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1 Standard Notations

Ω : bounded, open, connected set in Rn

∂Ω : boundary of Ω

Cr(Ω) : the space of r times continuously differentiable functions, u : Ω→ R

O(hp) : If f(h) and g(h) are two functions of h, then we say that f(h) = O(g(h)) as h→ 0

if there is some constant C such that

∣∣∣∣f(h)

g(h)

∣∣∣∣ < C for all h sufficiently small.

o(hp) : If f(h) and g(h) are two functions of h, then we say that f(h) = o(g(h)) as h→ 0

if ∣∣∣∣f(h)

g(h)

∣∣∣∣→ 0 as h→ 0.

u(x)+ : max{0, u(x)}

u(x)− : −min{u(x), 0}

amp(y) : max
t∈[0,T ]

y(t)− min
t∈[0,T ]

y(t) for y : R→ R such that t 7→ y(t) with y(t+ T ) = y(t).

amp(u) : max
x∈[0,π]

[
max
t∈[0,T ]

u(x, t)− min
t∈[0,T ]

u(x, t)

]
for u : Rn×R→ R such that (x, t) 7→ u(x, t)

with u(x, t+ T ) = u(x, t).

uh : Finite Difference approximation to u calculated on a grid with size h.

ut : ∂u
∂t

uxx : ∂2u
∂x2

‖u(x, t)‖H1 =
√
‖u‖2

L2 + ‖ux‖2L2 + ‖ut‖2L2

‖u‖L2 =

√∫ T

0

∫ L

0
|u(x, t)|2dxdt
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2 Introduction

2.1 Beam Equation and Boundary Conditions

Beams are traditionally thought of as structural elements for buildings and engineering.

However, any structures such as automotive automobile frames, aircraft components, ma-

chine frames, and other mechanical or structural systems that are designed to carry lateral

loads can be analyzed in a similar fashion. The simplest partial differential equation mod-

eling the vibrations of a one dimensional beam of length L is called the Euler Bernoulli

beam equation and was introduced by Daniel Bernoulli and Euler in 1735,

utt(x, t) +Kuxxxx(x, t) = F (x, t), (x, t) ∈ (0, L)× (0,∞) (1)

where u(x, t) is the vertical position at time t and length x along the beam and F (x, t)

is force acting on the beam. This equation involves the fourth x-derivative of u, instead

of the second derivative that occurs in the wave equation (34). The boundary conditions

on the equation model supports, but they can also model point loads, distributed loads

and moments. The support or displacement boundary conditions are used to fix values

of displacement (u) and rotations (ux) on the boundary. At x = 0 endpoint the beam

can either be clamped (u(0, t) = ux(0, t) = 0), hinged (u(0, t) = uxx(0, t) = 0) or free

(uxx(0, t) = uxxx(0, t) = 0). Similarly, the beam can be clamped, hinged or free at x = L

endpoint. The figures below illustrate the various ways in which beams can be supported.

Figure 1: Cantilever beam

A cantilever beam is clamped at one end and free at the other end as in figure (1). A

diving board is an example of a beam supported in this way. There is no displacement or
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rotation at the clamped end.

u(0, t) = ux(0, t) = 0

uxx(L, t) = uxxx(L, t) = 0

Figure 2: Simply Supported beam

A simply supported beam is hinged at both ends as in figure (2). These are free to

rotate about the fixed end points. A suspension bridge is an example of a beam supported

this way.

u(0, t) = uxx(0, t) = 0

u(L, t) = uxx(L, t) = 0

Figure 3: Fixed beam

A fixed beam is clamped at both of its ends and are fixed in place as in figure (3).

Beams supported this way are especially common in structures.

u(0, t) = ux(0, t) = 0

u(L, t) = ux(L, t) = 0
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Figure 4: Overhanging beam

An overhanging beam is a beam extending beyond its support on one end. One of the

example is a beam with one end hinged and another end free as in figure (4).

u(0, t) = uxx(0, t) = 0

uxx(L, t) = uxxx(L, t) = 0

Figure 5: Free floating beam

Another example of a beam is one with both ends free. Since it is not supported at

either end, it could be interpreted as a beam floating on the water. It is free to change

displacement and rotation at the endpoints. The boundary conditions for the free floating

beam can be written as:

uxx(0, t) = uxxx(0, t) = 0

uxx(L, t) = uxxx(L, t) = 0

2.2 The partial differential equation

We investigate the periodic solutions of non-linearly supported periodically forced beams

with some of the boundary conditions discussed above. Non-linearly suspended beams can
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be used as models for suspension bridges [1] and ships at sea [2]. Another non-linearly

supported system is a mass spring system with a cable providing additional support [3].

The cable resists expansion but not compression which introduces a non-linearity to the

system.

We explore equations of the form,

utt + cuxxxx + dut + bu+ = g + λ sin(µt), (x, t) ∈ (0, L)× (0,∞). (2)

The partial differential equation (2) was developed in [2] as a model of a long ship at sea

where u(x, t) represent the submerged depth of the beam at position x and time t. The

constant c is the beam equation constant, d represents damping coefficient/air resistance, b

measures the “stiffness” of cable in one-sided Hooke’s law, g is the gravitational constant

(9.81ms−2) and λ ≥ 0 and µ > 0 . The term u+ = max (u, 0) models the fact that

the buoyant force which keeps the beam afloat is proportional with constant b, to the

submerged depth, unless the beam is out of the water (u < 0) in which case the buoyant

force is 0. The u+ term can also model the fact that a beam suspended by cables (which

act like “nonlinear” springs) resists expansion but not compression (for example, a rubber

band).

We investigate how the number, amplitude and stability of periodic responses depends

on the forcing amplitude λ and forcing frequency µ by constructing bifurcation diagrams

for different boundary conditions for periodic forcing functions f(x, t) = f(x, t;λ, µ). Un-

derstanding steady state solutions (equilibrium and steady-state responses to periodic

forcing) is useful to understand the dynamics. Since period of forcing term is T = 2π
µ , we

look for solutions that are T -periodic in time, by imposing a further condition

u(x, t+ T ) = u(x, t) for (x, t) in (0, L)× (0,∞)

in addition to the boundary conditions that the equation that we are solving for must

satisfy. In this thesis, we will focus on µ = 4, but the same methods could be applied to

other values of µ. The values of the parameters comes from [2] and are chosen to represent

a “relatively flexible beam.”
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We start by developing necessary numerical methods with simpler examples in section

4 and use those methods to solve equation (2) with various boundary conditions in section

5.

3 The Ordinary Differential Equation

We will start by showing how the PDE in (2) can be loosely connected to an ODE model

of a nonlinear oscillator. Assume u(x, t) = y(t) sin
(
πx
L

)
, a standing wave with single node

uxxxx(x, t) =
(π
L

)4
sin
(πx
L

)
y(t)

utt = y′′(t) sin
(πx
L

)
ut = y′(t) sin

(πx
L

)
u+ =

(
sin
(πx
L

)
y(t)

)+
= sin

(πx
L

)
(y(t))+

Substituting these values in (2), we get

y′′(t) sin
(πx
L

)
+ c

(π
L

)4
sin
(πx
L

)
y(t) + dy′(t) sin

(πx
L

)
+ b sin

(πx
L

)
.(y(t))+ = g + λ sin(µt)

sin
(πx
L

)(
y′′(t) + c

(π
L

)4
y(t) + dy′(t) + by(t)+

)
= g + λ sin(µt)

Using g = sin
(
πx
L

)
ĝ and λ = sin

(
πx
L

)
hatλ on the right hand side, we can rewrite the equation as,

y′′ + δy′ + ay+ − by− = ĝ + λ̂ sin(µt). (3)

If ks is the spring stiffness and kc is the cable stiffness, then a = (ks + kc), b = ks.

Equation (3) can be interpreted as a mass attached to a vertical spring with a cable

providing additional support [3]. While the spring causes a restoring force in both the

upward and downward directions, the cable only resists expansion. Let y(t) denote the

downward displacement of the mass at time t, where y = 0 denotes the position before

elongation of the spring by the addition of the mass. There are three main forces acting

on the mass: a “one-sided” or nonlinear restoring force from the cable, a linear restoring
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Figure 6

force from the spring and gravity.

Figure 7: Plot of y vs y+

We will develop and explain the methods that search for periodic responses to (3),

namely solutions satisfying the boundary conditions given by y(0) = y(T ), y′(0) = y′(T )

to look for periodic solutions for a period T as we vary λ. Note, if λ = 0, there is a natural

equilibrium y = g/a and the particle obeys the linear equation

y′′ + δy′ + ay = g.

We will use this natural equilibrium as our initial value with λ = 0 for the parameter

continuation algorithm described in the next section. The behavior of this system has

been widely studied allowing us to check that our methods are valid and will also help to

gain intuition regarding the behaviour of solutions of (2). We will look at the plot of the

amplitude of the solution versus a parameter of the equation, in our case the amplitude

of the forcing term λ. The amplitude of the oscillation is half the difference between the
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maximum and minimum of the oscillation over a time period.

4 Numerical Techniques

In this section, we describe various numerical methods that we use throughout.

4.1 Numerical Differentiation

We want to find a function (or some discrete approximation to this function) that satisfies

a given relationship between various of its derivatives on some given region along with

some boundary conditions.

Definition 1. Given a function u(x), an order k and a point x̃, a finite difference ap-

proximation to ∂ku
∂xk

(x̃) is linear combination of values of u at points near x̃.

Definition 2. The truncation error of a finite difference method is the difference between

the approximation and exact analytical solution. We will denote the approximation by uh

when the order k and x̃ is clear from the context, in this case, error = ∂ku
∂xk

(x̃)− uh.

Definition 3. An order p approximation method to ∂ku
∂xk

(x̃) is a method to obtain uh such

that error is O(hp), where h is uniform spacing.

4.1.1 First Derivative

Consider a function of one variable u(x). We assume that u is continuously differentiable

over an interval. The derivative of u at a point x̃, denoted u′(x̃), if it exists can be

approximated using a finite difference approximation based on values of u at a finite

number of points near x̃ to obtain

D+u(x̃) =
u(x̃+ h)− u(x̃)

h
. (4)

for some small value of h. The limiting value of this expression equals the derivative of

u(x) at x̃ as h → 0 from the standard definition of derivative. Equation (4) is called

forward difference approximation of u′(x̃). We can derive this approximation using a

Taylor expansion.
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Theorem 1 (Taylors theorem). Let f be (k + 1) times continuously differentiable in a

neighborhood of x̃. Then there exists a number c between x and x̃ such that

f(x) = f(x̃) + f ′(x̃)(x− x̃) +
f ′′(x̃)

2!
(x− x̃)2 +

f ′′′(x̃)

3!
(x− x̃)3 + · · ·

+
f (k)(x̃)

k!
(x− x̃)k +

f (k+1)(c)

(k + 1)!
(x− x̃)k+1.

(5)

The terms up to degree k in (x− x̃), is called the degree k Taylor polynomial for f centered

at x̃. The last term is called the Taylor remainder.

Assuming f is twice continuously differentiable in the interval where it is defined, we

can write the Taylor expansion of f(x̃+ h) as

f(x̃+ h) = f(x̃) + hf ′(x̃) +
h2

2
f ′′(x̃) +O(h3) (6)

where O(h3) denotes that the remainders in the Taylor Theorem is of order 3. Rearranging

(6) gives,

f ′(x̃) =
f(x̃+ h)− f(x̃)

h
− h

2
f ′′(x̃) +

O(h3)

h

=
f(x̃+ h)− f(x̃)

h
+O(h)

(7)

Using (7) to approximate the derivative, we obtain the truncation error

f ′(x̃)−D+u(x̃) = O(h).

This also shows that (4) is a first order method for approximating the first derivative.

A better approximation can be obtained by using two sided difference known as cen-

tered difference formula,

D0u(x̃) =
u(x̃+ h)− u(x̃− h)

2h
. (8)

Again, assuming that f ∈ C2, we can Taylor expand f(x̃+ h) and f(x̃− h),

f(x̃+ h) = f(x̃) + hf ′(x̃) +
h2

2
f ′′(x̃) +O(h3) (9)

f(x̃− h) = f(x̃)− hf ′(x̃) +
h2

2
f ′′(x̃)−O(h3) (10)
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Subtracting (10) from (9) and rearranging gives,

f ′(x̃) =
f(x̃+ h)− f(x̃− h)

2h
− O(h3)

h

=
f(x̃+ h)− f(x̃− h)

2h
−O(h2)

(11)

From (11), we see that the (8) is second order accurate approximation. Thus, (8) gives

better approximation than the one-sided approximation (4).

Similarly, we can develop a third order accurate approximation, (12) gives third order

accurate approximation

D3u(x̃) =
1

6h
[2u(x̃+ h) + 3u(x̃)− 6u(x̃− h) + u(x̃− 2h)]. (12)

A method for producing uh is said to be convergent of order p if

error = O(hp) as h→ 0

|u− uh| = Chp

log(|u− uh|) = log(Chp)

log(|u− uh|) = k + p log(h)

The slope of loglog plot gives the order of the approximation. Figure (8) shows errors

using approximations D+u(x̃), D0u(x̃) and D3u(x̃) plotted against grid size h on a loglog

plot.

In general, we can derive finite difference approximations of any order to u′(x̃) based

on sufficiently many nearby points using Taylor series and method of undetermined co-

efficients. It is important to note that by Taylor expanding a function we are making

an implicit assumption that it is sufficiently smooth. This method can be generalized to

approximate dku
dxk

(x̃) up to pth order. Suppose we want approximation to u′(x̃) based on

u(x̃), u(x̃− h), and u(x̃− 2h) of the form

D2u(x̃) = au(x̃) + bu(x̃− h) + cu(x̃− 2h) (13)
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Figure 8: Error in approximation of derivative of f(x) = ex at x = 1 using three different
approximations: forward difference approximation D+, centered difference approximation
D0 and third order approximation D3. Error is calculated using f ′ = ex and plotted
against grid size h on a loglog scale. The method breaks when h is very small due to the
rounding error caused by machine error.

We will use Taylor expansions of u(x̃), u(x̃− h), and u(x̃− 2h) at x̃,

u(x) =u(x̃) + u′(x̃)(x− x̃) +
(x− x̃)2

2!
u′′(x̃) +

(x− x̃)3

3!
u′′′(x̃) +O(x− x̃)4

u(x̃− h) =u(x̃)− hu′(x̃) +
h2

2!
u′′(x̃)− h3

3!
u′′′(x̃) +O(h4)

u(x̃− 2h) =u(x̃)− 2hu′(x̃) +
4h2

2!
u′′(x̃)− 8h3

3!
u′′′(x̃) +O(h4)

(14)

Collecting the terms, we get

D2u(x̃) = (a+b+c)u(x̃)−(b+2c)hu′(x̃)+
1

2
(b+4c)h2u′′(x̃)− 1

6
(b+8c)h3u′′′(x̃)+ · · · (15)
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For this to agree with u′(x̃) up to second order, we need

a+ b+ c = 0

b+ 2c = −1/h

b+ 4c = 0

(16)

Solving the linear system 16 gives

a =
1

h2
, b = − 2

h2
, c =

1

h2

so the formula for second order approximation for u′(x̃) is

D2u(x̃) =
1

h2
[
u(x̃)− 2u(x̃− h) + u(x̃− 2h)

]
(17)

As this is second order method, we expect the error of this approximation to be O(h2).

To see this we compute the error as,

D2u(x̃)− u′(x̃) = −1

6
(b+ 8c)h3u′′′(x̃) + · · ·

=
1

12
h2u′′′(x̃) + · · ·

= O(h2)

(18)

4.1.2 Second Derivative

Approximations to the second derivative u′′(x) can be obtained in an analogous manner.

Suppose we want standard second order centered approximation to u′′(x̃) based on u(x̃−h),

u(x̃), and u(x̃+ h) of the form

D2u(x̃) = au(x̃− h) + bu(x̃) + cu(x̃+ h) (19)
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The Taylor series expansions of u(x̃), u(x̃− h), and u(x̃+ h) at x̃ are

u(x) = u(x̃) + u′(x̃)(x− x̃) +
(x− x̃)2

2!
u′′(x̃) +

(x− x̃)3

3!
u′′′(x̃) +O(x− x̃)4

u(x̃− h) = u(x̃)− hu′(x̃) +
h2

2!
u′′(x̃)− h3

3!
u′′′(x̃) +O(h4)

u(x̃+ h) = u(x̃) + hu′(x̃) +
h2

2!
u′′(x̃) +

h3

3!
u′′′(x̃) +O(h4)

(20)

Collecting the terms, we get

D2u(x̃) = (a+ b+ c)u(x̃) + (a− c)hu′(x̃) +
1

2
(a+ c)h2u′′(x̃)− 1

6
(a− c)h3u′′′(x̃) + · · · (21)

For this to agree with u′′(x̃) up to fourth order, we need

a+ b+ c = 0

a− c = 0

a+ c =
2

h2

(22)

Solving the linear system (22) gives

b = − 2

h2
, a = c =

1

h2

so the formula for second order approximation for u′′(x̃) is

D2u(x̃) =
1

h2
[
u(x̃− h)− 2u(x̃) + u(x̃+ h)

]
(23)

We calculate the truncation error in this approximation as

D2u(x̃)− u′′(x̃) =
1

24
(a+ c)h4u(4)(x̃) + · · ·

=
h2

12
u(4)(x̃) + · · ·

= O(h2)

(24)

This shows that the method is second order.
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4.2 Initial value Solvers for first order Systems

In this section, we introduce methods to solve initial value problems (IVP) for first order

systems in time. We start by discretizing in time for fixed time step k, such that tn = nk

will use superscript for the time step index and subscript for the spatial indices. Given

values at the initial time (t = 0), U0 = [u01, u
0
2, ..., u

0
m], we will use initial value solvers to

solve for U1, U2, · · · satisfying Un ≈ U(tn). Given f : R×Rm → Rm, consider IVP of the

form,
d

dt
U = f(t, U)

U(0) = U0

(25)

The simplest method to solve (25) is Euler’s Method (also called Forward Euler). It is

based on replacing u′(tn) with D+U
n = (Un+1 − Un)/k from (4). This gives,

Un+1 − Un

k
= f(tn, Un)

Un+1 = Un + kf(tn, Un). (26)

Thus, from the initial data U0 = U(t0) we can compute U1 = U(t1), and so on.

The backward Euler method is similar but is based on replacing u′(tn+1) with D−U
n+1

to get,

Un+1 − Un

k
= f(tn+1, Un+1)

Un+1 = Un + kf(tn+1, Un+1). (27)

In the backward Euler method, (27) is an equation that must be solved for Un+1. If f(t, U)

is linear, we can write f(t, U) = AU for some m×m matrix A and Un+1 can be obtained

explicitly by solving the linear system,

Un+1 = (I − kA)−1Un

where I is m×m identity matrix. If f(t, U) is a nonlinear function, we can write this as

Un+1 − kf(Un+1)− Un = 0 (28)
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and notice that Un+1 is a root of

g(u) = u− kf(u)− Un, (29)

Note that Un is known from the previous time step or as the initial condition when n = 0.

Thus, solving for g(u) = 0 gives values of Un+1 that satisfies (27). The root of equation

(29) can be approximated using some iterative methods such as Newton’s Method.

Theorem 2 (Newtons Method). Given a sufficiently smooth function f : Rn → Rn and

a suitable initial guess x0, the root of the function f(x) can be approximated using the

iterative algorithm

xn+1 = xn − [
∂f

∂x
xn]−1f(xn)

where the Jacobian ∂f
∂x exists and is invertible.

Since the backward Euler method gives an equation that must be solved for Un+1, it

is called an implicit method, whereas the forward Euler method is an explicit method.

Another implicit method is the trapeziodal method (also called Crank-Nicolson Method),

obtained by averaging the two Euler methods:

Un+1 − Un

k
=

1

2

(
f(Un) + f(Un+1)

)
(30)

The approximation in (30) is second order accurate in k, whereas the Euler methods are

only first order accurate.

4.3 Solving an ordinary differential equation using finite difference method

Finding the exact (analytical) solution of differential equations is usually very difficult even

if they are linear. Most differential equations do not have analytical solutions and thus

require a numerical procedure to find an approximate solution. A finite difference method

approximates the derivatives with finite differences at discrete values of the independent

variable. This results in a system of equations that can be solved in place of the differential

equation to obtain an approximation to the solution.
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We will use difference formulas from previous sections to solve differential equations

on an interval [a, b]. In general, to solve a differential equation in an interval we will start

by selecting the number of interior grid points N at which we want to approximate our

solution and set h = b−a
N+1 . Set xi = a + ih for i = 0, 1, · · · , N + 1 so that x0 = a and

xN+1 = b and solve our equation at the discrete points xi. Consider a single variable

Poisson problem with Dirichlet boundary condition given as

u′′(x) = f(x), x ∈ (a, b)

u(a) = α, u(b) = β

Using our centered finite difference approximation for u′′ to solve the equation for each xi,

gives

1

h2
(u(xi−1)− 2u(xi) + u(xi+1)) = f(xi), i = 1, 2 · · · 1, 2, · · · , N

Writing the individual equation for each xi, gives

1

h2
(u(x0)− 2u(x1) + u(x2)) = f(x1)

1

h2
(u(x1)− 2u(x2) + u(x3)) = f(x2)

...

1

h2
(u(xN−1)− 2u(xN ) + u(xN+1)) = f(xN )

(31)

Denoting ui = u(xi) and letting U = [u1, u2, · · · , uN ]T and F = [f(x1), f(x2), · · · , f(xN )]T ,

and using u(x0) = u(a) = α and u(xN+1) = u(b) = β the system of equations can be writ-

ten as

AU = F (32)
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where A = 1
h2



−2 1

1 −2 1

1 −2 1

. . .
. . .

. . .

1 −2 1

1 −2


and F =



f(x1)− 1
h2
α

f(x2)

f(x3)

...

f(xN−1)

f(xN )− 1
h2
β


This tridiagonal system is non-singular and can be solved for the interior grid points,

U . The first and the last equations in the system of equations (31) involve the boundary

points u(x0) and u(xN+1) whose value is known from the boundary condition. Thus, it is

subtracted in the right hand side in the first and last row of F .

4.4 Solving a partial differential equation using finite difference method

We use the methods developed to solve a second order partial differential equation, Laplace

equation. The Laplace equation and Poisson equation are the simplest examples of elliptic

partial differential equations. If u ∈ C2, the Laplace operator or “Laplacian” is defined as

∆u =∇ ·∇u = div(grad u).

If the right-hand side is specified as some function f , such as

∆u = f

then it is called Poisson’s equation. The Poisson equation in two independent variables

has the form

∆u = uxx + uyy = f(x, y) (33)

We can use similar method as previous section to solve (33). However, now we will

need to discretize in two different dimensions x and y. We replace the x and y derivatives
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with centered finite differences, which gives

1

(hx)2
(ui−1,j − 2uij + ui+1,j) +

1

(hy)2
(ui,j−1 − 2uij + ui,j+1) = fij

here ui,j = u(xi, yj) and fij = f(xi, yj). Consider the simplified case where hx = hy = h,

then we get

1

h2
(ui−1,j + ui+1,j − 4uij + ui,j−1 + ui,j+1) = fij .

If we write the vector of unknowns as U =



u[1]

u[2]

...

u[N ]


where u[j] =



u1j

u2j
...

uNj


, we can

write (33) as

AU = F

where A has the form

A =
1

h2



T I

I T I

I T I

. . .
. . .

. . .

I T I

I T


which is an N ×N block tridiagonal matrix in which each block T and I are also N ×N

matrix with

T =



−4 1

1 −4 1

1 −4 1

. . .
. . .

. . .

1 −4 1

1 −4


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and F =



f [1]

f [2]

...

f [N ]


where u[j] =



u1j

u2j
...

uNj


.

Solving the Heat Equation

As a specific example, we solve a differential equations with both spatial and time variables.

Consider the flow of heat in some homogeneous heat-conducting material, subject to some

external heat source along its length and some boundary conditions at each end. If we

assume that the material properties, the initial temperature distribution, and the source

vary only with x, the distance along the length, and not across any cross section, then we

expect the temperature distribution at any time to vary only with x and we can model

this with a differential equation in one space dimension. Since the solution might vary

with time, we let u(x, t) denote the temperature at point x and at time t. The solution is

then governed by the heat equation

ut = κuxx + f(x, t) (34)

where κ is the coefficient of heat conduction, and f(x, t) is an external heat source.

Along with the equation, we need initial conditions (35) and boundary conditions

(36-37).

u(x, 0) = u0(x) (35)

We consider the boundary conditions called Dirichlet boundary conditions (36), where

the temperature at each end is specified as opposed to Neumann boundary condition (37)

which is a condition on the derivative of u rather than on u itself. The Neumann boundary

conditions translate as one end or both ends might be insulated, in which case there is
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zero heat flux at that end and so ux = 0 at the point.

u(a, t) = α(t), u(b, t) = β(t) (36)

ux(a, t) = αt, ux(b, t) = β(t) (37)

Consider the heat equation (34) with no external heat source and Dirichlet boundary

conditions given as,

ut = κuxx, x ∈ (a, b)

u(x, 0) = g(x)

u(a, t) = u(b, t) = 0

Using second order central difference approximation for uxx and Euler’s method (26)

to march forward in time, we can rewrite (34) as

ut(xi, t
k) = κuxx(xi, t

k)

uk+1
i − uki
k

= κ(
uki+1 − 2uki + uki−1

h2
)

uk+1
i = uki + κk(

uki+1 − 2uki + uki−1
h2

) (38)

Letting U = [u1, u2, · · · , uN ]T and letting A be the n×n matrix in Equation 32 gives,

Uk+1 =Uk + κkAUk

=(I + κkA)Uk
(39)

Thus, we can march forward in time.

In figure (??) the initial heat distribution in the center diffuses and approaches steady

state solution y = x and y = 1 for the Dirichlet (left) and Neumann boundary conditions

(right) respectively.
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(a) Solution of heat equation with Dirichlet
boundary conditions.

(b) Solution of heat equation with Neumann
boundary condition at one end and Dirichlet
boundary condition at other end.

4.5 Numerical Continuation

Definition 4. Numerical continuation is a method of numerically computing approximate

solutions of parametrized non-linear equations of the form

F (u, λ) = 0,

where the parameter λ is usually a real scalar and u is a vector in Rn representing our

discretized versions of solutions.

A numerical continuation algorithm takes as its input a system of parametrized nonlin-

ear equations and an initial solution and produces a set of points on the solution compo-

nent. The solution component is comprised of what are called regular points and singular

points.

Definition 5. A solution component Γ(u0, λ0) of the nonlinear system F is a set of points

(u, λ) which satisfy F (u, λ) = 0 and are connected to the initial solution (u0, λ0) by a path

of solutions (u(s), λ(s)).

We classify the points as regular, singular or turning points using the Implicit Function

Theorem.

Theorem 3. If F : Rn×R→ Rn is a smooth function with F (u0, λ0) = 0 where u0 ∈ Rn,
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λ0 ∈ R and det ∂F∂u (u0, λ0) 6= 0 and smooth. Then there exists a unique smooth function

u(λ) such that F (u(λ), λ) = 0 for all λ near λ0 and u(λ0) = u0.

The Jacobian of the system is the N × (N + 1) matrix given as

DF =

[
∂F
∂u

∂F
∂λ

]
(40)

Definition 6. A regular point of F is a point (u, λ) at which the Jacobian of F , DF is

full rank. Near a regular point the solution component is an isolated curve passing through

the regular point.

Definition 7. A singular point of F is a point (u, λ) at which the Jacobian of F , DF is

not full rank. Near a singular point the solution component may not be an isolated curve

passing through the point.

Definition 8. A turning point of F in λ is a point (u, λ) at which det ∂F∂u = 0 but the

Jacobian of F , DF has full rank.

In general solution components Γ are branching curves or closed loops. Unfortunately,

the assumptions of Implicit Function Theorem do not apply as we approach singular points

or points where new branches of the solution components are created. Thus, we will need

more sophisticated techniques to trace solution curves through branch points something

that we are not concerning ourselves with.

4.5.1 Natural parameter Continuation

Most numerical methods for solving nonlinear systems of equations are iterative methods.

For a particular parameter value a mapping is repeatedly applied to an initial guess. If the

method converges, and is consistent, then in the limit the iteration approaches a solution

of the nonlinear system.

Natural parameter continuation is a an adaptation of the iterative solver to a parametrized

problem. The solution at one value of λ is used as the initial guess for the solution at

λ + ∆λ. With ∆λ sufficiently small the iteration applied to the initial guess should con-

verge.
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Consider as an example,

F (y, λ) = λ2 + y2 − 1 (41)

It is known that equation (41) traces a circle as λ varies from −1 to 1 and one solution of

the equation is (0, 1), i.e, λ0 = 0 and y0 = 1. Using this known solution as an initial guess,

we can find solutions to the equation for different values of the parameter λ using iterative

methods. Increment λ by small amount ∆λ and use the solution, y0 as the initial guess

for the solution y at λ+ ∆λ. The iterative method (such as Newtons Method) refines the

initial guess to a solution at λ+ ∆λ.

Equation (41) is smooth function with F (y0, λ0) = 0 and the derivative ∂F
∂y = 2y 6= 0

when y 6= 0. Thus, the implicit function theorem tells us that there’s a unique smooth

function y(λ) such that F (y(λ), λ) = 0 for all λ near λ0. However, at y = 0,

∂F

∂y
= 2y = 0.

Thus, the assumptions of the implicit function theorem fails (∂F∂y = 0), thus the natural

parameter continuation method fails at the turning point λ = 1, Figure 9. Thus, we

will develop a more sophisticated continuation algorithm known as pseudo arc-length

continuation.

4.5.2 Pseudo arc-length continuation

The pseudo arc-length method is based on the observation that arc-length offers more

natural parameterization of a curve. Pseudo arc-length is an approximation of the arc-

length in the tangent space of the curve. The resulting modified natural continuation

method makes a step in arc-length ∆s rather than λ. Then we use secant predictor to

obtain a initial guess for the iterative solver (Newtons Method solver) to refine the solution.

An additional equation of pseudo arclength normalization (42) is introduced that is

dependent on initial conditions u0, λ0 and the arc length parameter, s. If (u0, λ0) is

a solution of F , we parametrize (u0, λ0) in terms of arc length parameter s by setting
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Figure 9: The solution of F (y, λ) = λ2 + y2 − 1 using the natural parameter continuation
method. The blue dashed line represents the actual solution and the red points are the
solution obtained using the method described above. As noted above, the natural param-
eter continuation method fails to trace the curve at the turning point, λ = 1 (red dots lie
far off the actual solution curve).

(u0, λ0) = (u(s0), λ(s0)). The pseudo arc-length normalization equation is given as

N(u, λ, s) = Ns(u, λ) = ‖(u, λ)− (u(s0), λ(s0))‖2 −∆s2 (42)

By requiring N = 0, we require the “distance” between the new and old solutions to be

∆s. We now solve the appended nonlinear system given by,

F(u, λ, s) =

 F (u, λ)

N(u, λ, s)

 (43)

The Jacobian of this system is  ∂F
∂u

∂F
∂λ

∂N
∂u

∂N
∂λ

 (44)

The introduction of arc-length normalization equation allows us to step along a solution
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curve even when the matrix of derivatives for F , ∂F
∂u is singular like at the turning points

since the new matrix of derivatives DF is non-singular at turning points.

We show the implementation of the pseudo arc-length continuation method for our

circle example in (41). The pseudo arc-length normalization equation for the circle is

N(y, λ, s) = (y − y0)2 + (λ− λ0)2 −∆s2

and the new Jacobian given as

DF =


2y 2λ

2(y − y0) 2(λ− λ0)


is non singular at all points on curve and hence this algorithm is able to trace the turning

points of the curve F (y, λ) = 0, Figure (10).

Figure 10: The solution of F (y, λ) = λ2 + y2 − 1 using the pseudo arclength parameter
continuation method. Red dots represent the solution using pseudo arclength continuation
method. This method is able to trace the solution along the turning points.
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5 Results

5.1 ODE Model

Recall equation (3),

y′′ + δy′ + ay+ − by− = ĝ + λ̂ sin(µt).

We want to investigate how the periodic solutions to (3) vary with the changes in periodic

forcing function. We need a method that looks for periodic solution for different values

of parameters. One approach is to treat the boundary value problem (3) as an initial

value problem and employ Newton’s method solver to find initial conditions which lead

to periodic solutions. To employ Newton’s method, we search for the ideal initial position

and velocity by defining a function of two variables (initial position and velocity) that

gives the difference of the starting values and that of the final values when one period has

been completed in a ODE solver. The zeros of this new function will be the desired initial

condition that yields a periodic solution.

To illustrate this method, let u0 and v0 denote the initial position and initial velocity

respectively and G

 u

v

 denote the position and velocity of a solution of (3) after one

time period (T = 2π/µ, where µ is the forcing frequency in (3)). Thus, finding periodic

solution of (3) is equivalent to finding the zeros of

F

 u

v

 =

 F1(u, v)

F2(u, v)

 = G

 u

v

−
 u

v

 . (45)

We perform Newtons Method on this system following the iterative scheme,

xn+1 = xn −DF−1(xn)F (xn) =

 un

vn

−
 ∂F1

∂u
∂F1
∂v

∂F2
∂u

∂F2
∂v


−1

F

 un

vn

 (46)

We iteratively compute xn+1 = xn − DF−1(xn)F (xn) until our error is sufficiently

small and our result is the set of initial conditions corresponding to the desired solution.

As noted earlier, the natural parameter continuation method fails to trace turning points,
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see bifurcation diagram in figure (11).

Figure 11: The bifurcation diagram (amplitude versus λ) in the left and plot of initial
position generating periodic solution versus λ in the right. In the bifurcation diagram
(left), red points corresponds to the solutions for which Newtons method converged and
black dots refer to the solutions where Newtons method didn’t converge.

To complete the bifurcation curve, we use the pseudo arc-length continuation algorithm

for (3). We proceed as follow:

1. If (u0, v0, λ0) is a solution of F , we parametrize (u0, v0, λ0) in terms of arc length

parameter s by setting (u0, v0, λ0) = (u(s0), v(s0), λ(s0)).

2. Introduce the pseudo arclength normalization equation (47) dependent on initial

conditions (u, v), λ and the arc length parameter (s).

N(u, v, λ, s) = Ns(u, v, λ) = ‖(u, v, λ)− (u(s0), v(s0), λ(s0))‖2 −∆s2 (47)

3. Evaluate the Jacobian matrix of the appended system

F(u, v, λ, s) =

 F (u, v, λ)

N(u, v, λ, s)

 . (48)
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using

DF =


∂F1
∂u

∂F1
∂v

∂F1
∂λ

∂F2
∂u

∂F2
∂v

∂F2
∂λ

∂N
∂u

∂N
∂v

∂N
∂λ

 (49)

4. Compute amplitude for the equilibrium (initial) solution (u0, v0, λ0) = (u(s0), v(s0), λ(s0))

by running the ODE solver for one time period.

5. Run the first iteration using natural parameter continuation algorithm (45-46) with

s = 0 and λ = λ+ ∆s to obtain (u1, v1, λ1) using (u0, v0, λ0) as initial guess.

6. After second iteration, increment arclength parameter s by ∆s

si = si−1 + ∆s.

7. Solve for the roots of (48) using Newtons method following the iterative scheme

xn+1 = xn −DF−1(xn)F(xn) (50)

where xi = (ui, vi, λi) until the error is sufficiently small using secant predictor. The

secant predictor for solution set u at t = i is given by

xi−1 + (xi−1 − xi−2).

For our model this is

2(ui−1, vi−1, λi−1)− (ui−2, vi−2, λi−2).

8. Calculate amplitude for each periodic solution.

9. Increment s using si+1 = si + ∆s and repeat steps 7 and 8.

The pseudo arc-length algorithm is able to trace turning points on the bifurcation

curve, see figure (12) unlike the natural parameter continuation method. But F may still
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Figure 12

fail at points where a bifurcation into a new branches of solutions occurs and it cannot

detect where such new branches occur. It can however, generate bifurcation curves in both

forward and backward direction. Figures (13)-(15) show some solutions of (3) pertaining

to different amplitudes. We notice that (3) has multiple solutions for small values of λ.

Figure 13: The figure shows the bifurcation diagram (right), initial position,y0 (center
top), initial velocity,v0 (center bottom) and the periodic solution (left) corresponding to
different λ values.
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Figure 14: The figure shows the bifurcation diagram (right), initial position,y0 (center
top), initial velocity,v0 (center bottom) and the periodic solution (left) corresponding to
different λ values.

Figure 15: The figure shows the bifurcation diagram (right), initial position,y0 (center
top), initial velocity,v0 (center bottom) and the periodic solution (left) corresponding to
different λ values.
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5.2 PDE Model

We will start with the finite difference scheme for the fourth derivative uxxxx. We use the

five point centered difference method to approximate the fourth derivative of u. Starting

with the Taylor expansions,

u(x) = u(x̃) + u(1)(x̃)(x− x̃) +
(x− x̃)2

2!
u(2)(x̃) +

(x− x̃)3

3!
u(3)(x̃) +

(x− x̃)4

4!
u(4)(x̃) +O(x− x̃)5

u(x̃− 2h) = u(x̃)− 2hu(1)(x̃) +
4h2

2!
u(2)(x̃)− 8h3

3!
u(3)(x̃) +

16h4

4!
u(4)(x̃) +O(h5)

u(x̃− h) = u(x̃)− hu(1)(x̃) +
h2

2!
u(2)(x̃)− h3

3!
u(3)(x̃) +

h4

4!
u(4)(x̃) +O(h5)

u(x̃+ h) = u(x̃) + hu(1)(x̃) +
h2

2!
u(2)(x̃) +

h3

3!
u(3)(x̃) +

h4

4!
u(4)(x̃) +O(h5)

u(x̃+ 2h) = u(x̃) + 2hu(1)(x̃) +
4h2

2!
u(2)(x̃) +

8h3

3!
u(3)(x̃) +

16h4

4!
u(4)(x̃) +O(h5)

(51)

Collecting the terms, we get

D4u(x̃) = (a+ b+ c+ d+ e)u(x̃) + (−2b− c+ d+ 2e)hu′(x̃) +
h2

2
(4b+ c+ d+ 4e)u′′(x̃)

+
h3

6
(−8b− c+ d+ 8e)u3(x̃) +

h4

24
(16b+ c+ d+ 16e)u4(x̃) + · · · (52)

For this to agree with u(4)(x̃), up to order O(h2), we need

a+ b+ c+ d+ e = 0

16b+ c+ d+ 16e =
24

h4

−8b− c+ d+ 8e = 0

4b+ c+ d+ 4e = 0

−2b− c+ d+ 2e = 0

(53)

Solving the linear system (53) gives

a =
6

h4
, b = e =

1

h4
, c = d = − 4

h4
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Thus, our second order five point centered difference approximation for fourth derivative

is

D4u(x̃) =
1

h4
[
u(x̃− 2h)− 4u(x̃− h) + 6u(x̃)− 4u(x̃+ h) + u(x̃+ 2h)

]
(54)

We now select N interior grid points and approximate the solution at discrete points

xi for i = 0, 1, · · · , N + 1, where x0 and xN+1 are the boundary points. Using (54) to

discretize uxxxx at each xi, gives

uxxxx(xi) =
1

h4

(
u(xi−2)−4u(xi−1)+6u(xi)−4u(xi+1)+u(xi+2)

)
+O(h2), i = 1, 2 · · · 1, 2, · · · , N

Writing the individual equation for each xi, gives

1

h4

(
u(x−1)− 4u(x0) + 6u(x1)− 4u(x2) + u(x3)

)
= f(x1)

1

h4

(
u(x0)− 4u(x1) + 6u(x2)− 4u(x3) + u(x4)

)
= f(x2)

1

h4

(
u(x1)− 4u(x2) + 6u(x3)− 4u(x4) + u(x5)

)
= f(x3)

...

1

h4

(
u(xN−3)− 4u(xN−2) + 6u(xN−1)− 4u(xN ) + u(xN+1)

)
= f(xN−1)

1

h4

(
u(xN−2)− 4u(xN−1) + 6u(xN )− 4u(xN+1) + u(xN+2)

)
= f(xN )

(55)

We use the boundary condition to eliminate the “ghost points” such that u(x−1) and

u(xN+2) from the equation. For the purpose of illustration, let’s consider boundary con-

dition where both ends are hinged,

u(x0) = 0

uxx(x0) =
u(x−1)− 2u(x0) + u(x1)

h2
= 0

⇒ u(x−1) = −u(x1)

33



u(xN+1) = 0

uxx(xN+1) =
u(xN )− 2u(xN+1) + u(xN+2)

h2
= 0

⇒ u(xN+2) = −u(xN )

We can represent (55) as

MU = f(x, t) where

M =



5 −4 1

−4 6 −4 1

1 −4 6 −4 1

1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1

1 −4 6 −4

1 −4 5



(56)

and U = [u1, u2, · · · , uN ]T

We begin by breaking down (2) into system of two equations as follow:

Ut = V

Vt = Utt = −MU − dIV + F (U, V, t)

(57)

where M is the matrix from (56), I is an identity matrix and F (U, V, t) = −bU++g+f(x, t)

represents the non-linear part of the equation. We can further write (57) as

Ut = BU +G(U , t) (58)

where U =

 U

V

, B =

 O I

−M −dI

 and G(U , t) =

 O

F (U, V, t)

 .
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(a) Both ends clamped (b) Both ends hinged

(c) One end clamped one free (d) One end hinged one free

We solve (58) as an initial value problem using IMEX method (59) to march in time

Uk+1 − Uk

∆t
=

1

2

(
BUk+1 +BUk

)
+

3

2
G(tk,Uk)− 1

2
G(tk−1,Uk−1)

Uk+1 =
(
I − ∆t

2
B
)−1 [(

I +
∆t

2
B
)
Uk + ∆t

(
3

2
G(tk,Uk)− 1

2
G(tk−1,Uk−1)

)]
(59)

for one time period and employ Newtons method on the system appended with arc-

length normalization equation to search for initial values that gives periodic solution.

This method is called an IMEX method for IMplicit/EXplicit. It is a combination of the

implicit Crank Nicolson method in the linear part, and the explicit second-order Adams-

Bashforth method in the nonlinear part. The procedure is similar to the one described for

the ODE system which is omitted for the sake of simplicity. We represent the dependence

of solutions on the parameter λ in the above bifurcation diagrams obtained by plotting

the amplitude of the solution versus the forcing amplitude λ. The bifurcation diagram

for various boundary conditions are shown in the above figure. These diagrams provide

numerical evidence of multiple (three in (a), (b) and five in (c), (d)) solutions to (2) for a

range of λ values near λ = 0.
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