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Abstract 
 
Sensory feedback allows talkers to accurately control speech production, and auditory 

information is the predominant form of speech feedback. When this sensory stream is degraded, 
talkers have been shown to rely more heavily on somatosensory information. Furthermore, 
perceptual speech abilities are greatest when both auditory and visual feedback are available. In 
this study, we experimentally degraded auditory feedback using a cochlear implant simulation 
and somatosensory feedback using Orajel. Additionally, we placed a mirror in front of the talkers 
to introduce visual feedback. Participants were prompted to speak under a baseline, feedback 
degraded, and visual condition; audiovisual speech recordings were taken for each treatment. 
These recordings were then used in a playback study to determine the intelligibility of speech. 
Acoustically, baseline speech was selected as “easier to understand” significantly more often 
than speech from either the feedback degraded or visual condition. Visually, speech from the 
visual condition was selected as “easier to understand” significantly less often than speech from 
the feedback degraded condition. Listener preference of baseline speech was significantly greater 
when both auditory and somatosensory feedback were degraded then when only auditory 
feedback was degraded (Casserly, in prep., 2015). These results suggest that feedback was 
successfully degraded and that the addition of visual feedback decreased speech intelligibility.  
 
Introduction 

I. Background 

Sensory information plays an important role in many aspects of a person’s life, 

particularly during perception, motor production, and other cognitive tasks. The implications of 

such processes participate in behaviors ranging from crossing the street to successfully 

conversing. These functions influence many daily operations; therefore, sensory processing 

requires a large cognitive demand (Powers, et al., 2012). Abnormal processing, specifically of 

acoustic information, can be a symptom of various neurological conditions, including central 

auditory nervous system tumors, epilepsy, and attention deficit hyperactivity disorder (Bamiou, 

et al., 2016). In some cases, these conditions generate learning and language disorders, which 

may cause developmental, social, and academic deficits (Kruger, et al., 2001). Aside from 

intrinsic biological origins, environmental factors directly impact sensory processing abilities. 

For example, during development, an environment with a high degree of noise significantly 
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decreases the growth and differentiation of superior colliculus neurons in both the visual and 

auditory cortices (Xu, et al., 2014). 

It is estimated that central auditory processing disorders affect 3-5% of the national 

population (Hear-It). Once an auditory processing disorder has developed, it is extremely 

difficult to improve the impaired communication and hearing abilities. The most common 

therapeutic method is auditory training, which attempts to improve communication capacity 

through listening practice sessions. Unfortunately, these programs often yield low proportions of 

success and compliance (Tye-Murray, et al., 2012). Since there are limited treatment options for 

these conditions, it is exceedingly important to study the neural mechanisms that regulate 

sensory processing and integration. 

II. Sensory Feedback Alterations 

Experimentally altering the sensory feedback of neurotypical adult speakers has a 

profound effect on speech behavior. Delaying auditory feedback significantly slows speech rates 

and causes talkers to produce more speech errors (Stuart & Kalinowsi, 2015), while changing the 

amplitude of auditory feedback causes talkers to compensate by altering speech loudness (Lane 

& Tranel, 1971). Acoustic feedback has been modified experimentally using cochlear implant 

simulations; this technology employs vocoding techniques to degrade feedback by mapping 

acoustic information onto a small series of frequency channels in real-time (Casserly, 2015). 

Such cochlear implant simulation studies have shown that degrading auditory feedback adversely 

affects the intelligibility of speech (Burkholder, et al., 2004; Casserly, et al., in prep.) and causes 

talkers to exhibit somatosensory compensation by collapsing vowel height (Casserly, 2015). 

There are indications that manipulating somatosensory feedback has similar effects on 

speech behavior. The efficacy of somatosensory feedback has been degraded experimentally 
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using bite blocks (Lane, et al., 2005), which modify articulator positions and cause talkers to 

exhibit compensatory behaviors during speech production (Houde & Nagarajan, 2011). Under 

these altered somatosensory conditions, removal of auditory feedback caused talkers to increase 

the fundamental frequency of vowels (Turgeon, et al., 2015). These direct changes in production 

imply that sensory feedback has a critical function in speech behavior. Feedback likely allows 

talkers to self-monitor their speech production, accurately convey information, and interpret 

meanings of speech (Meekings, et al., 2015). 

III. Neural Models 

Although sensory feedback is clearly involved in speech fluency, it is not fully 

understood how this information is incorporated into speech behavior. The current neural models 

propose that feedback and feedforward control enhance the accuracy of speech production 

(Guenther & Vladusich, 2012; Houde & Nagarajan, 2011). Feedforward control is constructed 

from auditory and somatosensory information that accumulates over time; this is the system that 

initially enables talkers to produce the desired target sound. By contrast, feedback control 

develops an informative error-prediction loop to correct and regulate speech accuracy (Guenther 

& Vladusich, 2012). Speech errors can be processed two different ways, and each method yields 

distinct characteristics in the produced speech (the “H & H” model, Lindblom, 1990). Hypo-

speech is output-oriented, as the increased neural energy expenditure allows the target words to 

become more clear and enunciated. In this case, the feedback system improves production 

accuracy by analyzing speech errors to alter speech behavior. On the contrary, hyper-speech is 

less regulated and reduces the cognitive effort for accurately producing speech. In this case, the 

feedback system does not incorporate speech errors to induce corrective actions; therefore, the 

speech system becomes the only regulatory mechanism to normalize speech accuracy (Lindblom, 
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1990). Depending on the environment and communication goals (e.g. level of speech accuracy or 

energy expenditure), talkers can vary between hypo- and hyper-speech. 

There is an apparent connection between feedback and feedforward control; however, the 

specific features of this relationship are unknown. When learning a new behavior, people 

typically exhibit a gradual transition from feedback	  to feedforward control. To further understand 

this conversion, researchers trained participants to reach for an online visual target while 

controlling their right hand in a mirror-reversed visual task (Kasuga, et al., 2015). This method 

was considered to be learning a “new control strategy” because participants did not have any 

previous experience performing tasks of this nature. Subjects exhibited a strong feedback 

response during initial trial blocks; however, the magnitude of this response decreased over time. 

Conversely, the feedforward response was originally weak, but increased during subsequent trial 

blocks. These findings indicated a mechanistic reversal from feedback to feedforward control as 

the participants acquired more information through learning. Additional analysis of the visual-

motor response onset, duration, and accuracy, also suggested that the participants’ feedforward 

and feedback control systems developed separately (Kasuga, et al., 2015).  

Once a speaker’s feedback control circuit has developed, sustained damage or alteration 

to the auditory system can cause this circuit to degrade. Deafened adult speakers who undergo 

surgery to obtain cochlear implants exemplify this phenomenon. This procedure causes the 

original auditory feedback system to shift in frequency.	  After surgery, talkers learn to map the 

altered auditory feedback to the corresponding articulator positions, as well as form updated 

predictions about the analogous speech outputs (Lane, et al., 2007). Through this process, talkers 

update and reestablish their feedback control circuit. 



	   7	  

It is evident that the brain has sophisticated mechanisms to regulate speech perception 

and production. Currently, there are two leading models to explain this phenomenon: the 

hierarchical state feedback control (HSFC) model (Hickok, 2014), developed from the state 

feedback control model (Houde & Nagarajan, 2011), and the directions into velocities of 

articulators (DIVA) model (Guenther & Vladusich, 2012). The principle distinction between 

these mechanisms is how each organizes the processing levels. In the state feedback control 

(SFC) model (Figure 1), a neural signal representing a speech sound travels from the motor 

cortex to the vocal tract. This initiates a change in the position of the talker’s articulators - the 

larynx, tongue, pharynx, lips, etc. - and results in the final speech output. Over time, the 

speaker’s brain collects perceptual data from speech outputs to form a prediction pathway for 

speech production. This pathway includes expectations for vocal tract position and the 

corresponding speech output, forming a method of improving speech accuracy using sensory 

feedback (Houde & Nagarajan, 2011). The HSFC model goes one step further, by organizing the 

levels of speech perception into a hierarchal system. Similar to the SFC model, a conceptual 

input causes an initial neural activation. This then projects to the high-level cortical loop, 

containing both sensory and motor regions, and finally reaches the low-level somatosensory-

cerebellar-motor circuit (Hickok, 2014).  
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Figure 1: State Feedback Control model, showing the real-time speech production pathway (top) 
and the feedback-based error-prediction circuit (bottom) (Houde & Nagarajan, 2011). 
 

Alternatively, in the DIVA model (Figure 2), speech outputs are produced after specific 

neurons in the talker’s speech sound map are triggered (Guenther & Vladusich, 2012). The 

speech sound map is a collection of neurons in the left ventral premotor cortex and posterior 

Broca’s area. This map	  is highly organized, such that each syllable is associated with a 

population of neurons in the cortex. Activation of the speech sound map initiates the projection 

of motor commands to the primary motor cortex. From here, two neural circuits regulate speech 

production: feedforward and feedback control. In the feedforward loop, the speech sound map 

projects directly to the cerebellum and primary motor cortex to initiate articulator movements. 

The feedback loop is more complex, as it contains distinct circuits for auditory and 

somatosensory information (Guenther & Vladusich, 2012).	  	  
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Figure 2: Directions Into Velocities of Articulators model, showing feedforward and feedback 
control circuits originating from the speech sound map (Guenther & Vladusich, 2012). 
 

Although both the HSFC and DIVA models explain how feedback is incorporated into 

speech behavior, there are significant organizational differences between the accounts. The 

principal distinction between these two neural mechanisms is that the HSFC model appoints 

auditory feedback to syllable-level processing, while somatosensory feedback is assigned to 

phoneme-level processing. The HSFC model considers auditory feedback to be of a more 

advanced processing level than somatosensory feedback, whereas the DIVA model does not 

explicitly designate an organizational hierarchy. An interesting similarity is that both models 

depend on learned sensory information during the formation of speech production pathways 

(Guenther, 2014).  
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IV. Neural Regions for Speech 

Many studies identifying the brain regions involved in speech production have employed 

classic fMRI analysis (Behroozmand, et al., 2015). During speech production, neural activity 

significantly increases in the following areas: temporal lobe, Heschl’s gyrus, precentral gyrus, 

supplementary motor area, inferior frontal gyrus, insula, etc. (Behroozmand, et al., 2015). PET 

studies have also shown activation of neural regions associated with both auditory and visual 

processing during lexical perception tasks. Regions specific to vision include the striate, 

extrastriate, and occipital cortices, while auditory areas include the temporal and cingulate 

cortices (Petersen, et al., 1988). Given these findings, it is logical that the brain integrates 

different sensory streams to improve perceptual accuracy.  

Spatial and temporal congruence are the predominant factors that affect the likelihood 

that sensory streams will be combined; this concept is referred to as the “multisensory binding 

process” (Powers, et al., 2012). Brain regions including the posterior superior temporal sulcus, 

inferior parietal lobe, insula, and superior colliculus are involved in the development of this 

process, as well as general multisensory integration (Powers, et al., 2012). Many brain regions 

are either dedicated to or involved in sensory processing; therefore, these multisensory 

integration functions must provide people with a significant perceptual advantage	  (Powers, et al., 

2012).  

V. Sensory Integration 

Integrating sensory information conserves neural energy, increases perceptual accuracy, 

and improves response times (Altieri, et al., 2015). When participants were trained to associate a 

particular auditory tone with a visual cue, reaction times improved and energy expenditure 

decreased during the perceptual discrimination tasks (Altieri, et al., 2015). Furthermore, rhesus 
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monkeys learned to integrate visual and somatosensory information to successfully produce a 

goal-directed movement. This behavior was significantly more accurate when both sensory 

streams were available for use (Dadarlat, et al., 2015).  

It appears that the brain’s ability to integrate sensory information develops over time. 

Children exhibit difficulty when determining whether stimuli are relevant to a given task, and, 

often, they incorrectly rely on the dominant sensory stream (Petrini, et al., 2015). For example, 

in visuospatial discrimination tasks containing non-informative visual information, children 

depend on visual information significantly more than the reliable spatial information. This 

phenomenon is likely due to previous experiences; during development, children learn to 

associate visual information with accurate processing of their visual environment. Functionally, 

this inability to combine sensory streams during childhood may allow individual sensory 

pathways, such as hearing or seeing, to develop (Petrini, et al., 2015). 

VI. Visual Feedback 

Speech perception studies indicate that incorporating visual information with auditory 

and somatosensory feedback is beneficial (Peele & Sommers, 2015). Listeners exhibited 

significant improvements in the ease and accuracy of speech perception through the use of this 

additional information (Peele & Sommers, 2015). When comparing sounds from an auditory 

perspective, it is difficult to distinguish syllables based on frequency content alone. When visual 

information is added, the improvements in speech perception are likely due to the 

disambiguation of words; this is done by clarifying both speech onset and rhythm. Intended 

speech becomes more obvious as listeners view the talker’s articulator positions and decrease the 

potential lexical neighborhood. As listeners gain more information about the speech sound in 

question, the accuracy and ease of speech perception increases significantly (Peele & Sommers, 
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2015). That said, certain words can be visually recognized more easily than others; phoneme 

segments	  that contain the maximal amount of visual information are called visemes (Fisher, 

1968). Examples of visemes include the articulation of the following segments: p, b, f, v, etc., as 

these sounds are produced using the lips (Ladefoged & Johnson, 2014).  

The clarity of visual information produced during speech varies greatly between talkers 

(Lesner & Kricos, 1981). Lipreading studies indicated that listeners assessed talkers to have 

diverse levels of intelligibility and that words containing visemes were significantly rated as 

easier to understand (Lesner & Kricos, 1981). Some talkers had consistently above-average 

measures of intelligibility across the population of listeners, suggesting that certain people 

produce speech in a way that is easier to lipread than others (Lesner & Kricos, 1981). Despite 

individual differences, talkers were generally able to lipread themselves more easily than others 

(Tye-Murray, et al., 2014). It is evident that visual feedback has a significant purpose in speech 

perception and production; however, it remains unclear how this sensory stream is incorporated 

into the current neural models.  

Current Investigation 

 As shown by the research summarized above, sensory feedback directly effects speech 

production. Absent or abnormal auditory feedback produces speech intelligibility deficits, as 

well as decreased speech accuracy and speed (Burkholder, et al., 2004; Casserly, et al., in prep; 

Stuart & Kalinowsi, 2015). Correspondingly, manipulating the usefulness of somatosensory 

feedback induces compensatory behaviors in talkers’ articulator positions (Houde & Nagarajan, 

2011). Due to these significant correlations, researchers have been working to determine the 

neural mechanisms linking speech production and perception. Although there are clear 

differences between the current theories, both the HSFC and DIVA models state that speech 
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sound signals project to cortical areas including the primary motor cortex and primary 

somatosensory cortex (Houde & Nagarajan, 2011; Guenther & Vladusich, 2012). Both systems 

also include an error-prediction pathway, which is the principal function of the talker’s feedback 

loop. Over time, the brain collects data from speech outputs and forms this pathway to improve 

speech accuracy (Houde & Nagarajan, 2011; Guenther & Vladusich, 2012). 

 Although researchers have a general idea of how the brain regulates speech behavior, 

many of the specific details remain unknown. For example, both the HSFC and DIVA models 

emphasize the importance of learned information when creating an accurate prediction pathway 

(Houde & Nagarajan, 2011; Guenther & Vladusich, 2012). It is yet to be determined how visual 

information is incorporated into these models, as this sensory stream does not have a strong 

learned component. Nonetheless, it is evident that visual information is assimilated into speech 

perception; talkers exposed to visual information, in addition to auditory and somatosensory 

feedback, exhibited improved intelligibility and accuracy in their speech production (Peele & 

Sommers, 2015). It is also undetermined how speech behavior is altered when visual information 

is the only reliable, non-degraded stream of sensory feedback. 

 Furthermore, it is currently unknown how talkers adjust to depend on the most reliable 

form of sensory information. In a speech production study, a group of normal-hearing adults 

experienced degraded auditory feedback by hearing their own speech through a cochlear implant 

simulation (Casserly, 2015). In response, the talkers significantly collapsed the height of the 

produced vowels, suggesting that they disengaged from the non-reliable auditory feedback 

stream (Casserly, 2015; Casserly, et al., in prep.). It is evident that adults possess the ability to 

discriminate between beneficial and meaningless sensory information; however, it remains 
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unclear how these unconscious decisions are made through the currently accepted neural 

mechanisms. 

 The primary aim of the present investigation is to further understand the neural 

mechanisms that regulate speech behavior. I attempted to determine whether talkers can 

incorporate visual information, or the maximally available sensory information, in control of 

speech behavior. Additionally, I sought to validate the experimental disruption of speech 

feedback and further understand how reduced somatosensory information alters speech 

production. Changes in speech intelligibility, due to degraded or maximally available sensory 

information, were assessed through a speech perception experiment. This method asked listeners 

to judge the intelligibility of speech, and these tasks have been used in the past to evaluate 

changes in speech intelligibility as a result of experimental sensory manipulations (Casserly, et 

al., in prep.; Holt, et al., 2011). 

 To determine whether speech intelligibility changed as sensory information became more 

or less reliable, talkers were recorded across three conditions: 1. baseline, 2. auditory and 

somatosensory feedback degraded, and 3. visual feedback added. Auditory feedback was 

degraded using a cochlear implant simulation, and somatosensory feedback was degraded using 

Orajel. Orajel is a topical numbing agent that temporarily decreases somatosensory feedback. 

Visual feedback was provided by placing a large mirror in front of the talkers. During each 

condition, participants were asked to produce speech in response to randomized stimulus words. 

The recordings were then used to determine changes in speech intelligibility – using auditory 

discrimination, visual recognition, and visual discrimination tasks – between the various 

conditions.  
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Design and Methods 

Phase I: Data Collection 

I. Subjects 

Fifteen native English speakers were recruited on a volunteer basis from Trinity College 

in Hartford, Connecticut. The mean age of the participants was 19.53 years, and the study 

participant pool was 53% male and 47% female. None of the participants reported a history of 

hearing loss, and each participant underwent an audiometric screening with <5 dB hearing loss 

between 500 Hz and 8000 Hz at the time of the experiment. 

II. Experimental Design 

Each subject produced speech in response to stimulus words, which were presented on a 

thirteen-inch laptop screen in a sound booth. During the first condition, participants spoke 

without feedback perturbation to produce a baseline of normal speech. In the second and third 

conditions, participants wore a portable real-time vocoder (PRTV; see Section D) to degrade 

auditory feedback by simulating a cochlear implant in real time. Talkers also received one mL 

Orajel on the lips and tongue to reduce somatosensory feedback. Orajel was measured in a 

syringe, and participants self-administered the numbing agent by applying the gel to the 

articulators. Orajel remained undisturbed for one minute before the experiment began to ensure 

the full numbing effects were exerted. In the third condition, participants were also exposed to 

visual information, via a three-by-three-foot mirror placed directly across from the speaker in the 

sound booth. 
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III. Stimulus Materials 

Subjects read aloud a set of 139 isolated English words, which were repeated across the 

three conditions. Words were selected from the pocket dictionary of English words (Nusbaum, et 

al., 1984) and first sorted by familiarity, such that all selected words were of the highest 

familiarity rating. This ensured that talkers were acquainted with the stimuli and would not 

“sound out” words during production. This list was then arranged by frequency; the high 

frequency words had a prevalence of 319-68,971 per million (Nusbaum, et al., 1984), the 

medium frequency words had an incidence of 97-150 per million, and the low frequency words 

had an incidence of 6-7 per million. The final word list contained 45 high-frequency words, 45 

medium-frequency words, and 49 low-frequency words. High-frequency words require less 

feedback than low-frequency words; therefore, frequency balancing ensured that the stimuli 

necessitated sensory feedback.  

Since visemes contain the maximal amount of visual information, the following phoneme 

segments were included in a proportion of the stimuli: [m, b, p, f, v, i, ʃ, r, w] (Fisher, 1968). The 

high-frequency category was comprised of three words beginning with [m, b, p, f, i, w], two 

words beginning with [ʃ], one word beginning with [v, r], eleven words containing [m, b, p, f, v, 

i, ʃ, r, w] elsewhere in the word (e.g. middle or end), and twelve filler words not containing any 

of the phonemes of interest. The medium-frequency category contained three words beginning 

with [m, b, p, f, r, w], two words beginning with [ʃ], one word beginning with [v, i], eleven 

words containing the phonemes of interest elsewhere in the word, and twelve filler words. The 

low-frequency category was composed of three words beginning with [m, b, p, f, i, r, w], two 

words beginning with [ʃ], one word beginning with [v], thirteen words containing the phonemes 

of interest elsewhere in the word, and twelve filler words. 
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IV. Simulation of Cochlear Implant Processing 

Auditory feedback was degraded using a portable real-time vocoder (PRTV) that 

simulated a cochlear implant (Casserly, 2015). Subjects wore earbuds, occluders, and a lapel 

microphone, which was wrapped around the occluder headphones to position the microphone 

adjacent to the speaker’s ear. The PRTV employed an eight-channel noise vocoder with a 

window of 252-7000 Hz. This software took the continuous acoustic input from the lapel 

microphone and applied a noise-vocoded cochlear implant simulation. This divided the natural 

acoustic signal provided by the speaker into the eight frequency-based channels. During this 

frequency shift, acoustic input below 252 Hz and above 7000 Hz was lost. This modified 

feedback was relayed to the talker, via headphones, within 10 ms. This degraded feedback 

contained less information regarding details of acoustic frequency than natural speech (Casserly, 

2015).  

V. Procedure 

Participants first read and signed the informed consent statements for the experiment and 

use of Orajel. Each subject then completed a demographic survey and hearing test. During each 

condition, subjects were seated in a chair (0.845 m high) in a sound-attenuating recording booth, 

0.624 m from a thirteen-inch laptop screen. The laptop screen was located 0.261 m from the 

front edge of the table, height 0.737 m. A video camera and condenser microphone were also 

placed across from the talker, 0.599 m from the front edge of the table (Figure 3). Audiovisual 

recordings were taken of the participant during each condition. The first condition consisted of 

subjects speaking under a normal, baseline condition. The PRTV and Orajel were introduced in 

the second condition and remained in place during the third condition. Also in the third 

condition, a three-by-three-foot mirror was placed across from the speaker behind the laptop 
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screen. Approximately 99% of the mirror surface area was visible to the participant. The entire 

experiment lasted for ~40 minutes. The stimuli were presented in a random order that was 

consistent throughout each phase of the experiment. 

Figure 3: Visual representation of experimental setup in sound-attenuating booth for audiovisual 
recordings. 
 
Phase II: Perceptual Response 

I. Subjects 

Thirty-eight native English speakers were recruited on a volunteer basis from Trinity 

College in Hartford, Connecticut. The mean age of the participants was 19.52 years, and the 

study participant pool was 32% male and 68% female. None of the participants reported a history 

of hearing loss, and each participant underwent an audiometric screening with <5 dB hearing 

loss between 500 Hz and 8000 Hz at the time of the experiment.  

II. Experimental Design 

Half of the subjects completed an auditory speech perception task (n = 19), and the other 

half participated in a visual speech perception task (n = 19). The auditory task focused on 

Viewing Screen 
Camera 

Desk 

Chair 

Participant 

0.456 m 

0.624 m 

0.539 m 

0.845 m 
0.261 m, 
0.599 m 0.737 m 
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discrimination; participants heard two recordings and were asked to identify which was “easier 

to understand.” For each comparison, both recordings were produced by the same talker. The 

visual task consisted of both discrimination and recognition. In the discrimination task, 

participants saw two recordings while knowing what the intended stimulus word was. They were 

then asked to determine which recording was “easier to understand” by lipreading. In the 

recognition task, participants saw one recording without knowing what the stimulus word was; 

they were then asked to transcribe what word they believed the talker was saying. In each task, 

participants responded to stimuli from all fifteen talkers, and the order of the stimulus words was 

randomized within each talker. In total, nineteen participants completed the auditory 

discrimination task, nineteen completed the visual discrimination task, and nineteen completed 

the visual recognition task.  

III. Stimulus Materials 

The stimulus words were chosen from the recordings collected in Phase I of the 

experiment. Nine unique words were selected for each of the fifteen talkers, resulting in a total of 

135 words. For each talker, three words were high-frequency, three were medium-frequency, and 

three were low-frequency. For each frequency category, one word began with a phoneme 

containing maximal visual information, one word contained such a phonetic segment elsewhere 

in the word, and one word did not contain any of these letters. The words containing maximal 

visual information, also called visemes (Fisher, 1968), included the following letters: [m, b, p, f, 

v, i, ʃ, r, w]. Stimulus words were selected such that each viseme was equally represented 

amongst the talkers. 
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IV. Procedure 

Participants first read and signed the informed consent statement for the experiment. 

Each subject then completed a demographic survey and hearing test. During each condition, 

subjects were seated in a small testing room containing a PC computer with a 19-inch monitor. 

Stimuli were presented and responses were recorded using Eprime software (Eprime 2.0, 

Psychology Software Tools, Inc.) For the auditory speech perception task, participants were 

asked to wear headphones and complete the auditory discrimination experiment. For the visual 

speech perception task, participants were asked to complete the visual discrimination and 

recognition experiments without wearing headphones. In each case, the entire experiment lasted 

for ~60 minutes.  

Hereafter, baseline recordings will be referred to as condition 1, feedback degraded 

recordings as condition 2, and visual added recordings as condition 3. In the auditory 

discrimination task, the program was designed to portray each stimulus word three times. First as 

a condition 1v.2 comparison, second as a condition 1v.3 comparison, and third as a condition 

2v.3 comparison. In each comparison, the listener was asked to identify which sound file was 

“easier to understand.” In the visual discrimination and recognition tasks, the program was 

designed to portray the stimuli only as a condition 2v.3 comparison. In the discrimination 

comparison, the listener was asked to identify which video was “easier to understand” through 

lipreading. In the recognition comparison, the listener was asked to transcribe the stimulus word 

presented in the video. Since subjects were not wearing the PRTV in the baseline recordings, this 

condition was excluded from the visual speech tasks. I hypothesized that the visual presence of 

the PRTV could influence the speech selection of listeners in the visual speech perception task. 
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This bias was not present for the auditory version of the discrimination task because the 

recordings were sound files which did not contain any visual information.    

V. Statistical Analysis	  

To determine whether speaker intelligibility changed across the feedback conditions, 

listener responses were compared across the three trial types. To test how often listeners chose 

speech from the highest feedback condition, one-sample t-tests were used to analyze the auditory 

and visual discrimination data. This analysis was also used to determine whether participants 

were choosing any conditions at rates significantly above chance. A paired-sample t-test was 

used to analyze the visual recognition data to determine whether accuracy differed between the 

two feedback-degraded conditions. In all 1v.2 and 1v.3 comparisons, speech from the baseline 

condition was considered to contain the highest level of feedback. In all 2v.3 comparisons, 

speech from the visual condition was considered to contain the highest level of feedback. Three 

of the visual recognition participants were excluded from statistical analysis because they 

exceeded the average lipreading performance (96-98% accuracy vs. M = 12.3%, SD = 10.09%).  

If listeners selected baseline speech more often than chance in 1v.2 and 1v.3 

comparisons, then this suggests that the experiment successfully degraded acoustic and 

somatosensory feedback. If listeners chose visual speech more often than feedback degraded 

speech in 2v.3 comparisons, then this indicates that speakers were able to incorporate visual 

speech feedback to improve intelligibility. If listeners selected feedback degraded speech more 

often than visual speech in 2v.3 comparisons, then this implies that the introduction of visual 

information decreased speech intelligibility. To determine whether somatosensory degradation 

influenced listener preference for baseline speech, an independent-samples t-test was used to 

compare the auditory discrimination 1v.2 data to data from an identical task performed with 
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baseline speech and speech in which only auditory feedback was degraded (Casserly, et al., in 

prep.). If listeners chose baseline speech more often in the present investigation, then this 

suggests that the use of Orajel to experimentally degrade somatosensory feedback significantly 

increased preference for baseline speech. 

Results 

 In the auditory discrimination task, analysis of speech selection patterns between the 

baseline condition and feedback degraded condition showed that listeners selected baseline 

speech as “easier to understand” 62.3% of the time (SD = 6.166%), which was significantly 

higher than chance (t = 8.467, p < 0.001) (see Figure 4). This same finding was observed in the 

analysis of speech selection patterns between the baseline condition and visual condition. Again, 

listeners selected speech from the baseline condition as “easier to understand” 62.3% of the time 

(SD = 5.547%), which was also significantly higher than chance (t = 9.404, p < 0.001) (see 

Figure 4). In this same task, analysis of speech selection patterns between the feedback degraded 

condition and visual condition showed that listeners selected feedback degraded speech as 

“easier to understand” 47.99% of the time (SD = 4.887%), which was not significantly higher 

than chance (t = -1.748, p = 0.099). This suggests a possible perceptual advantage for speech 

produced in the feedback degraded condition, as opposed to the introduction of visual feedback 

(see Figure 4).  

In the visual recognition task, analysis of correct stimulus-word transcription responses 

between the feedback degraded and the visual conditions showed that listeners did not exhibit 

differences in lipreading accuracy between these conditions (M = 12.33%, SD = 10.095%; t = -

0.209, p = 0.837; see Figure 5).  However, in the visual discrimination task, analysis of speech 

selection patterns between the feedback degraded and visual conditions showed that listeners 
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selected speech produced with added visual information as “easier to understand” 46.99% of the 

time (SD 4.929%), which was significantly lower than chance (t = -2.728, p = 0.013) (see Figure 

6).  

Finally, differences in baseline preference patterns were compared between the present 

study and the data collected in Casserly, et al., (in prep), where normal speech and speech 

produced with only auditory feedback degradation were used in an identical discrimination task. 

This analysis was conducted to determine whether the additional degradation of somatosensory 

feedback in the present study affected listeners’ speech selection patterns – specifically, the 

degree to which they preferred baseline speech over feedback-degraded speech. In Casserly, et 

al., (in prep.), analysis of speech selection patterns between the baseline condition and auditory 

feedback degraded condition showed that listeners selected baseline speech as “easier to 

understand” 56.47% of the time (SD = 8.083%), which was significantly higher than chance (p = 

0.0012). In the present auditory discrimination task, as described above, listeners selected 

baseline speech as “easier to understand” more often than speech with degraded auditory and 

somatosensory feedback. Baseline speech was selected 62.3% of the time (SD = 6.166%), which 

was also significantly higher than chance (p < 0.001). Independent-samples t-test analysis of 

these baseline speech selection patterns showed that listeners’ preference for baseline speech in 

the present investigation was significantly higher than that found in Casserly, et al., (in prep.) (p 

= 0.006; see Figure 7). 
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Figure 4: Proportion of time listeners selected the higher feedback condition as “easier to 

understand,” acoustically, as opposed to visually. In both the baseline vs. feedback degraded 

analysis and baseline vs. visual-added analysis, baseline speech contained the most feedback. In 

the feedback degraded vs. visual-added analysis, visual feedback added speech contained the 

most feedback. Baseline speech was selected significantly more often than speech from either the 

feedback degraded or visual-added condition. This speech selection pattern was significantly 

higher than chance (horizontal line at 0.5). 

 
Figure 5: Proportion of correct stimulus-word lipreading transcription responses for the feedback 

degraded and visual-added speech conditions. Listeners did not exhibit differences in lipreading 

accuracy between the conditions. 

*  * 
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Figure 6: Proportion of the time listeners selected the higher feedback condition as “easier to 

understand,” visually (via lipreading), as opposed to acoustically. In the feedback degraded vs. 

visual-added analysis, visual speech contained the most feedback and was selected significantly 

less frequently than chance, showing an advantage for feedback degraded speech. 	  

	  
Figure 7: Proportion of time listeners selected the baseline condition as “easier to understand” in 

Casserly et al. (in prep.) and in the present study (baseline vs. feedback degraded condition 

only). The same auditory feedback degradation was used in both studies. In the present 

investigation, somatosensory feedback was also degraded using Orajel. Analysis of speech 

selection patterns showed that listeners in both studies selected baseline speech significantly 

more frequently than chance (horizontal line at 0.5). Selection rates differed significantly 

* 

* 
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between the two studies, with auditory and somatosensory degradation resulting in a greater 

intelligibility difference than the prior auditory-only degradation. 

 
Discussion 
 
I. Experimental Degradation of Feedback 

In the present investigation, we experimentally modified speakers’ sensory feedback and 

measured perceptual speech intelligibility. Auditory feedback was degraded using a cochlear 

implant simulation, which mapped natural spoken frequencies to eight frequency-based channels, 

in real-time (Casserly, 2015). Speakers self-applied Orajel to numb their articulators and degrade 

somatosensory feedback. We predicted that these experimental manipulations would be 

sufficient to disrupt speech feedback, and, therefore, impair production accuracy (e.g. speech 

intelligibility). This hypothesis was supported by the results of all three perceptual tasks. 

In the auditory discrimination task, listeners selected speech from the baseline condition 

as “easier to understand” significantly more often than speech from the feedback degraded 

condition. In this study, the baseline condition provided listeners with more feedback than the 

auditory and somatosensory degraded condition. This pattern is consistent with previous studies 

that observed differences in perceptual speech intelligibility using listener judgments of normal 

speech and speech produced with feedback degraded through a cochlear implant simulation 

(Casserly, et al., in prep.;), as well as judgments of normal speech and speech produced under 

vocal tract alterations (Jones & Munhall, 2003).  

In the present study, the baseline condition also provided listeners with more feedback 

than the visual condition. Visual feedback was introduced by placing a large, square mirror 

directly in front of the speaker while they were wearing the real-time cochlear implant simulator 

and had Orajel applied to their lips and tongue. Despite this added feedback stream, listeners still 
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selected speech from the baseline condition as “easier to understand” for lipreading significantly 

more often than speech from the visual condition. This indicates that the addition of visual 

feedback did not provide listeners with enough information to fully compensate for the auditory 

and somatosensory degradation. This pattern is consistent with studies that examined speech 

perception with and without visual feedback (Schwartz, et al., 2004). Although intelligibility is 

greatest when both auditory and visual feedback are present, perceiving speech with only visual 

feedback is significantly more difficult than with only auditory feedback (Schwartz, et al., 2004). 

However, since listeners consistently selected speech from the baseline condition across all 

analyses, we conclude that our manipulations were effective in disrupting speech intelligibility 

via feedback degradation. 

II. Somatosensory Feedback 

We were also interested in determining the effects of somatosensory degradation on 

speaker intelligibility. We predicted that the modification of both auditory and somatosensory 

feedback would produce a greater decrease in speech intelligibility than the degradation of only 

auditory feedback. The comparison of auditory discrimination data between somatosensory and 

auditory degradation (current investigation) and only auditory degradation (Casserly, et al., in 

prep.) supported this hypothesis. In the present study, listeners selected speech from the baseline 

condition as “easier to understand” significantly more often than speech from the feedback 

degraded condition. Similar results were observed in Casserly, et al., (in prep.), where listeners 

selected speech from the baseline condition as “easier to understand” significantly more often 

than speech from the auditory degraded condition. However, the baseline preference rate was 

significantly higher in the present investigation than in Casserly, et al., (in prep.). These findings 

indicate that degrading both auditory and somatosensory feedback decreased speech 
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intelligibility significantly more than degrading auditory feedback alone. In the present 

investigation, we did not alter auditory and somatosensory feedback separately. We chose to 

include only one feedback degraded condition because we were concerned than an extended 

experimental duration would cause the Orajel to wear off prematurely or allow the talkers to 

learn the stimulus words. From the difference in baseline preference rates across the two studies, 

however, we can conclude that we were successful in manipulating somatosensory feedback 

using Orajel. To our knowledge, this technique has never been previously used to degrade 

feedback.  

This finding is consistent with theories that explain the neural mechanisms that regulate 

speech production (Houde & Nagarajan, 2011). The HSFC model implicates the auditory, motor, 

and premotor cortices as necessary in the formation of an accurate feedback circuit. Degrading 

the usefulness of somatosensory feedback prohibits the motor and premotor regions from 

contributing to the active error predictions made by the feedback loop. If acoustic feedback 

remains present, then the auditory cortex can provide information to the feedback circuit. In the 

case of total feedback degradation, neither auditory nor somatosensory feedback is available to 

the talker. The motor, premotor, and auditory brain regions would then be unable to contribute 

sensory information to the feedback loop, which would render the entire circuit uninformative. It 

is, therefore, not surprising that speech intelligibility significantly decreased when all forms of 

sensory feedback were diminished (Houde & Nagarajan, 2011).  

III. Visual Feedback 

This investigation also served to explore changes in speech intelligibility when visual 

information was the maximally available sensory stream. Although we predicted that the 

addition of visual feedback would improve talkers’ intelligibility over the feedback degraded 
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condition, the results of the visual discrimination and recognition tasks failed to support this 

hypothesis. Particularly, listeners selected speech from the feedback degraded condition as 

“easier to understand,” through lipreading, significantly more often than speech from the visual 

feedback condition during the visual discrimination task. Despite the fact that this preference was 

non-significant in the auditory version of this discrimination task, the data trended towards the 

same pattern. Listeners found talkers had lower intelligibility with added visual feedback than 

with completely degraded sensory feedback. Furthermore, there were no differences in listeners’ 

recognition accuracy between speech produced under the feedback degraded condition and 

visual condition. Together, the results suggest that the introduction of visual feedback made 

speakers slightly more difficult to lipread. The non-significant results in the visual recognition 

task caused us to consider speakers to be partially, but not completely, more challenging to 

lipread when visual feedback was added.  

It is not surprising that the differences in visual speech intelligibility were only detected 

in the discrimination tasks, as these comparisons were more sensitive than the recognition task. 

Success in the recognition task can be likened to firing an action potential in that it is binary. Just 

as a neuron either receives enough electrical charge to fire or it does not, there is either enough 

perceptual information to allow for successful word recognition or there is not. In the recognition 

task, participants were asked to transcribe stimulus words through lipreading; therefore, the 

responses either hit or missed the threshold. Responses that were off by at least one phoneme 

segment were regarded as incorrect. In the discrimination task, however, participants selected the 

condition they found to be easier to understand; as a result, the responses were positioned on a 

gradient of intelligibility. In this task, some small discrepancy in the speaker’s production of the 

stimulus word could contribute to an unconscious preference in the listener’s perceptual ability. 



	   30	  

In keeping with the analogy, this gradient can be equated to graded excitatory post-synaptic 

potentials that eventually summate to reach the threshold of excitation.  

There are three potential explanations for the finding that introducing visual feedback 

adversely affected talkers’ intelligibility. The first relates to the neural models of speech 

production, as this result is consistent with both the HSFC and DIVA models (Houde & 

Nagarajan, 2011; Guenther & Vladusich, 2012). These models emphasize the importance of 

learning when creating the feedforward and feedback loops. Typically, people are unfamiliar 

with watching themselves talk; therefore, it is possible that the lack of experience prevented the 

successful integration of visual information into the speakers’ feedback circuits. In cases where 

visual information was found to improve speech intelligibility, auditory feedback was still 

available (Peele & Sommers, 2015). This suggests that while visual information is a beneficial 

addition, this sensory stream cannot act as the sole reliable form of feedback.  

Aside from the potential difficulties associated with incorporating this sensory 

information into feedback circuits, it is also possible that introducing visual information created a 

cost in cognitive effort. This addition charged speakers with determining whether to ignore or 

employ the novel source of feedback. Before learning a behavior, there is an initial increase in 

neural energy expenditure, which decreases as the task becomes more familiar. In a visuospatial 

experiment, for example, participants exhibited a significant reduction in response time as they 

accumulated information about the task through learning (Kasuga, et al., 2015). Decreased 

response time and increased perceptual accuracy are commonly associated with decreased neural 

energy expenditure (Alteri, et al., 2015). It is likely that the talkers in the present investigation 

did not have sufficient learned information to successfully make use of the added visual 
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feedback. Given these findings, it is possible that visual information could be incorporated into 

feedback circuits if people received adequate training or learned to employ this sensory stream.  

The third alternative is that the mirror distracted the speakers. Deakin and Wakefield 

(2014) discussed the various complications experienced by two researchers during a Skype 

interview. The abnormal presence of visual feedback caused the researchers to lose focus, as 

immediate visual self-feedback is typically not present in everyday conversations. In the present 

investigation, it is possible that the mirror caused speakers to experience this distraction 

phenomenon. The decreased intelligibility, therefore, could be due to speakers becoming less 

focused during their production of the presented stimulus words.  

Future Research  

Additional studies are necessary to fully understand the effects of visual feedback on 

speech production. Specifically, future research could experimentally distinguish between the 

neural integration, cognitive effort, and distraction hypotheses that explain the observed decrease 

in speech intelligibility. In the Data Collection Phase, speakers were not explicitly told to look at 

the mirror while producing the stimulus words; therefore, it is possible that some speakers made 

use of the mirror, while others disregarded the added visual information. The instructions could 

be clarified or experimentally manipulated to test these hypotheses. Furthermore, additional 

studies are needed to determine whether visual information can be incorporated into feedback 

circuits when there is sufficient learned information. A future experiment could compare speech 

intelligibility between a population of talkers who have had increased exposure to visual 

feedback (e.g. through Skype or FaceTime) and a control group similar to the talkers in the 

present investigation. 
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Conclusion   

 Cochlear implant simulations and Orajel appear to be sufficient methods of degrading 

auditory and somatosensory feedback. Furthermore, auditory discrimination, visual recognition, 

and visual discrimination tasks seem to be viable techniques for detecting alterations in speech 

intelligibility. In this investigation, we observed that listeners selected speech from a baseline 

condition as easier to understand significantly more often than speech produced with degraded 

acoustic and somatosensory feedback, regardless of the presence of an alternative (visual) 

information source. The addition of visual feedback to the otherwise degraded speech condition 

did not improve speech intelligibility. In fact, in the visual discrimination task, the introduction 

of visual feedback significantly decreased talker’s clarity. These results indicate that listeners 

could differentiate between normally produced and feedback manipulated speech. These findings 

also suggest that the addition of visual feedback was detrimental to the speakers’ intelligibility. 

The conclusions of the present investigation are important for furthering the understanding of 

speech production mechanisms. In addition, these findings have potential clinical applications 

for generating novel therapies for deaf populations and individuals with central auditory 

processing disorders. 
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