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Abstract
Probability distribution functions and lowest statistical moments of composite measurements
representable as products and quotients of independent normal variates are derived, and tested by
means of the o and  branching decays of 212B; . The exact composite distribution functions are
nongaussian and provide correct uncertainty estimates and confidence intervals in cases where
standard error propagation relations are inaccurate. Although nuclear decay processes give rise to
Poisson-distributed parent populations, the gaussian-based composite distributions form nearly
perfect envelopes to the discrete distributions of products and ratios of Poisson variates, even for
relatively low counts. To our knowledge, this is the first reported experimental test of the statistics

of composite measurements by a fundamental quantum process.
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Introduction

Many, if not most, experimental quantities of interest in physics, engineering, and medicine
are not measured directly, but are inferred from products and ratios of measurements. Individual
measurements entering into composite quantities may be regarded as random variables for which
the probability density function (pdf), cumulative probability function (cpf), mean, variance, and
other statistics are usually known or ascertainable. However, the distributions of the composite
measurements are in general different from those of the parent distributions, a circumstance that
pertains to products and ratios of normal variates, which is one of the most widely occurring cases
in the physical and life sciences.

Although standard error-propagation formulas for determining uncertainties of
measurements without knowledge of the exact pdf or cpf are in wide use ['] [*], these rules may be
inadequate as they are approximations derived from Taylor-series expansions that can fail entirely
for certain parent distributions. Moreover, without knowledge of the pdf or cpf, one cannot
rigorously assign confidence intervals to the uncertainties derived from these rules. Measurements
reported in the physics literature as a mean value W plus or minus a standard deviation ¢ are
ordinarily assumed to distributed normally with 68% of the area under the pdf symmetrically
distributed within 26 about p. This assumption can be false, however, for nongaussian
distributions, particularly those with pronounced skewness.

The central limit theorem (CLT) establishes conditions under which sums of independent
random variables (and therefore the mean of a series of measurements) are asymptotically normally
distributed [*]. The CLT, however, says nothing about the rate of convergence and is inapplicable
in many practical cases where the number of measurements taken are too few. Important cases of
this kind abound in nuclear and elementary particle physics in the study of rare processes leading to
low signal counts [*], or in clinical medicine where numerous indices (such as the ratio of total
cholesterol to high-density lipoprotein cholesterol) are routinely determined for each patient by a

single trial on a single tissue sample performed at most once per year [*]. There are also instances
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where the CLT is intrinsically inapplicable regardless of the number of measurements, as in the case
of a Cauchy distribution (which arises from the ratio of two standard normal variates).[°]

Although statisticians have examined some theoretical aspects of the ratios of normal
variates ['}[®][°], standard monographs and current reviews of statistical methodology widely used
in physics do not even mention the subject.[*°]['][** ][ 12 ], and, besides our preliminary study [**],
we are aware of no reports in the physics literature in which the statistical theory of composite
measurements has been rigorously tested or employed.

In this paper we derive expressions for the cpf, pdf, and associated moments of both the
product and ratio of two independent normal variates, X =N (p.l,o'l2 )and Y =N(u,, 0'22 ), where

—12 (5
the designation N(W,c°) implies a pdf of the form p(x)-;(znGZ) s et

parameters i (mean) and G (standard deviation). Next, we test the theory experimentally by
constructing product and quotient distributions from measurements of the branching o and 8
decays of radioactive 212B; under conditions where the Poisson-distributed parent samples are well
represented by normal distributions. Last, we discuss briefly physical implications of parent

distributions other than gaussian, in particular Poisson and gamma distributions.

Theory
Consider first the density pz(z) of Z= XY (where we follow the convention of
representing a random variable by an upper-case letter and its realisation by the corresponding

lower-case letter). The cumulative distribution P(z) = P(xy <z) is given in terms of the conditional

probability P(x<(z/y)ly) and pdf py(y) by P(z)= JP(xS(z/y)|y)py(y)dy in which

zly
P(xS(z/ y)|y)= _[px(x)dx. The product pdf, pz(z)=dP(z)/ dz, then takes the form
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pz(2) = I px(y/! 2 py (y)[yl_ldy, which, upon substitution of the gaussian pdfs for X and Y and

transformation of the integration variable, leads to

4 law

uf g ¥ (o -V ((se+ P (e*+u )]

1 () (" -m)) (4 i) [+ )
pz(z)_2n0102 '([I_GXP _[ 20} ¥ 207 }I *exp _L 207 * 203 ) J
(1a)

If the domains of X and Y are restricted to positive values, as corresponds to many physical

applications, Eq. (1a) reduces to

( ]
1 T 2 | (z-my 1o w)2| -1
pz(2) = —— j e 2 exp|- 2 12 4 }(H—z+w] dw. (1b)
276,0, -(ua/67) | chzcg(ﬁ + WJ | G,y
l ) J

Under the conditions W;/oc;>>1 (i=1,2), BEq. (1b) reduces to the normal distribution
N(p.z,cgz) with u, =pu, and G? 2 p.120'22 +p.%ol2 , which are the results of standard error
propagation formulas. However, in general pdf (1a) differs markedly from a gaussian. For
example, in the special case X = N;(0,1), Y = N,(0,1), where the variables span the full set of real
numbers, pdf (1a) yields a cusped density function with standard deviation 6, = 1 (not 6, = 0).

The moments of the product distribution can be evaluated exactly from the pdf of the factors

m, = fz"pz (2)dz = fx"p x(x)dxf Y py()dy= m$Fm. (2a)
where

. 1 k=0

e
mf,"’=u?2(:)[3] Xl 0 oddk . (2b)

0 Wi (k-1)!!  evenk 22

The first three moments (a) m =Wy, () my= (p.l2 + cf )(p.% +c§), and (c)
my = pqwl(uf +3cf)(u§ +3c§) lead to the variance
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_ 2_.22,.22, 22
V=my —mi =ujc; + 1,01 +01 02 (3)

and skewness

Sk = (02 )—l [(z=m, )’ p2(@)dz = 6,07 03 (l"‘l o3 +K30) + 60, ) M (3b)
Skewness is a measure of the asymmetry of a probability distribution about the mean, and although
Z = XY is symmetric in its factors, each of which is distributed according to a symmetric pdf, the
product distribution itself has in general a nonvanishing skewness.
Consider next the density p;(z) of Z= X/Y where the realisations of X and Y can span

the full set of real numbers. By taking the derivative p,(z) =dP(z)/ dz of the cumulative

distribution P(z)=P(x/y<2)= _[ P(x < (yz)ly) py(y)dy, we obtain the quotient pdf

—o0

pz(2) = I px(y2) py (¥Xxidy , which, for normally distributed X and Y, evaluates to
2
B, (2)= 1 | uoiz+mu,o} xp (= 12) e WO,z + W0,
V2r | (o222 + 07)" 203 +0)))] V2op,(037+07)"

et {s-5)

Under the conditions that X and Y be nonnegative with p;/o; >>1 (i =1,2), Eq. (4a) can be

(4a)

approximated by the non gaussian expression

1 | polkz+uo; (b —152)° 4b
p,(2)= —J2=n' _( )3/2 eXp{‘[z' (0'§Z+0'12) ’ (4b)

Replacement of z by the measured value W, /p, in the prefactor and denominator of the
exponential in Eq. (4b) reduces pz(z) to the normal distribution N (uz,ofz) with p, =pu;/ Y,
and c§2= 012 1) ;2 +|J,120'%].b2_4. The latter expression is again a common error propagation
formula, but, Eq. (4a) leads in general to distributions markedly different from normal.

The moments of Z,
m,= ! anz (2)dz = Ix"px(x)dx_[ y_"py(y)dy , (5)
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if not obtained by direct numerical integration, can be approximated in closed-form algebraic

expressions by performing a series expansion in 6, / W, of the integral in Eq. (5) corresponding to

the expectation value E(Y™"), which may be cast in the form

E(Y'”)—J_I e /2[ (ny+oow) ™ +(ny -0y w) ]dw —7= J' v /2(p.2 c,w) " dw

Kalo,

(62)

and reduces to

o 1 @0, | (n+2r-1)
¥ =0s 2;[ J 2 ri(n—-1)! (6b)

The value of r,, in Eq. (6b) is determined by the convergence criterion that the (r + 1)"‘ term be

smaller than the ™ term, which leads to the inequality (05 / p, )* <2(r + 1)[(n+ 21(n +2r + DI
Substitution of Eq. (6b) into Eq. (5) results in the following moments, truncated at order

(02/ )"
my =y /P'z)[l +(0g /o) +3(0/ 1y)" +15(o, /M2)6+105(°'2/P-2)8'“] (7a)
my = (0‘«12 +01)/ lf‘fzz)[l +3(0, 1 ma)’ +15(0,/ 1,)* +1050; /2,)° +945(°2/P-2)8"'] (7b)

my = (P«l(ulz "‘30'12) / “g)[l +6(0 /s ) + 45(0y 11)° +420(0; 11, )" + 472505 / 1,)° ]
(Tc)
In general, the distribution of Z= X/Y departs much more markedly than the distribution

of Z= XY from a normal distribution, as will be illustrated below.

Generation of Composite Distributions by Nuclear Decay

To test the relations in the preceding section, we determined the distributions of the product
and ratio of radioactive decays via the two branching decay modes of 22p;,

(@) 2%Bi > *'Po+p (P branch ratio 64.06%)

(b) 212 5 %114 (o branch ratio 35.94%)
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The transmutation of atomic nuclei is a quantum process, which, as demonstrated quantitatively in
our recent experimental tests ['*], occurs randomly and without regard to past influences; it is, as far
as is known, nature’s most perfect random number generator.

Our procedure, in brief, is as follows. A 250 g sample of 40 year old powdered thorium
dioxide provided a source of 229Ra in secular equilibrium. The source was placed in a sealed
aluminium chamber in which a silicon surface barrier detector had been mounted. A potential of -1
kV with respect to the grounded chamber was applied to the detector, allowing electrostatic
precipitation of ionized 22%Ra progeny, particularly 21%p5 . The precipitation proceeded until a
suitable level of activity was achieved. The detector was then removed from the chamber and
connected to standard nuclear electronics for o pulse height analysis (PHA) and multichannel
scaling (MCS). 216p, decays by alpha emission to 212Dy, which, in turn, decays to 212g; | the
nuclide of interest. There are two decay pathways: an alpha mode (36% branch ratio) resulting in
2087 with emission of a 6.05 Mev or 6.09 MeV alpha particle; a beta mode (64% branch ratio)
resulting in 212p with a halflife of 0.3 us, which promptly decays to 20%py, with emission of an
8.78 MeV alpha particle.

We generated data using PHA o spectroscopy [*°] to isolate the peaks produced by 2U2p;
and 2'%Po , and record the number of events per time interval via MCS. The energy resolution of
the spectrometer was approximately 15 keV per bin, giving a separation of peaks of about 180 bins
with peak widths about 30 bins. Thus, the two peaks were well isolated and the rates of each branch
determined. The measured rate was about 150 events per second for the Po branch and
approximately 100 for the Bi branch. The dwell time was 0.05 s per bin for the 8196 bin
samplings. The duration of each run was 409.6 s and the runs were taken sequentially with an
interval of approximately 3 minutes between to allow adjustment of the energy window.

By combining the contents of 2, 4, 8, etc. contiguous bins, we derived from the same data set
parent populations of increasing mean counts for each decay mode. One element of corresponding
type (e.g. a 2-bin or 8-bin count) from each of the two decay modes was then chosen to form a

product and quotient. Although the parent populations follow a Poisson distribution, the respective
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means can be made sufficiently large that the envelope of each parent Poisson distribution is well
approximated by the corresponding normal distribution N(u;,1;) (i =1,2) as shown in Figure 1

for p; = up, = 14.7, K, = Wi = 9.8, resulting from 2-bin combination. Figure 2 shows the
quotient distribution for data sets derived from 2-bin combinations. The visual fit of the theoretical
distribution function as an envelope to the experimental histogram is excellent and leads to reliable
values for the means, widths, and asymmetries of the quotient distributions, as summarized in Table
1, which compares sample statistics to corresponding statistics calculated from the pdf of Eq. (4a).

Excellent agreement is also obtained for the product distribution of the two decay modes, as

illustrated in Figure 3 for the 2-bin data, with moments also summarized in Table 1.

Table 1: Experimental and Theoretical Moments for pu; =14.7, n, =9.8

21 212,. 21 212,.
Po(p,)/ * Bilw,) Po(py) x > Bi(u,)
Sample PDF Sample PDF
m1 1.683 1.638 145.322 145.307
m2 3.660 3.520 2.47510* | 2.483 104
m3 12.744 12.349 | 4.82010° | 3.60810°
c=JV 0.909 0.914 60.264 60.986
sk 5.069 5.033 0.769 0.559

Agreement between theory and experiment was obtained for all n-bin parent populations,
2<n<64.
A chi-square test of goodness of fit is not really pertinent here, as we know at the outset the

data derive from discrete rather than continuous parent distributions. Nevertheless, the results of a

chi-square test are interesting. Analysis of the quotient 8-bin data yields a probability PO > %2
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=24.3%, where xgbs is the observed value for d = 14 degrees of freedom, indicating that rejection
of the theoretical distribution as a fit to the data would be unwarranted. However, P(x’ > x:bs) is
close to 0% for the 2-bin data despite the excellent visual match and moment predictions. This
curious feature is due to the fact that the true Poisson ratio distribution function
frn@=cm) 5 BB (82)
- Y2)!

[yz=integer]

which we derived by reasoning analogous to that leading to pdf (4a), generates rational numbers

rather than the set of all real numbers, with the consequence that f,(z) exhibits naturally occurring

“lacunae”, i.e. values of z at which f,(z) drops suddenly to zero or close to zero. These appear as

fluctuations in Figure 2, but they are fully reproducible, as shown in Figure 4, and do not vanish
with increasing sample size. The influence of discreteness diminishes, however, as the mean
parameters of the parent distributions increase, which is the condition under which a Poisson
distribution tends toward a normal distribution. Similar pseudo fluctuations are exhibited by the

true Poisson product distribution function
yliz

) N MM
fz:xy(z) e Z:] Nl .

(z/y=integer]

(8b)

Conclusion: Some Cautionary Remarks

We have deduced and tested experimentally the distributions and lowest three moments of
the product and ratio of two normally distributed independent, uncorrelated, direct measurements.
From our relations, the distribution of composite measurements comprising any combination of
products and ratios of direct measurements can be calculated. (We consider elsewhere
measurements involving powers higher than unity.) For example, the pdf py(w) of W=XY/Z,
which might represent measurement of the gas constant R=PV /T from measurements of

pressure, molar volume, and absolute temperature, is given by

pw(w) = [ [ p2(2) pxy(wolkldz = [ p(D)ldlde [ py (3) px (5D dy ©)
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in terms of the pdfs of the component measurements. In experiments for which there is no a priori
reason to expect a composite measurement to be distributed normally, it would be prudent, if not
necessary, to use the distributions tested here, rather than resorting to approximate error
propagation formulas.

In general, our theory predicts, and the nuclear decay experiments support, the result that the
product and quotient distributions of normal variates, although not themselves normal, become
increasingly better approximated by normal distributions as the ratio of mean to standard deviation
of the parent distributions increases. It may be thought that this characteristic feature applies to

arbitrary parent distributions, but here one must exercise caution. For example, for a random

m+1
m

———— "% the mean and standard
F'm+1)

variable governed by a gamma distribution p,, g (u) =

deviation are respectively 0 = (m +1)/0 and 6 = J/m+1/0, leading toaratio p /6 = Jm+1

that is independent of the parameter 8 . The ratio p / 6 increases with the index m , however, and

am+1 bm+1 zm

, Where
B(m+1,n+1) (az + b)'""L”J'2

in the limit of large m the exact quotient pdf, p,(z)=

B(m,n)=T(m)'(n)/ T(m+ n) is the beta function, is well represented by a normal distribution of
corresponding mean and standard deviation. However, such a limit would be irrelevant to the study
of a particular physical phenomenon whose law entails a specifiic value of m, as in the case of
Planck’s radiation law in the high-frequency domain, which takes the form of a gamma distribution

with fixed index m =3.

10
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Figure Captions

Figure 1

Figure 2

Figure 3

Figure 4

212g; and #?Po distributions and

Comparison of experimental (Poisson) parent
corresponding normal distributions. Number of samples = 4096 in each parent
distribution.

Npo(14.7,14.7)
Np; (9.8,9.8)

Experimental (2-bin data) quotient distribution of . Number of

samples = 4096.

Experimental (2-bin data) product distribution of Np,(14.7,14.7) X Ng;(9.8,9.8).
Number of samples = 4096.

Exact theoretical distribution [Eq. (8)] of Poisson variables P(14.7)/ P(9.8)

corresponding to 7'12P0/ 22g; of Figure 2.

11
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Figure 1

Parent 2'?Po and 2'’Bi Distributions
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Figure 2

Distribution of *?Po/*’Bi Decays

pz=x/y(z) x 102 W

13
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Figure 3

Distribution of ?Po X *’Bi Decays

pz=xy(z) x 10W

1.0

}.l1 = 14.74
n, = 9.86

14
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Figure 4

Theoretical Distribution of Ratio P(u,)/P(u,)

.12 ! | 1 1 1

P(uy)/P(ug)

nqy = 14.74 i
I,L2 = 9.86

pPz=x/y(2))
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