	
Length	 18	bp	 18	bp	 17	bp	 20	bp	
Hairpin	 ΔG=0.22	 ΔG=-0.19	 ΔG=-0.78	 ΔG=0.64	
Self	Dimer	 ΔG=-5.38	 ΔG=-3.61	 ΔG=-3.61	 ΔG=-1.95	
Melting	temp	 56.7°C	 53.2°C	 55.9°C	 52.7°C	
Hetero-dimer	 ΔG=-5.31	 ΔG=-4.87	 ΔG=-6.91	 ΔG=-5.00	
Table	 5:	 The	 grey	 rows	 indicate	 the	 primer	 characteristics	 of	 the	 forward	 primers	 of	 the	
species	indicated.	 	The	blue	rows	indicate	the	primer	characteristics	of	the	reverse	primers	of	
the	 species	 indicated.	 	 The	 final	 row	 indicates	 the	primer	 characteristic	 that	 is	 dependent	 on	
both	the	forward	and	reverse	primer.	
	
	 The	DNA	of	species	M	and	D	would	have	been	the	template	DNA	in	polymerase	

chain	reactions	done	with	the	primers	designed	for	Bifidobacterium	longum,	

Bifidobacterium	angulatum,	Clostridium	leptum,	Clostridium	disporicum,	Clostridium	

tertium,	and	Ruminococcus	albus	(Table	4).		The	characteristics	of	the	primer	sets	

specific	to	these	six	bacteria	are	shown	in	Table	6.		
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Table	6:	Primer	characteristics	for	bacteria	previously	seen	in	non-ASD	individuals	

Species	 B.	longum	 B.	
angulatum	 C.	leptum		 C.	

disporicum	 C.	tertium	 R.	ablus	

Sequence	
difference	%	

27.8%	from				
B.	angulatum	

41.7%	from	
B.	longum	

32%	from		
C.	tertium	

17%	from					
C.	perfringens	

32%	from			
C.	leptum	

42.1%	from				
R.	flaveflaciens	

GC	%,	clamp	 50%,	yes	 41.7%,	
partial	 59%,	yes	 55.6%,	

partial	 40.9%,	yes	 57.9%,	yes	

Length	 18	bp	 24	bp	 22	bp	 18	bp	 22	bp	 19	bp	
Hairpin	 ΔG=-1.29	 ΔG=0.45	 ΔG=0.46	 ΔG=-0.64	 ΔG=1.08	 ΔG=-0.69	
Self	Dimer	 ΔG=-4.89	 ΔG=-3.89	 ΔG=-3.65	 ΔG=-3.61	 ΔG=-3.61	 ΔG=-4.74	
Melting	
Temp	

51.7°C	 53.5°C	 59.7°C	 52.5°C	 53°C	 57.0°C	

Sequence	
difference	%	

18.75%	from	
B.	angulatum	

12.5%	from	
B.	longum	

52%	from		
C.	tertium	

35%	from	C.	
perfringens	

28%	from		
C.	leptum	

27.8%	from				
R.	flaveflaciens	

GC	%,	clamp	 62.5%,	yes	 62.5%,	yes	 57%,	yes	 50%,	yes	 61.1%,	yes	 61.1%,	yes	
Length	 16	bp	 16	bp	 23	bp	 20	bp	 18	bp	 18	bp		
Hairpin	 ΔG=-1.41	 ΔG=-1.17	 ΔG=-1.09	 ΔG=0.84	 ΔG=-0.02	 ΔG=0.25	
Self	Dimer	 ΔG=-6.76	 ΔG=-5.38	 ΔG=-4.67	 ΔG=-5.36	 ΔG=-4.41	 ΔG=-3.61	
Melting	
temp	

52.9°C	 53.0°C	 60.9°C	 52.8°C	 54.4°C	 56.1°C	

Hetero-
dimer	

ΔG=-5.09	 ΔG=-3.61	 ΔG=-5.09	 ΔG=-3.61	 ΔG=-4.41	 ΔG=-4.74	

Table	 6:	 The	 grey	 rows	 indicate	 the	 primer	 characteristics	 of	 the	 forward	 primers	 of	 the	
species	indicated.	 	The	blue	rows	indicate	the	primer	characteristics	of	the	reverse	primers	of	
the	 species	 indicated.	 	 The	 final	 row	 indicates	 the	primer	 characteristic	 that	 is	 dependent	 on	
both	the	forward	and	reverse	primer.	
	
	
	 The	PCR	samples	would	have	been	run	on	an	agarose	gel	to	determine	

approximate	PCR	product	size.		If	the	PCR	product	size	seen	on	the	gel	aligned	with	the	

expected	product	size	as	shown	in	Table	3,	then	the	16s	rRNA	gene	in	that	plasmid	is	

likely	the	bacteria	species	for	which	the	primers	were	designed.		If	my	data	were	to	be	

consistent	with	Finegold	et	al.’s	prior	research,	species	G	(the	bacterial	species	found	in	

BTBR	mice	on	standard	diets)	would	be	one	of	Clostridium	boltea,	Bacteroides	vulgatus,	

Desulfovibrio	piger,	or	Clostridium	perfringens.		I	would	expect	species	M	and	D	to	be	one	

of	Bifidobacterium	longum,	Bifidobacterium	angulatum,	Clostridium	leptum,	Clostridium	

disporicum,	Clostridium	tertium,	or	Ruminococcus	albus.		
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Discussion		

	 It	is	unclear	as	to	why	the	Sanger	sequencing	was	ineffective.		The	procedures,	

vectors,	and	primer	type	and	amount	were	all	consistent	with	prior	successful	

sequencing	at	the	Yale	facilities	for	another	Trinity	College	research	project.		There	did	

appear	to	be	enough	DNA	in	the	samples	because	the	Nanodrop	confirmed	each	sample	

that	was	sent	to	Yale	had	at	least	500	ηg	of	DNA.		

	 The	freshly	made	plasmid	samples	that	were	sent	to	the	Yale	DNA	Analysis	

Facilities	in	December	2016	were	unsuccessful	because	they	did	not	seem	to	have	

enough	DNA	in	them.		In	January	and	February	2017,	I	remade	the	samples	with	double	

the	volume	of	initial	culture	to	start	the	procedure	in	order	to	increase	the	amount	of	

DNA.		I	also	concentrated	the	DNA	with	a	SpeedVac	and	resuspended	the	plasmids	in	TE	

buffer	in	hopes	of	increasing	DNA	amounts.		The	primers	were	changed	from	T3	and	T7	

in	the	first	batch	to	M13	forward	and	reverse	in	the	second	batch.		Both	sets	of	primers	

have	binding	sites	to	the	vector	used.		Finally,	I	changed	the	broth	in	the	overnight	

cultures	from	Tryptic	Soy	broth	to	LB	broth	as	suggested	by	the	Yale	facility	employees.	

For	unknown	reasons,	the	second	round	of	plasmids	that	were	sent	to	Yale	also	could	

not	be	sequenced.		The	new	plasmid	preps	were	sent	to	the	Yale	facilities	in	March	of	

2017,	after	which	the	Yale	technicians	and	I	discussed	possible	reasons	for	the	failure	

but	found	no	definitive	explanation.			

	 There	are	a	number	of	possible	reasons	for	the	lack	of	success	with	the	Sanger	

sequencing.		The	primers	may	have	degraded	through	various	freeze-thaw	cycles.		The	

same	could	be	true	for	the	plasmid	samples,	but	is	less	likely	because	the	plasmids	were	

prepared	two	months	or	sooner	before	the	sequencing	reactions	were	attempted.		
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Another	possible	reason	is	that	the	samples	contained	some	inhibitory	contaminants	

like	salts	or	ethanol,	which	would	have	been	due	to	the	rushed	nature	of	the	sample	

preparations.		

	 In	order	to	salvage	the	project	and	reach	the	end	goal	of	learning	more	about	the	

effects	of	the	ketogenic	diet	on	BTBR	mice	gut	bacteria,	a	new	procedure	was	created.		

Unfortunately,	there	was	not	enough	time	to	execute	the	new	procedure.		Using	PCR	to	

check	whether	pre-determined	bacteria	species	were	present	in	the	plasmid	samples	I	

had	already	prepared	would	be	a	roundabout	but	rapid	way	to	determine	whether	my	

results	were	consistent	with	previous	studies’	findings.		In	the	initial	stages	of	this	

project,	the	16s	rRNA	genes	were	amplified	using	universal	primers	(27F	and	926R)	

that	were	designed	to	amplify	the	gene	in	all	bacterial	species.		Gel	electrophoreses	of	

polymerase	chain	reactions	using	the	universal	primers	all	generate	approximately	the	

same	size	band	(~1	kilobase).	Designing	more	specific	primers	for	the	polymerase	

chain	reactions	will	produce	different	sized	bands	that	will	allow	those	different	species	

to	be	distinguishable	on	a	gel	electrophoresis.			

	 The	primers	designed	with	Clostridium	boltea	in	mind	were	strong	candidates	

because	they	were	20	and	18	base	pairs	long	(forward	and	reverse	primers,	

respectively)	and	had	at	least	15%	of	base	pairs	differ	from	Clostridium	disporicum.		

These	factors	are	important	because	other	Clostridium	species	are	being	studied	and	I	

wanted	the	primers	to	be	able	to	distinguish	the	16s	rRNA	genes	at	the	species	level.		

The	high	GC	content	(55%	and	61%)	and	presence	of	a	GC	clamp	for	both	the	forward	

and	reverse	primers	are	good	indicators	because	guanine	and	cytosine	use	three	

hydrogen	bonds	to	connect	DNA	strands	as	opposed	to	two,	which	will	help	in	primer	
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annealing.		Each	primer	had	low	risk	of	a	hairpin	formation,	which	is	when	the	primer	

loops	around	and	forms	hydrogen	bonds	between	base	pairs	on	its	own	strand,	

preventing	proper	PCR	results.		The	probability	of	self-dimer	formation	(two	of	the	

same	primer	forming	hydrogen	bonds)	and	heterodimer	formation	(the	two	primers	in	

the	pair	forming	hydrogen	bonds	with	each	other)	were	slightly	higher	but	the	ΔG	was	

less	than	-5.5	and	the	other	positive	characteristics	of	the	primer	pair	outweighed	these	

mediocre	ones.		The	expected	PCR	product	size	of	the	16s	rRNA	gene	of	Clostridium	

boltea	is	1097	base	pairs,	differing	from	the	other	Clostridium	species	used	in	this	study	

by	greater	than	50	base	pairs.	

	 The	primers	designed	for	Bacteroides	vulgatus	were	good	because	they	each	

have	18	base	pairs	with	55.6%	of	them	being	guanine	or	cytosine,	along	with	GC	clamps.		

The	risks	of	hairpin	and	self-dimer	formation	were	low	(ΔG	<	-3.7)	and	the	melting	

temperatures	were	within	0.9°C	of	the	other	primer.		The	one	concern	about	this	primer	

pair	was	that	the	ΔG	for	heterodimer	formation	is	-4.87,	which	is	not	ideal,	but	the	

aforementioned	characteristics	outweigh	this	slightly	increased	possibility	of	PCR	

dysfunction.		The	expected	PCR	product	size	for	this	primer	pair	is	986	base	pairs.		

	 The	primers	designed	for	amplifying	the	16s	rRNA	gene	of	Desulfovibrio	piger	

are	18	and	17	base	pairs	long	(forward	and	reverse,	respectively).		They	each	have	GC	

clamps	and	GC	content	between	55	and	65%.		The	risk	of	hairpin	formations	are	low	

(ΔG	<	-2);	the	risk	of	self-dimer	formation	for	the	reverse	primer	is	low	(ΔG	=	-3.61);	the	

risk	of	self-dimer	formation	for	the	forward	primer	is	intermediate	(ΔG	=	-4.85);	and	

the	risk	of	heterodimer	formation	is	slightly	higher	than	ideal	with	the	ΔG	being	-6.91.		

Though	the	high	risk	of	heterodimer	formation	is	worrisome,	the	other	possible	primer	
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pairs	for	this	species	had	even	higher	risks	or	had	issues	fulfilling	the	other	criteria.		

The	expected	product	size	for	this	primer	pair	is	1204	base	pairs.		

	 The	primers	designed	for	testing	Clostridium	perfringens	presence	were	each	20	

base	pairs	long,	and	had	at	least	20%	of	base	pairs	differ	from	C.	disporicum.		There	is	

low	to	intermediate	risk	for	hairpin,	self-dimer,	and	heterodimer	formation	(ΔG	<	-5).		

The	forward	primer	has	a	GC	content	of	45%	and	a	partial	GC	clamp	while	the	reverse	

primer	has	a	GC	content	of	50%	and	a	full	GC	clamp.		The	expected	product	size	of	this	

primer	set	is	743	base	pairs,	which	differs	from	the	other	Clostridium	species	used	in	

this	study	by	at	least	200	base	pairs.	

	 The	primers	designed	for	Bifidobacterium	longum,	the	first	of	the	bacteria	shown	

to	be	lacking	in	ASD	individuals,	were	at	least	18%	different	from	the	related	B.	

angulatum.		They	each	contain	GC	clamps	and	50-62.5%	guanine	and	cytosine	bases.		

There	are	low	to	intermediate	risks	for	hairpin	and	heterodimer	formation,	as	well	as	

self-dimer	formation	for	the	forward	primer	(ΔG	<	-5.1)	but	a	slightly	higher	risk	for	

self-dimer	formation	for	the	reverse	primer	(ΔG	=	-6.76).		The	positive	aspects	of	the	

primer	design	outweighed	this	elevated	risk	because	other	possibilities	for	primer	pairs	

had	much	higher	risks	in	other	categories.	The	expected	product	size	for	these	primers	

is	837,	which	is	over	200	base	pairs	different	from	the	other	Bifidobacterium	species	

investigated	in	this	study.	

	 The	forward	primer	designed	for	Bifidobacterium	angulatum	is	24	bases	and	

have	25%	of	bases	different	from	B.	longum	while	the	reverse	primer	is	16	bases	and	

differs	12.5%	from	B.	longum.		The	risks	of	hairpin,	self-dimer,	and	heterodimer	

formations	are	all	low	to	intermediate	(ΔG	<	5.40).		Each	primer	has	a	GC	content	above	
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40%	and	below	63%,	and	the	reverse	primer	has	a	GC	clamp.		The	expected	product	

size	is	1079	base	pairs,	which	is	over	200	base	pairs	different	from	the	other	

Bifidobacterium	species	in	this	study.		

	 The	primers	designed	for	Clostridium	leptum	had	low	to	intermediate	risks	for	

hairpin,	self-dimer,	and	heterodimer	formation	(ΔG	<	-5.10).		The	forward	primer	has	

22	bases	and	a	GC	clamp	while	the	reverse	primer	has	23	bases	and	a	GC	clamp.		The	GC	

content	of	each	primer	in	the	set	is	between	57	and	59%	and	the	expected	product	size	

is	1042	base	pairs.		The	expected	product	size	is	close	to	that	of	C.	boltea	but	differs	

from	the	other	Clostridium	species	in	this	study	by	over	200	base	pairs.	

	 The	forward	and	reverse	primers	designed	for	Clostridium	disporicum	were	18	

and	20	bases,	respectively;	and	had	55.6%	and	50%	GC	content,	respectively.		The	risk	

for	hairpin,	self-dimer,	and	heterodimer	formation	are	all	low-intermediate	(ΔG	<	5.40).			

The	forward	primer	is	17%	different	from	C.	perfringens,	while	the	reverse	is	35%	

different	from	C.	perfringens.		The	expected	product	size	is	514	base	pairs,	which	is	over	

200	base	pairs	different	from	the	other	Clostridium	species	in	the	study.		

	 The	primers	designed	for	Clostridium	tertium	both	have	low	risk	for	hairpin,	self-

dimer,	and	heterodimer	formation	(ΔG	<	-4.42).		The	forward	primer	is	22	bases	long	

and	32%	of	those	bases	differ	from	C.	leptum	while	the	reverse	primer	is	18	bases	long	

and	28%	of	those	bases	differ	from	C.	leptum.		The	GC	contents	are	40.9%	and	61.1%	

and	each	primer	has	a	GC	clamp.		The	expected	product	size	is	1453	base	pairs,	which	

differs	from	the	other	Clostridium	species	in	this	study	by	over	300	base	pairs.			

	 The	primers	designed	for	Ruminococcus	albus	each	have	low	probability	of	

forming	hairpins,	self-dimers,	or	heterodimers	(ΔG	<	-4.75).		The	GC	content	of	each	is	
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between	57	and	62%,	and	each	have	GC	clamps.		The	forward	primer	is	19	bases	long	

and	the	reverse	is	18	bases.		The	expected	product	size	of	this	primer	set	is	1332	base	

pairs.	

	 The	primers	were	designed	with	PCR	efficiency	in	mind,	but	also	with	species	

identification	in	mind.		It	was	important	to	have	some	base	pair	differences	within	the	

primer	sequence	from	the	related	species	that	are	also	apparently	implicit	in	ASD.		In	

addition,	the	expected	product	size	was	made	to	differ	from	the	related	bacteria	for	

ease	of	distinguishing	gel	electrophoresis	results.		Although	the	PCR	and	gel	

electrophoresis	analysis	could	not	be	completed	in	the	time	frame,	I	feel	confident	that	

primers	I	designed	would	make	it	easy	to	rule	the	aforementioned	bacteria	in	or	out	as	

the	identities	of	species	D,	G,	and	M.		

	 There	are	44	DNA	samples	that	could	be	used	as	the	template	in	PCR	reactions	

with	these	primer	sets.		There	are	17	samples	that	contain	the	16s	rRNA	gene	of	species	

G,	which	was	shown	to	only	be	significantly	present	in	the	BTBR/ketogenic	diet	mouse	

group.		This	experimental	group	was	the	only	mouse	group	to	exhibit	the	core	autistic	

symptoms,	which	is	why	I	expect	species	G	to	be	one	of	the	bacterial	species	in	Table	4.		

There	are	also	17	plasmid	samples	that	contained	the	16s	rRNA	gene	for	species	M,	

which	was	shown	to	be	present	in	the	healthy	mice	on	both	diet	types.		This	bacteria	is	

likely	part	of	the	normal	flora	and	contributes	to	normal	gut-brain	interactions	because	

it	is	not	in	the	mouse	group	that	displays	the	core	autistic	symptoms.		For	this	reason,	I	

suspect	that	species	M	is	likely	one	of	the	bacteria	displayed	in	Table	5,	which	were	all	

shown	to	be	absent	from	autistic	individuals	in	previous	studies.			
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	 There	are	10	plasmid	samples	that	contain	the	16s	rRNA	gene	of	species	D,	

which	was	found	in	the	BTBR	mouse	group	that	was	on	the	ketogenic	diet.		Since	the	

ketogenic	diet	was	shown	to	improve	the	autistic	symptoms	of	these	BTBR	mice,	I	

expect	that	species	D	is	one	of	the	bacteria	shown	in	Table	5	as	well.		However,	this	

would	only	be	true	if	the	gut	bacteria	are	implicit	in	actually	causing	the	core	autistic	

symptoms.		In	addition,	the	bacteria	in	Tables	4	and	5	are	just	a	small	sample	of	bacteria	

present	in	mouse	gastrointestinal	tracts.		Species	D,	G,	and	M	may	not	be	any	of	the	

bacterial	species	listed	in	Tables	4	and	5.	

	 In	the	future,	the	polymerase	chain	reactions	should	be	done	with	the	primers	I	

have	designed.		In	addition,	the	sequencing	error	should	be	figured	out,	as	sequencing	

the	plasmids	is	still	a	much	more	straightforward	pathway	to	figuring	out	the	identities	

of	species	D,	G,	and	M.		Whether	or	not	these	three	species	are	affecting	ASD	will	not	be	

known	until	they	are	classified	and	more	is	known	about	how	they	operate	in	the	body.	

	 If	the	species	had	been	identified,	the	next	step	would	be	to	study	the	way	the	

bacteria	behave	in	the	body.		The	effects	of	the	ketogenic	diet	on	individuals	with	ASD	

should	be	monitored	both	behaviorally	and	in	terms	of	the	gastrointestinal	flora.		

Probiotics	that	can	be	taken	orally	that	contain	the	bacteria	missing	from	ASD	

individuals’	guts	should	then	be	created	and	their	effects	on	the	gastrointestinal	

distress	and	behavioral	symptoms	tested.	
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