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  Theory of nuclear half-life determination by statistical sampling 
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PACS 21.10.Tg Nuclear structure:  Lifetimes, widths 
PACS  29.85.Fj  Nuclear data analysis 
PACS  29.87.+g  Nuclear data compilation 
 

 

  ABSTRACT 

A remarkable method for measuring half-lives of radioactive nuclei was proposed several 
years ago that entailed statistical sampling of the source activity.  A histogram of half-life 
estimates, calculated from pairs of activity measurements separated in time, took the 
unexpected form of a nearly perfect Cauchy distribution, the midpoint of which 
corresponded very closely to the true value of the half-life.  No theoretical justification of 
the method was given.  In this article I derive the exact probability density function (pdf) 
of the two-point half-life estimates, show how (and under what conditions) a Cauchy 
distribution emerges from the exact pdf—which, mathematically, shows no resemblance 
to a Cauchy function—and discuss the utility of the statistical sampling method. The 
analysis shows that the exact pdf, under the conditions leading to an empirical Cauchy 
lineshape, is an unbiased estimator of the true half-life. 
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1. Introduction. –   
 The transition rate !  or half-life !  is one of the most frequently sought 
characteristics of an unstable system of which examples abound in the transmutation of 
radioactive nuclei, the de-excitation of atoms and molecules, the decay of elementary 
particles, and other stochastic processes statistically referred to as “pure birth” processes 
[1].  With applications to nuclear physics in mind, I shall refer to the transition as a 
decay.  For systems exhibiting exponential decay, the transition rate and half-life are 
related by   
  ! = ln 2 " . (1) 
 In exponential decay, the theoretical rate of population loss is proportional to the 
instantaneous population size N t( )  

  dN t( )
dt

= !"N t( )   (2) 

with !  the constant of proportionality.  The solution to Eq (2) takes the well-known form 
  N t( ) = N0e

!"t  (3) 
in which N0  is the initial population.  The half-life !  is the time at which the population 
has decreased to half its size and, by this definition, Eq (1) follows directly from Eq (3).   
 A standard experimental procedure for determining !  (and therefore ! ) is to 
record over a sufficiently long period of time tn = n!t  the number of decays occurring 
within a succession of much smaller counting intervals !t . The theoretical number of 
counts Cn  recorded in the nth  time interval, assuming an ideal detector, is given by the 
relation 

  Cn = !
dN tn( )
dt

"t !=! #N0e
!n#"t( )"t $!An"t  (4) 

in which An  is termed the activity of the source.  One usually estimates the parameter !  
(e.g. by maximum likelihood or least squares [2]) from linear regression of a plot of lnCn  
or a non-linear (exponential) fit to a plot of Cn  as a function of tn .  As a subsidiary point, 
it is worth noting that the two fits can lead to different values of !  because lnCn  
attributes relatively greater weight to points in the tail of the decay curve. 
 Empirically, the number of counts Cn , and therefore the activity An , recorded in 
the nth  interval !t  is well represented by a Poisson random variable [3] Poi µn( )  of mean  
  µn = µ0e

!" tn = A0 #t( )e!n"#t  . (5) 
In all rigor, Cn  is a time-varying binomial random variable Bin N , p( )  in which the 
probability p of a single decay within a short sampling interval !t  is p = !"t .  Under 
conditions p <<1 , N >>1 , Cn << N —i.e. a large number of nuclei observed for a time 
short compared to their half-life—the distribution Bin N , p( )  is very well approximated 
by Poi µ( )  with µ = Np .  Under the additional condition µ >>1  of a high mean count per 
!t , the distribution Poi µ( )  is well approximated by a normal (i.e. Gaussian) distribution 
N µ,! 2( )  with variance equal to the mean:   ! 2 = µ . 
 In contrast to the standard procedure outlined above, a novel—if not mystifying—
method based on statistical sampling was described in a 2007 conference proceedings [4]. 
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The steps of the procedure, applied to a time series of n sequential activity measurements, 

 Ai ! i = 1…n( ) , may be summarized as follows: 
• For each pair of activities Ai ,Aj( )  measured at times t j > ti  where 

 i = 1…n !1;! j = i +1…n( ) , calculate the two-point half-life estimate derived from 
Eqs (1) and (4) 

  ! i j =
ti j ln 2

ln Ai Aj( ) !!!!!!!!!!! ti j " t j # ti > 0( ) . (6) 

• Make a histogram of the nt = n n !1( ) 2  two-point estimates given by Eq (6).2  
• Find the location of the center of the resulting distribution; this yields an 

empirical estimate of the true half-life. 
 
 The mystifying feature of the procedure is that the resulting histogram resembled 
very closely a Cauchy distribution.  I have simulated by Poisson random number 
generator (RNG) the conditions of an experiment to measure the half-life of 55 Fe  [5] and 
found the fit of the histogram to a Cauchy distribution so good that it nearly failed a chi-
square test because the chi-square value was considerably smaller than the number of 
degrees of freedom.  Yet an examination of expression (6) which depends on the 
reciprocal of the logarithm of the ratio of two Poisson variates as expressed by (4), does 
not in any obvious way suggest that the random variable !  (upper-case tau) whose 
realization is the set of values ! i j  follows a Cauchy distribution. 
 The author of Ref. [4]  identified the Cauchy form of his histogram visually [6], 
but provided no theoretical analysis of its origin. In this paper, I derive the exact 
probability density function (pdf) of the two-point half-life estimate ! , show how the 
Cauchy distribution emerges from the exact theory, and discuss the applicability of the 
method for measuring half-lives of radionuclides or other unstable quantum states. 
 
2. Theoretical basis of the statistical sampling method – 
 Derivation of the pdf p! "( )  of the random variable !  entails finding the pdf of a 
succession of transformed random variables of the form 
 

  

Z1 X !( ),Y !( )( ) = X !( ) Y !( )
Z2 !( ) = ln Z1 !( )( )
Z3 !( ) = Z2"1 !( )!

#

$
%%

&
%
%

 (7) 

where 

  
X = Poi µX( ) ! N µX ,µX( )
Y = Poi µY( ) ! N µY ,µY( )

"
#
$

%$
 (8) 

                                                
2 Since Ai ,Aj( )  are Poisson random variables, there may occur instances, contrary to Eq (4), in 

which Aj > Ai even though t j > ti .  In such cases, the pair Ai ,Aj( )  is not included because it 
would lead to a negative two-point estimate of the half-life. 
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are independent Poisson variates subject to the experimental condition of high mean 
count per !t .   Applications of the theory of distributions of composite measurements 
[7][8] to variates (7) and (8), in which successive transformations of a pdf  pZ! z!( )  to pdf 

pZ! z!( )  with transformation relations z! = f z"( )  and z! = f "1 z#( ) , take the general form 

  pZ! z!( )!=! pZ" z"( ) dz"
dz!

!=! pZ" f z!( )( ) df z!( )
dz!

, (9) 

lead to the exact expression 
 

 p! "( ) = 1
n n #1( ) 2 !

ln 2
2$
!

ti j
" 2

%
&'

(
)*
exp

ti j ln 2
"

%
&'

(
)*

+ i jj=i+1

n

,
i=1

n#1

, !exp # e
ti j ln2
"

%
&'

(
)* # µi

µ j

%

&
'
'

(

)
*
*

2

2+ i j
2

-
.
/

0/

1
2
/

3/
(10) 

with 

  ! i j
2 =

µi

µ j
2 1+ µi

µ j

"

#
$

%

&
' . (11) 

Substitution of Eq (5) yields the specific time dependence of the ratio 
  µi µ j = exp ti j ln 2 !( )  (12) 
and variance 

  ! i j
2 = µ0

"1 exp
t j ln 2
#

$
%&

'
()
exp

ti j ln 2
#

$
%&

'
()
1+ exp

ti j ln 2
#

$
%&

'
()

$

%&
'

()
 (13) 

where µ0 is the initial mean number of counts per unit sampling interval. 
 The basic structure of Eq (10) can be understood as follows.  The first factor 
normalizes the pdf to unit area when integrated over ! .  The numerator of the second 
factor is the constant relating decay rate and half-life; the denominator comes from a 
Gaussian normalization constant.  The sums are over all pairs of observations such that 
ti j > 0  and ! i j > 0 . The exponential form exp ti j ln 2 !( )  is the functional relation Z1 !( )  

applied to the i j( )th  variate  

  Z1 Ai ,Aj( ) ! Ai "( ) Aj "( ) = N µi µ j ,# i j
2( ) . (14) 

The numerator of the rational expression within the sums comprises factors from the 
Jacobian function dZ1 Ai ,Aj( ) d! .  The final exponential factor comes from the Gaussian 
distribution signified by relation (14). 
 Equation (10) bears no resemblance to a Cauchy distribution.  To see how this 
extraordinary evolution unfolds, I will remove all inessential factors from Eq (10) and 
express time in units ti = i!t  with !t = 1 and !̂ " #$1  the sought-for true value of the half-
life.  The following conditions are then imposed: 

(a) !  and !̂  are long compared to the intervals j ! i( ) . 
(b) The source is strong: µ0 >>1 . 
(c) Numerous measurements are made: n >>1 . 
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 The immediate consequence of condition (1) is that ! i j
2 " 2µ0

#1  for all pairs of 
activity measurements, whereupon Eq (10) takes the basic form (apart from constant 
factors) 

  f !( ) =! j " i
! 2

#
$%

&
'(
e

j" i
!

#
$%

&
'(

j= i+1

n

)
i=1

n"1

) !exp "µ0 e
j" i
!

#
$%

&
'( " e

j" i
!̂

#
$%

&
'(

#

$
%

&

'
(

2*
+
,

-,

.
/
,

0,
. (15) 

 Next, condition (1) permits a Taylor-series expansion of exponentials in Eq (15) 
to first order, leading to the approximation 
  e j! i( ) " ! e j! i( ) "̂ # j ! i( ) " !1 ! "̂ !1( ) . (16) 
 The better conditions (2) and (3) are met, the narrower is the resulting lineshape, 
in which case the difference of reciprocals in relation (16) can be approximated by 

  ! "1 " !̂ "1( ) = !̂ " !
! !̂

#
!̂ " !
!̂ 2

, (17) 

and one can also replace the variable !  by the constant !̂  in the denominator of pre-
factors.  At this point, Eq. (15) has been transformed into a sum of Gaussians 

  f !( ) "! j # i
!̂ 2

$
%&

'
()
e

j # i
!̂

$
%&

'
()

j = i+1

n

*
i = 1

n#1

* !exp #
µ0
!̂ 4

j # i( )2 ! # !̂( )2+
,
-

.
/
0

. (18) 

 Because the exponential falls off rapidly outside a narrow interval centered on !̂  
and has an argument smaller than 1 close to !̂ , one can further approximate Eq (18) by a 
Taylor series expansion to first order 

  exp !
µ0
"̂ 4

j ! i( )2 " ! "̂( )2#
$
%

&
'
(
!=! 1

exp µ0
"̂ 4

j ! i( )2 " ! "̂( )2#
$
%

&
'
(

!)! 1

1+ µ0
"̂ 4

j ! i( )2 " ! "̂( )2
, (19) 

which, apart from a normalization factor, has the form of a Cauchy function 

  fC !( ) = 1

"# 1+ ! $ !̂( ) #( )2( )  (20)  

with location parameter !̂  and scale parameter ! .   
 Thus, to this point the exact Eq (10) has been transformed into a sum of Cauchy 
functions of different scale parameters all centered on the true half-life   

  f !( ) "!
j # i
!̂ 2

$
%&

'
() e

j# i
!̂

$
%&

'
()

1+ µ0
!̂ 4

j # i( )2 ! # !̂( )2j=i+1

n

*
i=1

n#1

* ! . (21) 

Thus, f !( )  is an unbiased estimator of !̂ . 
 If the time-dependent, but non-resonant, exponential in the numerator can be 
ignored—a step that computer analysis confirmed to have little consequence—one can 
approximate the variable quantities j ! i( ) , j ! i( )2  in some judicious way (e.g. by their 
means) to collapse the double sum of relation (21) into a single Cauchy function (20) 
centered on !̂  with approximate scale parameter 

  !̂ =
6 " #̂ 2

" n ln 2 µ0
 (22) 
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upon restoration of the original physical constants. 
  
3. Simulated tests of the statistical sampling theory – 
 The greater the number n of samples (which, by virtue of the relation 

 ti = i!t ! i = 1…n( ) , also measures the total duration of sampling) and the more active the 
source, the narrower is the width (22) of the distribution, and the better the empirical 
Cauchy pdf matches the theoretically exact pdf (10).   As a test and illustration of these 
features, I used a Poisson RNG to simulate various time sequences of activities of a 
hypothetical nucleus of true half-life !̂ = 1000!"t .  A nuclear system corresponding to the 
illustration would be 55 Fe , which decays to 55Mn  by orbital electron capture with a half-
life of approximately 1000 days.   (In the following examples, therefore, one can set !t  = 
1 day.) 
 Figure 1 shows the normalized frequency distribution (points) of two-point half-
life estimates resulting from computer simulation of 300 sequential measurements of 
activity from a source with initial activity 106 !t .  Superposed on the empirical 
distribution is the corresponding exact theoretical lineshape (solid line) calculated from 
Eq (10).  Agreement between experiment and theory is virtually perfect.  At this stage, no 
approximations have been made, apart from relations (8). 
 Figure 2A shows the variation in theoretical lineshape for fixed sample size of 
100 activity measurements as a function of initial activity.  The greater the activity of the 
source, the more precisely the center of the distribution can be located and therefore the 
true half-life be estimated.  Figure 2B illustrates the variation in lineshape for fixed initial 
activity 106 !t  as a function of sample size (and therefore total duration of counting).  
The larger the sample size, the narrower and more bilaterally symmetric the lineshape 
becomes and the more closely centered it is on the true half-life !̂ . 
 Figure 3 shows a histogram of 200 simulated measurements of activity from a 
source with initial activity 106 !t and compares the exact theoretical distribution (solid 
line) with a least-squares-fit (LS) Cauchy distribution (dashed line).  The LS location 
parameter ! 0 = 998.7"t  estimates the true half-life !̂ = 1000!"t  to within 0.13%. The LS 
scale parameter ! 0 = 25.7"t  corresponds closely to the theoretical estimate (22) 
!̂ = 24.1"t . (The uncertainty of LS estimates can be deduced by standard statistical 
analysis and is a routine matter outside the scope of this paper.) A chi-square test of the 
fit to the histogram yielded !9962 = 984.2  with P-value  Pr !996

2 > 984.2( ) = 0.599 .   
 Thus, for statistical purposes the empirical and theoretical distributions of the 
two-point half-life estimates are seen to be well represented by a Cauchy distribution 
under the conditions assumed in the analysis leading from Eq (10) to Eq (21). 
 
4. Conclusions – 
 The method of statistical sampling provides an operationally simple means to 
measure half-lives of unstable quantum systems such as radioactive nuclei. The essential 
content of this paper was (1) a derivation of the theoretical pdf of two-point half-life 
estimates based on pairs of activity measurements, and (2) the demonstration that this pdf 
becomes statistically equivalent to a Cauchy distribution when the following 
experimental conditions are met:  (a) the number of decays per sampling interval is 
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sufficiently high; (b) the number of sequential activity measurements is sufficiently large 
( n >100  suffices); (c) the half-life is sufficiently long compared to time intervals between 
pairs of samples. 
 In experiments on long-lived radionuclides, statistical sampling can have a 
significant advantage in that sampling need not be done at regular time intervals because 
a histogram displays only frequencies of occurrence of events and not their time-
ordering. In contrast to performing regression analysis on a decay curve, the statistical 
sampling method yields an estimate of the half-life directly from the center point of the 
histogram or location parameter of the best-fit Cauchy function.  Moreover, as shown in 
Figure 3, accurate estimates of the true half-life can be obtained even when the total 
duration of sampling is a relatively small fraction (20% in Figure 3) of the half-life. 
 In recent experiments that refuted controversial published claims of correlations 
in nuclear decay [9], the lifetime of ! + emitter 22Na  with half-life  ! 950 d  and activity 
 A ! 400 s!1  was determined (together with other statistical quantities) from activities 
sampled in time windows of approximately 0.5 s, extending uninterruptedly for 167 h. 
Disruption in continuous sampling (e.g. by power failure) would significantly impact an 
experiment of this kind.  Computer simulated statistical sampling with LS fit to a Cauchy 
profile led to estimates of the 22Na  half-life accurate to within 0.5% from activity 
samples taken  just 2 h/day over a period of only 60 d (i.e. 6.3% of the half-life).   
 The uncertainties encountered in the method of statistical sampling are 
complementary to those involved in regression of a decay curve.  In matters where 
different measurements of half-life by the standard method do not agree, statistical 
sampling, which generates an unbiased estimator of the true half-life under the conditions 
analyzed in this paper, provides an independent means of resolving the ambiguity. 
 An extension, currently in progress, of the present research is to ascertain whether 
half-life measurement by statistical sampling is useful when the observed activity does 
not follow an exponential decay law.  This situation can arise if (A) more than one 
exponential decay process with different decay rates contribute to the activity, or (B) if an 
elementary decay process itself deviates from strict exponential decay, as predicted by 
quantum mechanics [10] for time periods very short or very long relative to the half-life.  
Recent studies have either predicted or searched for oscillatory decay over intermediate 
periods [9], [11], [12]. In case (A) preliminary results of computer simulation showed 
that the histogram of two-point half-life estimates deviates significantly in location and 
shape from a uniform-decay Cauchy distribution even when one period greatly exceeds 
the other.  Simulations of case (B) in which !  manifests a weak oscillatory time 

dependence ! ln 2 = " 0
#1 1+$ cos 2% "1

#1( )&' ()  led to detectably asymmetric histograms for 
! <<1 , n >100 , and !1  either larger or smaller than ! 0 . The feasibility of statistical 
sampling to search for non-exponential nuclear decay is still under investigation and will 
be reported in detail when completed. 
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FIGURE CAPTIONS 
 
Figure 1:  Plot of theoretical probability p !( )d!  (solid line) as a function of half-life !  
for a series of 300 measurements of the activity of a hypothetical radionuclide of true 
half-life !̂ = 1000"t  and initial activity A0 = 106  per interval !t .  Superposed points mark 
the normalized frequencies of half-lives obtained from 300 measurements of activities 
simulated by a Poisson RNG set for initial activity A0 .  The number of two-point samples 
is 44850.  Bin width is d! = 2 "t . 
 
Figure 2:  Variation in half-life probability functions with activity A and sample size n 
for a hypothetical radionuclide with true half-life !̂ = 1000"t .   (A)  Fixed sample size of 
100 measurements with initial activities  (a) 105 , (b) 106 , (c) 107  per !t .  The number of 
two-point samples is 4950.  (B) Fixed initial activity of 106  per !t  for sample sizes of (a) 
100,  (b) 200, (c) 300 measurements.  Respective numbers of two-point samples are (a) 
4950, (b) 19900, (c) 44850.  Bin width for both plots is 2 !t . 
 
Figure 3:  Histogram of the distribution of half-life values obtained from 200 activity 
measurements of a hypothetical radionuclide of theoretical half-life !̂ = 1000 "t  and 
initial activity A0 = 106  per !t .  The number of two-point samples is 19900.  Superposed 
on the histogram are the exact theoretical probability function (solid line) and empirical 
Cauchy distribution (dashed line) with least-squares parameters ! 0 = 998.7 "t , 
! 0 = 25.7 "t .  A chi-square test of the fit yielded !9962 = 984.2  with P = 0.599 .  Bin width 
is 4!t . 
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