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Abstract 
The statistical relationship between human height and weight is of especial 
importance to clinical medicine, epidemiology, and the biology of human 
development. Yet, after more than a century of anthropometric measure-
ments and analyses, there has been no consensus on this relationship. The 
purpose of this article is to provide a definitive statistical distribution func-
tion from which all desired statistics (probabilities, moments, and correlation 
functions) can be determined. The statistical analysis reported in this article 
provides strong evidence that height and weight in a diverse population of 
healthy adults constitute correlated bivariate lognormal random variables. 
This conclusion is supported by a battery of independent tests comparing 
empirical values of 1) probability density patterns, 2) linear and higher order 
correlation coefficients, 3) statistical and hyperstatistics moments up to 6th 
order, and 4) distance correlation (dCor) values to corresponding theoretical 
quantities: 1) predicted by the lognormal distribution and 2) simulated by use 
of appropriate random number generators. Furthermore, calculation of the 
conditional expectation of weight, given height, yields a theoretical power law 
that specifies conditions under which body mass index (BMI) can be a valid 
proxy of obesity. The consistency of the empirical data from a large, diverse 
anthropometric survey partitioned by gender with the predictions of a corre-
lated bivariate lognormal distribution was found to be so extensive and close 
as to suggest that this outcome is not coincidental or approximate, but may 
be a consequence of some underlying biophysical mechanism.  
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1. Introduction 

Scientific interest in the values and correlations of anthropometric data trace 
back to the beginnings of modern statistics in the late 19th and early 20th Cen-
turies with the researches of Quetelet, Galton, Pearson, and others [1] [2] [3]. 
These many studies established the Gaussian function as the mathematical ex-
pression best approximating the distribution of such human features as height, 
weight, and other biometric attributes. So pervasive has been the Gaussian dis-
tribution that it is ubiquitously referred to as the “normal distribution”, a refer-
ence probably dating back to Quetelet’s influential study of “the average man” 
(L’homme Moyen) in 1835 [4].  

Although more refined studies have revealed that anthropometric data can 
show deviations from normality, attempts to find relationships between human 
height and weight remained uncertain, controversial and based on approximate 
or indirect methods such as data fitting [5], mechanical modeling [6], and gene 
identification [7]. Height and weight are of particular importance since they di-
rectly relate to the body mass index (BMI) [8], which is a measure of obesity and 
a risk factor for metabolic disease [9] and Alzheimer’s Disease [10]. A previous 
paper by Silverman and Lipscombe [11], to be referred to as Part I, determined 
the mathematically exact statistical distribution of BMI. 

The present paper, to be regarded as Part II, provides evidence for the propo-
sition that, in a healthy adult human population with access to adequate nutri-
tion, height and weight are distributed as correlated bivariate lognormal random 
variables. This conclusion is supported by a comprehensive investigation com-
prising four independent components:  

1) Tests of the correlation functions of the height and weight of a large anth-
ropometric data set of individuals, partitioned by gender, against predictions of 
the bivariate lognormal distribution; 

2) Search for nonlinear correlations, not attributable to the bivariate lognor-
mal distribution, by means of a sensitive nonparametric algorithm known as dis-
tance correlation [12] [13];  

3) Comparison of statistical tests of the empirical anthropometric data set 
with identical tests performed on comparably sized populations artificially created 
with correlated lognormal random number generators (RNGs); 

4) Tests of the marginal distributions of height and weight against predictions 
of associated univariate lognormal distributions, and of the natural logarithms of 
height and weight against predictions of associated univariate normal distribu-
tions. 

The outcome of this four-part analysis shows that linear and higher-order 
correlations of human height and weight are predictable in terms of the single 
Pearson correlation coefficient for height and weight employed in the lognormal 
probability density function (PDF). Moreover, agreement between the empirical 
data and the predictions of lognormal theory is so extensive as to suggest that 
the lognormal distribution of adult human height and weight is not approx-
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imate, but an exact distribution possibly characteristic of a more fundamental 
underlying biophysical mechanism. 

1.1. Marginal Distributions of Height and Weight 

Part I [11] reported the exact probability density function of BMI that follows 
mathematically from the defining relation 

2B W H=                           (1) 

in which height H is expressed in meters (m), the corresponding weight W is 
expressed in the mass unit kilograms (kg), and B is the BMI expressed in kg/m2. 
It is to be stressed that H, W, and therefore B, are random variables, which 
means that information and interpretations extrapolated from the BMI PDF re-
fer to populations, and not to individuals, an essential point not always unders-
tood by the lay news media [11] [14]. 

The specific form that the general BMI density function takes depends on the 
statistical distributions of H and W. Such empirical distributions are often 
represented visually as histograms. However, if two random variables are not 
independent, then the histogram of each is a graphical representation of the 
marginal distribution of that variable, and provides no information regarding 
the correlation of the two variables. In Part I evidence was provided to show that 
height and weight of individuals measured in the Anthropometric Survey of U.S. 
Army Personnel (ANSUR)—a large data base comprising 4082 males and 1986 
females [15]—were highly correlated. Figure 1 shows scatter plots of W against 
H for the separate male and female cohorts. The two patterns suggest a signifi-
cant linear correlation. The superposed curves, to be discussed later, are the lines 
of regression (dashed red) and the conditional expectation functions (solid 
blue). Descriptive statistics are given in Table 1 for the two cohorts, together 
with theoretically predicted values, where appropriate. Details of Table 1 will be 
discussed at relevant points throughout the paper. 
 

 

Figure 1. Correlation of weight and height for males (left) and females (right) of the ANSUR 
population. Lines of regression (dashed red) are obtained by the method of least squares. The 
conditional expectation functions of weight given height (solid blue) are calculated from the 
lognormal PDF (17), using ANSUR parameters in Table 1. 
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Table 1. Descriptive statistics of height and weight of ANSUR population. 

Marginal Statistic 
Cohort 
M: 4082 
F: 1986 

Height 
(m) 

Empirical 

Height 
(m) 

Theory 

Weight 
(kg) 

Empirical 

Weight 
(kg) 

Theory 

Mean 
Male 1.7562 1.7562 85.5240 85.5224 

Female 1.6285 1.6285 67.7582 67.7527 

Standard Deviation 
Male 0.0685 0.0685 14.2190 14.2427 

Female 0.0642 0.0642 10.9819 10.9378 

Skewness Sk Male 0.1113 0.1171 0.4817 0.5042 

Standard Error SESk Male - 0.0383 - 0.0383 

Skewness Sk Female 0.0876 0.1183 0.5545 0.4885 

Standard Error SESk Female - 0.0549 - 0.0549 

Kurtosis K Male 3.0680 3.0244 3.3583 3.4554 

Standard Error SEK Male - 0.0766 - 0.0766 

Kurtosis K Female 3.0040 3.0249 3.6599 3.4273 

Standard Error SEK Female - 0.1098 - 0.1098 

Marginal Statistic 
Cohort 
M: 4082 
F: 1986 

LnHeight 
Empirical 

LnHeight 
Theory 

LnWeight 
Empirical 

LnWeight 
Theory 

Mean 
Male mH  0.5624 - mW  4.4351 - 

Female mH  0.4869 - mW  4.2030 - 

Standard Deviation 
Male sH  0.0390 - sW  0.1654 - 

Female sH  0.0394 - sW  0.1604 - 

Skewness Sk Male −0.0090 0 -0.0193 0 

Standard Error SESk Male - 0.0383 - 0.0383 

Skewness Sk Female −0.0312 0 0.0361 0 

Standard Error SESk Female - 0.0549 - 0.0549 

Kurtosis K Male 3.0594 3 3.0295 3 

Standard Error SEK Male - 0.0766 - 0.0766 

Kurtosis K Female 3.0222 3 3.1094 3 

Standard Error SEK Female - 0.1098 - 0.1098 

Bivariate Statistic  r 
Empirical 

ρ  
Theory 

ρ  

Standard 
Error 
SEρ  

Pearson Corr. Coeff. 
Male 0.4716 0.4689 0.4689 0.0122 

Female 0.5387 0.5335 0.5359 0.0161 
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It is to be recalled that a random variable X is lognormal if its natural loga-
rithm, symbolized by lnY X= , is normal. As a matter of standard notation 
used in this paper, random variables are represented by upper case letters (e.g. 
X), and realizations of that variable (referred to as variates) are represented by 
lower case letters (e.g. x). Histograms of the natural logarithms of the ANSUR 
heights and weights, partitioned by gender, were shown in Part I to be satisfac-
torily described by PDFs of Gaussian form 

( ) ( )
( )2

22

2

1 e
2

H

H

y m

N s
H

H

p y
s

−
−

=
π

                     (2) 

( ) ( )
( )2

22

2

1 e
2

W

W

y m

N s
W

W

p y
s

−
−

=
π

.                    (3) 

A more detailed demonstration of the normality of lnH and lnW will be given 
in Section 6. From relations (2) and (3) follow the parent lognormal PDFs  

( ) ( )

( )( )2
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2

2
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s
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−
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s

W

W

p x
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−
−
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with location parameters ( ),H Wm m  and scale parameters and ( ),H Ws s  for 
height and weight, respectively. Numerical values of these parameters are given 
in Table 1.  

Superscripts N and Λ in the above PDFs signify normal and lognormal distri-
butions, as well as symbolize the associated random variables (RVs) 

( )
( )

2

2

, ln
e, Y

X m s Y X
XY N m s

= Λ =⇒ 
== 

 .                  (6) 

Note that parameters ( )2,m s  defining the random variables Y and X are the 
mean and variance of the normal variable Y. All statistics of the marginal distri-
bution of X are predictable in terms of the parameters ( )2,m s  of Y [11] [16]. 
For example, the mean Xµ , variance 2

Xσ , skewness XSk , and kurtosis XK  of 
X take the forms [17]  

21
2e

m s

Xµ
+

= .                         (7) 

( )2 22 2 2e e em s s
Xσ = −                       (8) 

( )2 2
e 2 e 1s s

XSk = + −                      (9) 

2 2 24 3 2e 2e 3e 3s s s
XK = + + − .                  (10) 
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1.2. Correlation of Height and Weight 

When analyzing lognormal variates, it is often strategically easier—indeed ne-
cessary—to work with the logarithms of the variates, since these are distributed 
normally. Figure 2 shows scatter plots (black) of the scaled variates of 

lnWY W≡  against scaled variates of lnHY H≡  for males and females respec-
tively in the ANSUR data set. The scaled variables ( ),U V   

( )
( )
ln

ln
H H

W W

U H m s

V W m s

≡ −

≡ −
                      (11) 

with variates ( ),u v  are measured with respect to their means and divided by 
their standard deviations, and are therefore dimensionless quantities distributed 
as standard normal variables of mean 0 and variance 1 if the variables H, W are 
lognormal. Figure 2 likewise clearly shows a strong linear correlation of U and 
V. The slope of the line of regression (dashed red) in each black scatter plot di-
rectly yields the corresponding Pearson correlation coefficient r [11] defined by 
 

 

Figure 2. Correlation of scaled log weight and scaled log height for males (top left) and 
females (top right) of the ANSUR population. Lower panels show corresponding scatter 
plots created with correlated lognormal random number generators using the same em-
pirical parameters. The patterns display a strong linear correlation. The Pearson correla-
tion coefficient is equal to the slope of the associated lines of regression (dashed). 
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( )( ) ( )cov ,H H W W H W

H W H W

Y m Y m Y Y
r UV

s s s s
− −

≡ = ≡           (12) 

where cov signifies covariance, as defined in Equation (12). Angular brackets are 
used in this paper to indicate expectation values. The scatter plots in red in Fig-
ure 2 were obtained by computer simulation using correlated lognormal RNGs, 
the details of which will be discussed in a later section. Suffice it to say at this 
point that the computer simulations employed the same distribution parameters 
that were extracted from the ANSUR height and weight data and are labeled 
( ), , , ,H W H Wm m s s r  for both male and female cohorts in Table 1. Lines of re-
gression (dashed blue) to the simulated scatter plots are nearly identical to those 
of the empirical plots. 

Once the correlation coefficient r has been determined empirically from the 
sample of normal variates ( ),u v , the correlation coefficient ρ  of the parent 
lognormal variables e HY

HX H≡ =  and e WY
WX W≡ =  can be calculated 

theoretically from the relation [11] 

( )( )22

e 1

e 1 e 1

H W

WH

rs s

thy
ss

ρ −
=

− −
                   (13) 

and compared with the empirical correlation coefficient obtained directly from 
the data according to  

( ) ( )( )cov , H WH W
emp

H W H W

H WX X µ µ
ρ

σ σ σ σ

− −
≡ =            (14) 

in analogy to Equation (12). The implementation of Equation (14) can be 
achieved algebraically and geometrically: 

1) Algebraic method: If ih  and iw  are variates of H and W, such as plotted 
in Figure 1, where 1, ,i n=  , then 

( )( )
1

1 n

emp i H i W
iH W

h w
n

ρ µ µ
σ σ =

= − −∑              (15) 

in the limit of large n.  
2) Geometric method: empρ  is equal to the slope of the line of regression in a 

scatter plot of the scaled variables ( )W WW µ σ−  against ( )H HH µ σ− . To 
deduce empρ  from the line of regression in the plot of the unscaled variables (H, 
W) in Figure 1, one multiplies the slope by the ratio of standard deviations 

H Wσ σ .  
Five parameters ( )1 2 1 2, , , ,m m s s r  are required to specify the PDF of two cor-

related bivariate normal RVs ( )1 2,Y Y   

( ) ( )
1 2

, 2
1 2, 2

1 2

2 2
1 1 1 1 2 2 2 2

2
1 1 2 2

1, e
2 1

1 2
1

YN N q
Y Y

Y

p y y
s s r

y m y m y m y mq r
s s s sr

−=
−

       − − − −
 = − +      −         

π



    (16) 
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from which is derived the PDF of the parent bivariate lognormal RVs ( )1 2,X X  
[11] 

( ) ( )

( ) ( ) ( )

( )

1 2

,
1 2, 2

1 21 2

2
1 1 1 1 2 2

2
1 1 2

2
2 2

2

21 e,
2 1

ln ln ln1 2
1

ln

X

X X

X

q
p x x

x xs s r

x m x m x m
q r

s s sr

x m
s

Λ Λ
−

=
−

 − − −    
= −    

−     
− 
+  
  

π

      (17) 

Double superscripts N and Λ signify that both variables are normal in PDF 
(16) and lognormal in PDF (17). The expectation operations in Equation (12) 
and Equation (14) are performed respectively with PDF (16) and PDF (17).  

If, as proposed in this paper, H and W are correlated bivariate lognormal va-
riables, then all measurable statistical information concerning adult human 
height, weight, and their correlations, should be predictable from their joint dis-
tribution Equation (17) in terms of the five parameters (2 means, 2 variances, 
and 1 Pearson correlation) that define a given population. This statement has 
important implications for the study of obesity and its associated illnesses. 

The BMI (1) was introduced by Quetelet in 1835 [18] and has been widely 
used up to present times by clinicians and epidemiologists as a proxy for obesity 
under the assumption that it correlates strongly with weight, but is independent 
of height. This assumption is itself predicated on a by-no-means obvious as-
sumption that human weight in a healthy adult population varies as the square 
of an individual’s height. These assumptions will be examined later in this paper 
both empirically and theoretically. It is to be noted at this point, however, that 
both assumptions have elicited criticism, e.g. [19] [20] [21], leading to proposals 
of alternative power-law measures such as the Benn Index [22] and Rohrer’s In-
dex [23], non-power law correlations such as [24] [25], and empirical parametric 
models such as [26], all purporting to determine more satisfactorily than BMI a 
single optimal relationship between human weight and height.  

With regard to the goal of capturing the relationship between height and 
weight, the following general statistical principles must be emphasized. First, an 
exact PDF of the bivariate distribution of two correlated random variables pro-
vides all the statistical information that can be learned about these two corre-
lated variables. And second, there is no single optimal mathematical expres-
sion—apart from the PDF and its equivalent transformations1—that completely 
captures the statistical relation between two correlated random variables. Rather, 
the PDF provides a potentially infinite number of mathematical expressions that, 
together, characterize the complete relation between the two variables. From a 

 

 

1These transformed functions are the characteristic function (CF), which is the Fourier transform of 
the PDF, and the cumulative distribution function (CDF), which is the integral of the PDF from 
some fixed point to the argument of the PDF. Thus, if ( )g x  is the CDF, then the PDF 

( ) ( )d df x g x x= .  
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practical standpoint, however, the number of testable expressions that can mea-
ningfully characterize the correlation of two variables is limited by the size of the 
sample, since the intrinsic uncertainty increases with the order (i.e. power) of 
the variables, and can eventually exceed the mean value for a fixed sample size. 
These points will be elaborated on in the following sections.  

1.3. Organization 

The remainder of this paper is organized as follows. 
In Section 2 the relation between weight (W) and height (H) is examined by 

means of the conditional expectation functions of W, given H. 
In Section 3 the proposition that human height and weight are correlated 

lognormal variables is tested by examining generalized correlation functions of 
data sets ( ),H W  and ( )ln , lnH W .  

In Section 4 the preceding data sets are each examined for nonlinear correla-
tions beyond those attributable to the bivariate lognormal distribution by a pro-
cedure known as distance correlation.  

In Section 5 the marginal distributions of ( ),H W  and ( )ln , lnH W  are 
tested against predictions of the univariate lognormal and normal distributions, 
respectively. 

Section 6 examines the implications of the distribution of ( ),H W  for the 
body mass index. 

Section 7 discusses the computer simulation of correlated lognormal variables. 
And last, the results of this comprehensive investigation are summarized and 

interpreted in Section 8. 

2. Conditional Expectation of Weight, Given Height 

The conditional expectation pW H  of pW  (for 1,2,p =  ) given H, de-
fined by the ratio 

( )
( ) ( )

( ) ( )

,
,

0

,
,

0

, d

, d

p
H W

p

H W

w p h w w
W h

p h w w

∞
Λ Λ

∞
Λ Λ

≡
∫

∫
,                 (18) 

is a function ( )pW h  of the continuous variate of H. Since ( )pW h  derives 
from the joint PDF of W and H, it is more informative than an empirical line of 
regression such as obtained by the method of least squares or, more generally, 
the method of maximum likelihood [27].  

Calculation of ( )pW h  in Equation (18) requires evaluation of two integrals 
whose kernel is the PDF ( ) ( ),

, ,H Wp h wΛ Λ  given by Equation (17). The integrals can 
be greatly simplified by the transformation (11) to variables2 ( )( )ln H Hu h m s= −  
and ( )( )ln W Wv w m s= − , which re-expresses the bivariate normal PDF (16) 
more simply in the form 

 

 

2Integration variables, in contrast to random variables, will be represented by lower case letters.  
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( ) ( ) ( )2 2
, 22

1 1, exp 2
2 12 1

U Vf u v u ruv v
rr

 
 = − − +
 −−  π

       (19) 

and, through the inverse transformation 

( )
( )

exp

exp
H H

W W

h m s u

w m s v

= +

= +
                      (20) 

leads to the conditional expectation  

( )
( )( ) ( )

( )

exp , d

, d

p
W W

p

s v m f u v v
W u

f u v v

∞

−∞
∞

−∞

+
≡
∫

∫
             (21) 

as a function of u. Both integrals in (21) are readily evaluated in closed form., 
after which replacement of the normal variable u in terms of the lognormal va-
riable h yields the general relation 

( ) ( )2 2 21exp 1
2

W Hprs s
p W W H W HW h h pm p s r prm s s = + − − 

 
.    (22) 

The conditional expectation of the thp  power of W is thus seen to have a 
power-law dependence on H with exponent W Hprs s . The lowest two orders p 
= 1, 2 are of primary interest 

( ) ( )2 2
1

1exp 1
2

W

H

rs
s H W

W W
H

rm s
W h h m s r

s
 

= + − − 
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          (23) 
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2 2
2
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exp 2 2 1

W

H

rs
s H W

W W
H

rm s
W h h m s r

s
 

= + − − 
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        (24) 

and yield the conditional variance and standard deviation 

( ) ( ) ( )( )
( ) ( )2 2 2 2

2
2 1

22 2 2 1 1

var |

e e e
H WW

W W WHH

r m srs m s r s rss

W H W h W h
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 
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( ) ( ) ( )

( ) ( )2 2 2 2
1
22 1 1

| var |

e e e
H WW

W W WHH

W

r m srs m s r s rss

h W H W H

h

σ σ
 

−  − − 

≡ =

 = − 
 

          (26) 

Substituting in Equations (23) and (26) the bivariant lognormal parameters 
for each gender cohort of the ANSUR sample listed in Table 1 leads to the ex-
pressions 

( ) ( )( ) ( )
( ) ( )( ) ( )

1.9987
1 M

2.1923
1 F

27.7071 4.0621

23.2156 3.1523
W

W

W h h h

W h h h

σ

σ

± = ±

± = ±
          (27) 

where subscripts M and F signify male and female, respectively.  
Plots of the conditional expectations ( )1W h  in Equation (27) comprise the 

solid blue curves superposed on the scatter plots in Figure 1. Although ( )1W h  
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is a power law and the line of regression (dashed red) is linear, the two curves 
are virtually indistinguishable over the densest part of the plots. However, it is 
important to bear in mind the conceptual difference between the two curves: the 
line of regression is merely a fit to data, whereas the mathematical relation (22), 
the specific exponent W Hprs s , and the numerical values in expressions (27) 
are predictions drawn from the lognormal PDF. Figure 3 graphically displays 
the full information content of relation (27) by displaying the regions of ±1 
standard deviation about the means for the two cohorts.  

The numerical values of the exponents in relations (27) bear out the funda-
mental assumption underlying the use of BMI that weight is a quadratic function 
of height in a healthy adult population. Nevertheless, for a different set of values 
of the parameters ( ), ,H Ws s r , such as may characterize a demographic different 
from the one represented by the ANSUR population, the lognormal predicted 
exponent could be different. 

3. Tests of Correlation Functions of Height (H) and Weight  
(W) 

Correlation functions of order (p, q), defined as follows 

( ), , ,
qp

WH
p q H W

H W

WHC s s r
µµ

σ σ
   −−

≡   
   

            (28) 

( ) ( ) ( )
,

ln ln
p q

H W
p q

H W

H m W m
R r

s s
− −   

≡    
   

,           (29) 

 

 

Figure 3. Plots of the conditional expectation ( )1W h  for male (solid blue line) and fe-

male (solid red line) of the ANSUR populations centered on regions (blue for males, red 
for females) of ±1 standard deviation ( )W hσ . The region of overlap appears purple.  
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generalize the standard covariance ( 1p q= = ) expressed in relations (12) and 
(14). Expectations (28) and (29) are to be implemented with the bivariate log-
normal PDF (17) where indices (p, q) independently take on integer values (1, 
2, …).  

As a matter of notation and terminology, evaluation of functions ,p qC  and 

,p qR  by substitution of empirical parameters for the arguments yield the nu-
merical correlation coefficients ,p qc , ,p qr , where 1,1r r≡  and 1,1c ρ≡  as con-
ventionally defined. If the proposition that ( ),H W  are bivariate lognormal va-
riables is valid, then ,p qc  and ,p qr  should be predictable from the arguments 
shown in Equations (28) and (29) and the parameters ( ), ,H Ws s r  listed by 
gender in Table 1. It is to be recalled that the first two parameters (standard 
deviations) were obtained empirically from the variates of the marginal distribu-
tions ln H  and lnW  of the ANSUR populations, whereas the third parameter 
(Pearson correlation coefficient) was obtained empirically from the joint distri-
bution of ln H  and lnW , such as exhibited in Figure 2. The associated sets of 
means ( ),H Wm m , which are also listed by gender in Table 1, drop out of rela-
tions (28) and (29) by virtue of their expressions as ratios. Further details are 
given in Part I [11]. To facilitate reading the tables to follow, indices of the cor-
relation functions and coefficients will be expressed as arguments, e.g. ( ),R p q  
and ( ),r p q  in the tables.  

Calculation of the correlation functions ,p qC  and ,p qR  requires evaluation 
of the expectation values 

( )
( ) ( ),

, ,
0 0

, d d
qp

WH
p q H W

H W

whC p h w h w
µµ

σ σ

∞ ∞
Λ Λ   −−

=   
   

∫ ∫           (30) 

( ) ( )
( )
( ) ( ),

, ,
0 0

ln ln
, d d

p q
H W

p q H W
H W

h m w m
R p h w h w

s s

∞ ∞
Λ Λ− −   

=    
   

∫ ∫ .      (31) 

As in the previous section, the two integrals can be greatly simplified by the 
transformation (11) to variables ( )( )ln H Hu h m s= −  and ( )( )ln W Wv w m s= − , 
which results in the bivariate normal PDF (19). Substitution for the means 
( ),H Wµ µ  and standard deviations ( ),H Wσ σ  by use of Equations (7) and (8) 
then leads to the operational expressions 

( ) ( ) ( )
2 222

1 122
2 2

, ,e 1 e 1 e 1 e 1 , d dH H W WWH

p q
qp s u s s v sss

p q U VC f u v u v
∞ ∞−− − −

−∞ −∞

   
= − − − −      

   
∫ ∫

(32) 

and  

( ), , , d dp q
p q U VR u v f u v u v

∞ ∞

−∞ −∞

= ∫ ∫ .                (33) 

In the symmetric case ( p q= ), the two correlation functions will simply be 
designated pC  and pR .  

The integral in relation (33) displays a number of symmetries: 1) , ,p q q pR R= , 
2) , 0p qR =  if p q+  is odd, otherwise 3) if p q+  is even, then ,p qR  is of 
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order dr  where d is the smaller of p and q. Symmetries (2) and (3) do not nec-
essarily hold for ,p qC . As a matter of terminology in the sections to follow, 

,p qR  and ,p qC  will be referred to as “asymmetric odd” if p q+  is odd and 
“asymmetric even” if p q+  is even. 

3.1. Calculation and Measurement of Correlation Functions ,p qR  

Because the correlation of U and V is determined entirely by the parameter r in 
the probability density ( ),f u v , it is useful to examine the structure of ( ),f u v  
graphically. The left panels of Figure 4 display a sequence of theoretical 
3-dimensional density plots for correlation coefficients r = 0.0, 0.5, and 0.95, 
which span nearly the entire positive range of r. The maximum r = 0.95 was 
chosen, rather than r = 1, because the latter value is simply a straight line coin-
cident with the diagonal axis. The right panels view the underside of the density 
plots, or, equivalently, the projection of the plots onto the ( ),u v  plane. In the 
top panels, vectors U and V are independent (r = 0), and ( ), ,U Vf u v  factors in-
to a product ( ) ( )U Vf u f v . Since the exponential in ( ), ,U Vf u v  for r = 0 is the 
sum 2 2u v+ , a transformation of variables converts that sum into the square of 
a radial variable, which accounts for the circular symmetry of the top right pan-
el. As the correlation coefficient increases toward +1, the density function profile 
becomes increasingly linear along the diagonal for which 0uv > , as clearly 
shown in the bottom panels. For 1r → − , the profile (not shown) would ap-
proach linearity along the diagonal for which 0uv < .  

Whereas the left side of Figure 4 shows the actual probability density profiles, 
the images on the right side show smooth shapes to which scatter plots of a sam-
ple of discrete paired variates ( ),i iu v , 1, ,i n=  , approach as n →∞ . This is 
borne out by Figure 5, which shows simulated plots of n = 2000 pairs of corre-
lated standard normal variates of increasing correlation coefficient r. In each 
panel, the quantity “rho” designates the correlation parameter supplied to the 
RNGs; the quantity “slope” is the slope of the line of regression (dashed blue), 
which equals the actual correlation coefficient of the simulated sample. The two 
numbers in each scatter plot are close, but not identical because the scatter plot 
comprises a finite random sample. The connection between the PDF ( ), ,U Vf u v  
and the scatterplot of ( ),U V  for each value of r is particularly clear when one 
compares the right side panels of Figure 4 to the corresponding plots of Figure 
5. The orientations of the two sets of figures may be different, but the distribu-
tions are invariant to orientation.  

Correlation function ( ),p qR r  expressed in Equation (33) can be evaluated in 
closed form, and depends only on the Pearson coefficient r. Table 2 lists the first 
six orders of the symmetric correlation functions and the most pertinent of the 
asymmetric correlation functions. It is seen that beyond the basic covariance 
(12), the higher-order symmetric correlations are increasingly nonlinear in r. 
Asymmetric correlation functions of the form ,1pR  in Table 2, where p is the 
exponent of the scaled variable for ln H , address the issue (referred to in the  
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Figure 4. Left Panels: Probability density profiles ( ),f u v  of correlated standard normal variates ( ),u v  for correlation coeffi-

cients r = 0 (top), 0.5 (center), 0.95 (bottom). Right Panels: Profiles as viewed from the underside of the associated density plots. 
The patterns are the smooth shapes of scatter plots of discrete samples in the limit of infinite sample size.  
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Figure 5. Simulated scatter plots of 2000 correlated pairs of standard normal variates with correlation coefficients increasing from 
0 to nearly 1. In each plot, “rho” is the numerical value of the correlation parameter supplied to the RNGs, and “slope” (of the line 
of regression) is the actual correlation coefficient produced by the simulation.  
 
Table 2. Correlation functions R (p, q) of powers of standard normal variables: Up and Vq. 

Symmetric Expectation Value Variance 

R (1, 1) r 21 r+  

R (2, 2) 21 2r+  ( )2 44 2 17 5r r+ +  

R (3, 3) 39 6r r+  ( )2 4 69 25 441 588 76r r r+ + +  

R (4, 4) 2 49 72 24r r+ +  ( )2 2 4 6 812 76 2441 7311 3896 276r r r r+ + + +  

R (5, 5) 3 5225 600 120r r r+ +  
(

)

2 2 4

6 8 10

15 3969 198225 1057200

1268240 362240 16064

r r

r r r

+ +

+ + +
 

R (6, 6) 2 4 6225 4050 5400 720r r r+ + +  
(

)

2 2 4 6

8 10 12

90 13334 960273 8001825 17070080

10972800 1950528 59072

r r r

r r r

+ + +

+ + +
 

Asymmetric  

R (2, 1) 0 23 12r+  

R (3, 1) 3r 215 81r+  

R (4, 1) 0 2105 840r+  

R (5, 1) 15r ( )2 23 105 1025r+  

R (6, 1) 0 ( )2 23 1155 13860r+  

R (3, 2) 0 ( )2 2 43 5 60 40r r+ +  

R (4, 2) 23 12r+  ( )2 2 43 34 552 544r r+ +  

R (4, 3) 0 ( )2 2 4 63 175 4200 8400 2240r r r+ + +  

R (5, 3) 345 60r r+  ( )2 2 4 615 63 1881 5016 2000r r r+ + +  

R (6, 4) 2 445 540 360r r+ +  ( )2 2 4 6 845 538 25848 129200 137792 29504r r r r+ + + +  
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Introduction) concerning how weight correlates with powers of height. Also 
listed are asymmetric correlation functions characterizing how powers of weight 
correlate with powers of height.  

Although the Pearson correlation coefficient r is the expectation value of a 
composite random variable UV, it is regarded here as a nondistributed quantity 
since the values of r for male and female cohorts used throughout this paper are 
fixed parameters extracted from the ANSUR data. The same is true of the means 
( ),H Wm m  and variances ( )2 2,H Ws s  for the male and female cohorts. The va-
riance of the correlation coefficient ,p qr  therefore characterizes only the varia-
tion of the product p qU V  in the defining integral and can be expressed by [28]  

( ) 2
, 2 ,2 ,var p q p q p qr r r= − .                     (34) 

It then follows that the standard error (se) of ,p qr  takes the form 

( ) ( ) 2
, 2 ,2 ,

,

var p q p q p q
p q

r r r
se r

n n
−

= =                (35) 

where n is the sample size. By the same reasoning, the standard error of the cor-
relation coefficient ,p qc  is  

( ) ( ) 2
, 2 ,2 ,

,

var p q p q p q
p q

c c c
se c

n n
−

= =               (36) 

since ,p qc  likewise depends on the fixed ANSUR parameters. In general, how-
ever, the distribution function and moments of even the lowest correlation coef-
ficient 1,1r  are difficult to obtain in closed form [29], and, at the time of writing, 
the author knows of no calculation in the literature of the exact closed-form dis-
tribution functions and moments of higher-order correlation coefficients of two 
normal or two lognormal variables. 

Theoretical and empirical ANSUR correlation coefficients ,p qr  are displayed 
in Table 3 for symmetric indices up to p = 6 and for a selection of asymmetric 
indices ranging from (2, 1) to (6, 4). For other correlation orders, the corres-
ponding standard errors were too large relative to the means for a comparison of 
theory and experiment to be meaningful. Examination of Table 3 shows striking 
agreement between lognormal theory and the ANSUR data.  

For all but two correlation coefficients of the female cohort listed in the table, 
the magnitude of the difference between theoretical (thy) and empirical (emp) 
coefficients did not exceed 1 standard error. In other words, assuming, as justi-
fied by the Central Limit Theorem [30], that the relative error  

( ) ( ), ,p q p qemp thy
z r r se r= −  follows a normal distribution, then rejection of the 

hypothesis , ,p q p qemp thy
r r=  at the conventional 5% threshold would require  

1.65z ≥  [31], which was not the case for any of the correlation coefficients of 
the female cohort. The relative errors of the two exceptional coefficients 3,2r  
and 4,3r  were approximately 1.074 and 1.243, respectively. 
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Table 3. Correlation coefficients r (p, q) of (Scaled lnH)p and (Scaled lnW)q. 

Correlation of 
Order (p, q) 

ANSUR Male (Nm = 4082) ANSUR Female (Nf = 1986) 

Symmetric Theory Empirical Theory Empirical 

r (1, 1) 0.4716 ± 0.0173 0.4716 0.5387 ± 0.0254 0.5387 

r (2, 2) 1.4448 ± 0.0769 1.5217 1.5804 ± 0.1208 1.6517 

r (3, 3) 4.8736 ± 0.5808 5.7232 5.7832 ± 0.9517 6.3744 

r (4, 4) 26.1998 ± 6.0103 36.9508 31.9151 ± 10.2693 34.9686 

r (5, 5) 171.8363 ± 79.6825 317.1787 220.4467 ± 141.8672 228.2331 

r (6, 6) 1400.7283 ± 1289.8011 3411.6961 1872.6315 ± 2392.8292 1705.9690 

Asymmetric 
(even p + q) 

    

r (3, 1) 1.4148 ± 0.0899 1.4668 1.6161 ± 0.1384 1.6800 

r (5, 1) 7.0739 ± 0.8568 7.8256 8.0804 ± 1.3408 8.3927 

r (7, 1) 49.5172 ± 11.6439 60.4761 56.5632 ± 18.3731 56.2658 

r (4, 2) 5.6688 ± 0.6364 6.4405 6.4823 ± 1.0323 6.4405 

r (5, 3) 27.5146 ± 6.4358 37.7596 33.6210 ± 10.9103 37.7596 

r (6, 4) 182.9017 ± 148.8452 330.3891 232.0216 ± 148.8452 242.3626 

Asymmetric 
(odd p + q) 

    

r (2, 1) 0 ± 0.0373 -0.0435 0 ± 0.0568 -0.0032 

r (4, 1) 0 ± 0.2674 -0.5132 0 ± 0.4162 -0.3299 

r (6, 1) 0 ± 3.0566 −6.8819 0 ± 4.8072 −4.7772 

r (3, 2) 0 ± 0.2117 −0.3896 0 ± 0.3387 −0.3637 

r (4, 3) 0 ± 1.8482 −5.1806 0 ± 3.0866 −3.8362 

r (5, 4) 0 ± 21.6387 −64.2309 0 ± 37.6773 −37.6538 

 
Relative errors of the male cohort were overall larger than those of the female 

cohort, although most did not exceed the 5% threshhold value of 1.65. Excep-
tions occurred primarily among the higher orders of the asymmetric odd coeffi-
cients whose theoretical means were zero and standard errors large. Under such 
circumstances, large deviations are to be expected and would require a larger 
sample size for resolution. Moreover, expressions (35) and (36) give lower limits 
for the standard errors since, in accordance with stated assumptions, they do not 
take account of the variation in lognormal parameters. It is therefore likely that a 
more exact estimate of the relative errors would be lower than those listed in 
Table 3.  

In summary, to appreciate how extensive and close is the agreement of the 
theoretical and empirical correlations displayed in Table 3, one must bear in 
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mind the following context. Theoretical predictions of ,p qr  were obtained from 
the bivariate normal distribution of ln H  and lnW ; empirical values of ,p qr  
were obtained from the natural logarithms of the raw ANSUR sample. If adult 
heights and weights were not distributed lognormally, then the comprehensive 
correspondence by pure chance, especially in the female cohort, of these two sets 
of numbers would be extremely improbable. For example, if either or both of the 
attributes of height and weight were themselves normally distributed, as had 
long been assumed, the logarithm of the variates would depart significantly from 
a normal distribution, as was demonstrated in Part I [11].  

Nevertheless, the results in Table 3 raise a curious question. Why does the fe-
male cohort appear to bear out the predictions of lognormal theory more closely 
than the male cohort despite the fact that the number of men sampled is about 
twice that of women? As discussed in Part I [11], the Anthropometric Survey of 
U.S. Army Personnel was undertaken to obtain data representative of the “Total 
Army” [15] with regard to making accurate decisions concerning clothing, pro-
tective equipment, workspaces, and other size-dependent, work-related matters. 
The survey measured more than 90 human attributes directly and compiled data 
demographically in terms of race, ethnicity, gender, age, and geographic loca-
tion. For the analyses in this paper and in Part I, the data were partitioned by 
gender only. Therefore, both the male and female cohorts can be regarded as di-
verse samples of fundamentally healthy adults. However, since there are consi-
derably fewer women in the U.S. Army than men, it is conceivable that, irrespec-
tive of other demographic characteristics, the women who joined the U. S. Army 
and took part in the ANSUR sample formed a more homogeneous group in re-
gard to body type and physical fitness than the men. Such an explanation would 
seem likely, since there is no biophysical basis to believe that male height and 
weight would be statistically distributed by a probability function of different 
mathematical form than female height and weight.  

3.2. Density Plots Associated with Correlation Functions ,p qR  

Whereas the correlation coefficients ,p qr  are single numbers quantifying the 
correlation of pU  and qV  (i.e. powers of the scaled variables of ln H  and 
lnW ) for a specified sample, the actual scatter plots of the two sets of variates 
yield a more comprehensive visual perspective of their correlation. Figure 6 
shows such plots for symmetric correlation coefficients of orders p = 2, 3, 4, 5 of 
the ANSUR male cohort (sample size 4082). The patterns for the female cohort 
are similar, although less dense (sample size 1986) and not shown.  

The correlations expressed in Figure 6 are highly nonlinear in two ways. 
Geometrically, the overall patterns of order 1p >  do not show a well-defined 
linear variation such as seen in Figure 2 for 1p = . And algebraically, the asso-
ciated theoretical correlation function is of order pr  in the Pearson correlation 
parameter, as summarized in Table 2. The four plots in Figure 6 illustrate the 
characteristic property that, with increasing order p, the density of points clusters  
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Figure 6. Empirical scatter plots of Vp against Up for p = 2 (top left), 3 (top right), 4 (bot-
tom left), 5 (bottom right), compiled from the ANSUR data. Patterns show a highly non-
linear correlation of weight and height. U is the scaled variable for lnH; V is the scaled 
variable for lnW. 
 
more tightly about the coordinate axes. Fluctuations for even p extend primarily 
into the first quadrant (since both variates are positive). Fluctuations for odd p 
extend primarily into the first and third quadrants for 0r >  (and into the 
second and fourth quadrants for 0r < ; not shown). 

The empirical patterns and properties in Figure 6 are reproduced nearly iden-
tically (apart from random fluctuations) in the computer simulated patterns 
shown in Figure 7. The simulations were created by means of correlated log-
normal RNGs using the ANSUR lognormal parameters in Table 1. The repro-
duction of empirical correlation scatter plots (and correlation coefficients) by 
computer simulation extends as well to asymmetric even and odd correlation 
functions, as displayed in Figure 8 for the pairs of variables ( )2 ,U V , ( )3 ,U V , 
and ( )3 2,U V . Plots in black are empirical; those in red are simulated for a pop-
ulation of corresponding size. Altogether, these results support the conclusion 
that the nonlinear correlations of height and weight stem exclusively from the 
properties of the lognormal distribution function and depend on no correlation 
parameters other than the Pearson coefficient r. 

Probability density functions for the correlated powers ( ),p qU V , which yield  
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Figure 7. Simulated scatter plots of Vp against Up for p = 2 (top left), 3 (top right), 4 
(bottom left), 5 (bottom right), obtained from correlated lognormal RNGs using the log-
normal parameters in Table 1. The shapes of the patterns and extent of fluctuations 
closely resemble the corresponding empirical plots in Figure 6. 
 

 

Figure 8. Empirical (black) and simulated (red) scatter plots of Vq against Up for the 
asymmetric orders (p, q) = (2, 1) (top), (3, 1) (middle), (3, 2) (bottom).  
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the patterns approached by scatter plots in Figures 6-8 in the limit of infinite 
sample size, can be constructed by means of the Dirac delta function as follows 

( ) ( ) ( ) ( ) ( ),
, ,, , d dp q p q

X Y U Vf x y f u v u x v y u vδ δ
∞ ∞

−∞ −∞

= − −∫ ∫ .        (37) 

The subscripts ( ),X Y  represent the random variables whose lower-case va-
riates are respectively px u= , qy v= . Powers of standard normal variables like 
U, V do not, in general, follow known, named distributions to which variables X 
and Y can be assigned [32]. A brief recapitulation of the properties and identities 
of the Dirac delta function is given in Part I [11] and in mathematical physics 
books [33]. The integral (37) can be evaluated in closed form, but gives rise to 
long, cumbersome expressions for 2p > , which will not be reproduced here.  

Plots of probability density (37) for the symmetric cases p = 2 and p = 3 are 
shown respectively in Figure 9 and Figure 10. Left-side panels show the density  
 

 

Figure 9. Left panel: Plot of the probability density ( ) ( )2 2 2
, ,X Yf u v  for r = 0.5. Right panel: 

View from the underside highlights the profile to which the scatter plot of V2 against U2 
in the top left of Figure 6 approches in the limit of infinite sample size.  
 

 

Figure 10. Left panel: Plot of the probability density ( ) ( )3 3 3
, ,X Yf u v  for r = 0.5. Right panel: 

View from the underside shows the profile approached by the scatter plot of V3 against U3 
in the top right of Figure 6 in the limit of infinite sample size.  
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patterns from above the ( ),p pu v  plane; right-side panels give complementary 
images from below. The function ( ) ( )2 2 2

, ,X Yf u v  in Figure 9 shows a concentra-
tion of probability along the vertical axis with density decreasing with distance 
into the first quadrant, as shown empirically in Figure 7 (top left). Function 

( ) ( )3 3 3
, ,X Yf u v  in Figure 10 (left side) sharply delineates the “cross” of probability 

density along the coordinate axes, whereas the projection of the pattern onto the 
( )3 3,u v  plane (right side) captures the point distribution in the corresponding 
plot of Figure 7 (top right). 

3.3. Calculation and Measurement of Correlation Functions ,p qC  

( ), , ,p q H WC s s r  in Equation (32) expresses the correlation of height and weight 
directly, rather than of their logarithms. The integral in Equation (32) can be 
evaluated in closed form of which the lowest orders pertinent to this paper are 
given in Table 4 for two arbitrary, but correlated, lognormal variables 1X  and 

2X  with bivariate parameter set ( )1 2 1 2, , , ,m m s s r . Beyond the symmetric order 
4p =  and asymmetric order ( ) ( ), 4, 2p q =  expressions for the functions be-

come overly long and not especially informative. Some points to note: 1) sym-
metric functions ( ), ,p H WC s s r  are invariant under the interchange of parame-
ters Hs  and Ws ; 2) asymmetric odd functions ,p qC  do not identically vanish, 
as do asymmetric odd ,p qR ; 3) none of the functions ,p qC  vanishes for r = 0, 
as do the functions ,p qR  (except those of the form ( )2 ,2R m n  where m, n are 
integers > 0). 

Substitution of the ANSUR parameters of Table 1 for male and female co-
horts into the functions of Table 4 and variance of Equation (36) yield the cor-
responding empirical correlation coefficients summarized in Table 5. Agree-
ment of the empirical values with lognormal theory is again excellent, apart from 
the highest orders where the standard errors are large relative to the means and 
signify that a larger sample size is required. 

4. Test for Nonlinear Correlations by the Method of Distance  
Correlation 

If adult human height and weight are bivariate lognormal variables, then all 
measures of their correlation must be calculable from the PDF (17). Evidence for 
the proposition of bivariate lognormality has been supported up to this point by 
the agreement of measured and lognormally predicted correlation coefficients 
and comparison of empirical and lognormally simulated probability density 
plots. The question remains, however, as to whether there may be nonlinear 
correlations beyond those intrinsic to the bivariate lognormal distribution. Cor-
relation of distances [12], provides a sensitive method for testing the indepen-
dence of random vectors. 

As initially presented by its developers, the term distance covariance (dCov) 
of two random vectors X and Y, defined by 

( ) ( ) ( ) ( ),, ,X Y X YV X Y g t s g t g s≡ − ,              (38) 

https://doi.org/10.4236/ojs.2022.125044


M. P. Silverman 
 

 

DOI: 10.4236/ojs.2022.125044 765 Open Journal of Statistics 
 

Table 4. Correlation functions C (p, q) of Lognormal variables 1
pX  and 2

qX  (Notation: ( ) ( )expE x x≡ ). 

Moments Bivariate parameters ( )1 2 1 2, , , ,m m s s r  

Means ( ) 2
1 1 1

1
2

X E m sµ  = + 
 

 ( ) 2
2 2 2

1
2

X E m sµ  = + 
 

 

Variances ( ) ( ) ( ) ( )( )2 2 2
1 1 1 12 2X E m E s E sσ = −  ( ) ( ) ( ) ( )( )2 2 2

2 2 2 22 2X E m E s E sσ = −  

Symmetric Expectation Value 

C (1, 1) ( )( )( ) ( )2 2
1 2 1 2

1 2

e 1 e 1 e 1s s r s s
−

− − −  

C (2, 2) 
( )( )( ) ( ) ( )

( ) ( ) ( ) ( )

2 2
1 2

1
2 2 2
1 2 1 2 1 1 2

2 2 2
2 1 2 1 2 1 2

e 1 e 1 4 2 2

2 2 4 3

s s E s s r s s E s r s s

E s r s s E r s s E s E s

−

− − + + − +

− + + + + − 

 

C (3, 3) 

( )( )( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

2 2
1 2

3 2
2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 1 2 2 1 2

2 2 2 2
1 2 1 2 1 1 2 2 1 2

2 2 2 2
1 2 1 2 1 2

e 1 e 1 3 3 9 3 3 6

3 3 6 3 3 3 3 3 3

9 4 9 2 9 2

9 3 3 3 3 5

s s E s s r s s E s s r s s

E s s r s s E s r s s E s r s s

E s s r s s E s r s s E s r s s

E r s s E s E s E s E s

−

− − + + − + +

− + + + + + +

+ + + − + − +

+ − − + + − 

 

C (4, 4) 

( )( )( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( )

2 2
1 2

3 2
2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2 1 2 1 2

2 2 2
1 2 1 2 1 1

e 1 e 1 6 6 16 16 3 3 9

36 4 6 6 8 6 6 8

4 6 3 12 4 3 6 12 24 3 6

24 3 6 4 6 4

s s E s s rs s E s s rs s

E s s r s s E s s rs s E s s rs s

E s s r s s E s s r s s E s s r s s

E s s r s s E s r s s

−

− − + + + + +

+ + + + + + + + +

− + + − + + − + +

− + + − +( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

2
2 2 1 2

2 2 2 2
1 1 2 2 1 2 1 1 2 2 1 2

2 2 2 2 2 2
1 2 1 2 1 2 1 2

4 6 4

16 3 3 16 3 3 24 2 24 2

16 6 6 4 3 4 3 6 6 7

E s r s s

E s rs s E s rs s E s r s s E s r s s

E r s s E s E s E s E s E s E s

− +

+ + + + − + − +

+ + + − − + + − 

 

Asymmetric Expectation Value 

C (2, 1) ( ) ( ) ( ) ( ) ( )( )2 2
1 2

1 1 2
2 2
1 1 2 1 2 1e 1 e 1 2 2 2s s E s r s s E r s s E s

− −

− − + − − +  

C (3, 1) 
( ) ( ) ( )( ( )

( ) ( ) ( ) )

2 2
1 2

3 2 1 2
2 2
1 1 2 1 1 2

2 2
1 2 1 1

e 1 e 1 3 3 3 2

3 3 3 3

s s E s r s s E s r s s

E r s s E s E s

− −

− − + − +

+ − + −
 

C (4, 1) 
( ) ( ) ( )( ( )

( ) ( ) ( ) ( ) ( ) )

2 2
1 2

2 1 2
2 2
1 1 2 1 1 2

2 2 2 2
1 1 2 1 2 1 1 1

e 1 e 1 6 4 4 3 3

6 2 4 6 4 3 6 4

s s E s r s s E s r s s

E s r s s E r s s E s E s E s

− −

− − + − +

+ + − − + − +
 

C (3, 2) 

( ) ( ) ( )( ( )
( ) ( ) ( )
( ) ( ) ( ) ( ) )

2 2
1 2

3 2 1
2 2 2 2
1 2 1 2 1 2 1 2

2 2 2
1 1 2 1 1 2 2 1 2

2 2 2
1 2 1 1 2

e 1 e 1 3 6 3 4

2 3 3 6 2 3 2

6 3 3 4

s s E s s r s s E s s r s s

E s r s s E s r s s E s r s s

E r s s E s E s E s

− −

− − + + − + +

− + + + + +

− + − − +

 

C (4, 2) 

( ) ( ) ( )( ( )
( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) )

2 2
1 2

2 1
2 2 2 2
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2 1 1 2 1 1 2

2 2 2
1 1 2 2 1 2 1 2 1

2 2 2
1 2 2

e 1 e 1 6 8 4 3 6

6 4 2 6 4 8 3 3

12 2 4 2 8 6

6 4 3 5

s s E s s r s s E s s r s s

E s s r s s E s r s s E s r s s

E s r s s E s r s s E r s s E s

E s E s E s

− −

− − + + − + +

+ + + − + + +

− + − + + +

+ − + −
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Table 5. Correlation coefficients c (p, q) of (Scaled H)p and (Scaled W)q. 

Correlation of 
Order (p, q) 

ANSUR Male 
(Nm = 4082) 

ANSUR Female 
(Nf = 1986) 

Symmetric Theory Empirical Theory Empirical 

c (1, 1) 0.4689 ± 0.0176 0.4689 0.5359 ± 0.0259 0.5335 

c (2, 2) 1.4805 ± 0.0930 1.5016 1.6239 ± 0.1476 1.6273 

c (3, 3) 5.6321 ± 1.0145 5.3520 6.6972 ± 1.6862 6.2098 

c (4, 4) 37.4678 ± 17.6228 29.1619 45.9161 ± 30.6070 32.5774 

Asymmetric     

c (2, 1) 0.0733 ± 0.0386 0.0360 0.0539 ± 0.0594 0.0909 

c (3, 1) 1.4246 ± 0.0972 1.4258 1.6303 ± 0.1514 1.6475 

c (4, 1) 0.6653 ± 0.3039 0.2072 0.7936 ± 0.4802 0.4785 

c (5, 1) 7.3582 ± 1.0496 7.1497 8.4395 ± 1.6738 8.0036 

c (3, 2) 0.8319 ± 0.2723 0.5211 0.4561 ± 0.4427 0.6455 

c (4, 2) 6.0898 ± 0.8993 5.8583 6.6411 ± 1.4904 6.6180 

c (4, 3) 7.3772 ± 3.5970 2.9937 3.7538 ± 6.1366 4.3204 

c (5, 3) 34.9370 ± 14.1979 28.1909 35.8100 ± 24.7631 32.5825 

 
is a measure of the difference between the joint characteristic function (CF) [28] 

( ) ( ) ( )( ), ,, , exp d dX Y X Yg t s f x y i tx sy x y= +∫∫            (39) 

and the product of the marginal CFs 

( ) ( ) ( )
( ) ( ) ( )

exp d

exp d
X X

Y Y

g t f x itx x

g s f x isy y

=

=

∫
∫

                  (40) 

As indicated in Equations (39) and (40), the CF Zg  is the Fourier transform 
of the corresponding probability density Zf  of some specific random variable 
or set of random variables Z .  

The actual evaluation of ( ),V X Y  in Equation (38), together with its proper-
ties and associated theorems, is given in Ref. [12]. For the purposes of this paper, 
sufice it to say that ( ),V X Y  involves a weighted integral of  

( ) ( ) ( ) 2
, ,X Y X Yg t s g t g s−  over the Fourier coordinates t, s. The associated 

quantity of distance variance (dVar), given by ( ),V X X  , would then be the 
same weighted integral over ( ) ( ) ( ) 2

, ,X X X Xg t s g t g s−  with analogous expres-
sions for ( ),V Y Y . The distance correlation (dCor), expressed by ( ),X YR , is 
then defined in terms of dCov and dVar by the relation 

( )
( )

( ) ( )
,

,
, ,

V X Y
X Y

V X X V Y Y
≡R .                  (41) 

Equation (41) resembles in form Equation (12) or Equation (14) for the Pear-
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son correlation coefficient, but its properties are significantly different, as well as 
its empirical evaluation. The author is unaware of any theoretical derivations of 
the probability density function or statistical moments of ( ),X YR . However, if 
X and Y are standard normal variables, then ( ),X YR  has been evaluated in the 
following closed form [12] 

( ) ( ) ( ) ( )
( )

2 2
, arcsin 1 arcsin 2 4 1

,
1 3 3

N N X Y
ρ ρ ρ ρ ρ ρ+ − − − +

=
+ π

−

−
R    (42) 

where the superscript (N, N) signifies the special case of bivariate standard nor-
mality, and ρ  is the associated Pearson correlation coefficient.  

4.1. Statistical Application of Distance Correlation (dCor) to  
Height and Weight 

The procedure for applying dCor to a statistical system is as follows: Given sam-
ples ( ),i ix y  for 1, ,i n=   of two random variables X and Y, construct the 
statistic 

, ,k l k l k lA a a a a= − − +
 

,                   (43) 

where ( ), 1, ,k l n=   and 

, ,
1

, ,2
1 , 1

1,

1 1,

n

k l k l k k l
l

n n

l k l k l
k k l

a x x a a
n

a a a a
n n

=

= =

 = − =

 = =


∑

∑ ∑





               (44) 

and the associated statistic  

, ,k l k l k lB b b b b= − − +
 

 ,                  (45) 

where 

, ,
1

, ,2
1 , 1

1,

1 1,

n

k l k l k k l
l

n n

l k l k l
k k l

b y y b b
n

b b b b
n n

=

= =

 = − =

 = =


∑

∑ ∑





               (46) 

The squares of the empirical dCov and dVar are then given by 

( )2
, ,2

, 1

1,
n

n k l k l
k l

V X Y A B
n =

= ∑                   (47) 

( )

( )

2 2
,2

, 1

2 2
,2

, 1

1,

1,

n

n k l
k l

n

n k l
k l

V X X A
n

V Y Y B
n

=

=

=

=

∑

∑
                   (48) 

from which follows the square of the empirical dCor 

( ) ( )
( ) ( )

2
2

2 2

,
,

, ,
n

n n

V X Y
X Y

V X X V Y Y
=R                (49) 

corresponding to Equation (41). The statistic ( ),n X YR  1) ranges between 0 
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and 1, 2) is 0 only if X and Y are independent, and 3) approaches the theoretical 
dCor ( ),X YR  in the limit of infinite sample size n [12]. 

4.2. Distance Correlation Test of the ANSUR Data 

In the sequence of analyses of the ANSUR data to follow, the pair of variables 
( ),X Y  was taken to be the scaled sets 1) ( ),H W , 2) ( )ln , lnH W , and 3) 

( )( )redln , lnH W . It is to be recalled that a “scaled” variable is in dimensionless 
form of zero mean and unit variance. The subscript “red” in set (3) indicates that 
the scaled variates of lnW  were reduced by subtraction of the regression of 
lnW  on ln H . The reason for this reduction and the way it was implemented 
will be clarified shortly.  

The algorithm (Equations (43) to (48)) leading to Equation (49) is straightfor-
ward to implement by computer. However, for sample sizes on the order of 
thousands, the computation time is impractically long. To circumvent this dif-
ficulty, a sampling procedure analogous to bootstrapping [34] [35] was em-
ployed.  

Each bivariate pair ( ),i ih w  of height and weight in the ANSUR data set is 
labeled by an index i , referred to here as the “participant number”, that ranges 
from 1 to the full sample size n, which is 4082mn =  for the male cohort and 

1986fn =  for the female cohort. Participants in the survey were apparently 
measured and recorded in random order, as shown in Figure 11, which displays 
scatter plots by gender of the scaled height and weight vs participant number. 
Although histograms of the variates, analyzed in part I [11], are precisely 
matched by lognormal distributions, the point density plots in Figure 11 are 
well represented by uniform distributions across the entire range of participants. 
In other words, each vertical slice of points of sufficient width contains a statis-
tical spread of variates equivalent to any other vertical slice of the same width. 
Given this uniform density, the ranges mn  and fn  were respectively parti-
tioned into 20 and 10 subgroups of 200 participants each, as shown in Figure 12. 
Distance correlation of height and weight was then evaluated for 50 consecutive 
participants in each subgroup, starting at the participant numbers marked by 
diamond plotting symbols in the figure.  

For example, 1dCor  was calculated from participants [200 - 249], 2dCor  
from partipants [400 - 449], and so on up to 20dCor  from participants [4000 to 
4049] for males and up to 9dCor  from participants [1800 to 1849] for females. 
As with standard bootstrapping, this method of calculating dCor by repeated 
sampling not only circumvented what otherwise would have been an excessively 
long computer calculation, but it also provided a vector of dCor values from 
which to estimate dCor uncertainty in the absence of a known statistical distri-
bution.  

The results of the analyses of distance correlation are summarized in Table 6.  
Section I of the table records the distance correlation of the scaled variables H 

and W. Particularly striking is the close agreement between the empirical values  
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Figure 11. Plots of height (left panels) and weight (right panels) of individual participants 
in the ANSUR sample: male cohort (top panels); female cohort (bottom panels). 
 

  
(a)                                   (b) 

Figure 12. Illustration of the resampling strategy for calculation of distance correlation of 
participants’ height and weight in the ANSUR population. Diamond plotting symbols 
mark participant numbers which begin each subgroup of 50 participants to be sampled 
over the range (a) 200 to 4000 (male cohort), (b) 200 to 1850 (female cohort). 
 
obtained from the ANSUR sample (columns 2 and 3 for male and female co-
horts, respectively) and values created by computer simulation using a bivariate 
lognormal RNG (columns 4 and 5 for the closely corresponding sample sizes 
4000 and 2000, respectively). Numerical values designated by “rho” at the top of 
columns 4 and 5 are the correlation parameters supplied to the RNG. These values  
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Table 6. Test of nonlinear correlations by means of distance correlation: ( )dCor ,X Y . 

Variables 
(X, Y) 

ANSUR 
Male 

(4082) 

ANSUR 
Female 
(1986) 

Simulation 
(4000) 

rho = 0.4716 

Simulation 
(2000) 

rho = 0.5387 

(I) ,H W

H W

H Wµ µ
σ σ
− −  

Mean dCor 0.4725 0.5004 0.4428 0.5099 

SE dCor 0.0259 0.0285 0.0231 0.0243 

Pearson ρ  0.4689 0.5335 0.4584 0.5359 

Theoretical dCor 0.4248 0.4860 0.4150 0.4883 

(II) ln ln,H W

H W

H m W m
s s
− −  

Mean dCor 0.4856 0.5027 0.4443 0.5032 

SE dCor 0.0272 0.0292 0.0228 0.1186 

Pearson r 0.4716 0.5387 0.4604 0.5030 

Theoretical dCor 0.4273 0.4910 0.4169 0.4570 

(III) ln ln ln,H W H

H W H

H m W m H mr
s s s

 − − −
−  

 
 

Simulation 
(4000) 
rho = 0 

Simulation 
(2000) 
rho = 0 

A. Repeated Sampling of Total Population (Sample Size 50) 

Mean dCor 0.2475 0.2454 0.2275 0.2382 

SE dCor 0.0119 0.0104 0.0081 0.0112 

Pearson Corr Coeff −4.1118 × 10−11 −4.1011×10−11 0.0171 0.0124 

Theoretical dCor 0 0 0.0152 0.0110 

B. Single Sample of Sub Population (Sample Size 1000) 

Mean dCor 0.0611 0.0676 - 0.0599 

Pearson Corr Coeff −0.0263 −0.0219 - 0.0213 

Theoretical dCor 0.0234 0.0195 - 0.0190 

 
(from Table 1) correspond to the empirical Pearson correlation coefficients of 
the variables ( )ln , lnH W . The empirical Pearson correlation coefficients ρ  
(columns 2 and 3) of the variables ( ),H W  are closely matched by the corres-
ponding values (columns 4 and 5) obtained by computer simulation. In short, 
the dCor values of Section I are consistent with attributing the entire correlation 
of height and weight, including any nonlinear contributions, to the bivariate 
lognormal distribution. 

Section II of the table records distance correlation of the scaled variables 
( )ln , lnH W . Computer simulated populations of sizes approximating the male 
and female ANSUR cohorts were generated by use of bivariate normal RNGs. 
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Agreement between empirical and corresponding computer simulated values is 
again very close, especially for the female cohort. The outcome indicates that the 
full correlation of ln H  and lnW  is attributable to the bivariate normal dis-
tribution which, in turn, derives from the parent lognormal distribution func-
tion.  

The distance correlation procedure tests random vectors for independence ir-
respective of their specific distributions, provided the first moments are finite 
[13]. It is a nonparametric test that can reveal correlations even when the Pear-
son correlation coefficient is null. However, if the Pearson correlation of two 
normal vectors is null, then those vectors are fully independent—i.e. there is no 
latent nonlinear correlation. Section III of the table exploits this point to ascer-
tain whether the correlation between height and weight exhibited in Figure 1 
and Figure 2 have a nonlinear contribution not attributable to the parent log-
normal or derived normal distributions.  

The basic idea is to subtract from the ordinate of each point in the scatter 
plots in Figure 2 the corresponding ordinate of the line of regression. For corre-
lations of scaled standard normal variables ( ),X Y , the line of regression takes 
the simple form y rx= , where r is the slope of the line and is equal to the Pear-
son correlation coefficient. A scatter plot is then made of the reduced scaled log 
weight 

( ) ( ) ( )ln ln lnW W H HredW W m s r H m s≡ − − −            (50) 

against the scaled log height ( )ln H HH m s− , as shown in Figure 13. The scat-
ter plots (black points) for male (left) and female (right) ANSUR cohorts exhibit 
the same isotropic patterns (apart from fluctuations) as the simulated scatter 
plot for null correlation (rho = 0) in Figure 5. Quantitatively, the slopes of the 
lines of regression (dashed red) of the reduced plots are respectively 

114.1118 10−− ×  (male cohort) and 114.1011 10−− ×  (female cohort). In other 
words, removal of the lines of regression from the empirical scatter plots of  
 

 

Figure 13. Scatter pattern (black points) and associated line of regression (dashed red) of 
zero slope signifying a null Pearson correlation of log weight and log height when the log 
weight variates were reduced by corresponding values of the line of regression (dashed 
blue) of the original scatter plot (cyan points).  
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scaled ( )ln , lnH W  has resulted in two normal random vectors of null Pearson 
correlation coefficient—and therefore presumably statistically independent. For 
comparison, the reduced scatterplots (black points) in Figure 13 are superposed 
on the original scatterplots (cyan points) of Figure 2 with their lines of regres-
sion (dashed blue). 

The dCor values in Section III provide quantitative confirmation of the statis-
tical independence of height and weight upon removal of the Pearson linear 
correlation. In the subsection A based on repeated sampling of the entire popu-
lation in samples of size 50, the empirical dCor values (approximately 0.25) 
agree closely with dCor values (approximately 0.23 to 0.24) produced by two in-
dependent standard normal RNGs. The small deviations are attributable in part 
to the fact that the resulting Pearson correlation coefficients of the simulated 
populations were not precisely 0, but in the range 0.01 to 0.02, a consequence of 
the fluctuations intrinsic to finite sampling.  

Potentially problematic is the discrepancy between the empirical (as well as 
simulated) dCor values obtained by repeated sampling and the values predicted 
by Equation (42), which should be close to 0 for two independent normal ran-
dom variables. However, Equation (42) is strictly valid only in the limit of an in-
finite population. Subsection B, based on single sampling of a much larger sub-
population of 1000 participants, shows that empirical dCor values dropped to 
approximately 0.06, in much closer agreement with Equation (42). Evaluation of 
the distance correlation of a sample of 1000 required computation times longer 
than 8 hours. Thus, to test rigorously whether dCor approaches 0 asymptotically 
as a function of sample size would require impractically long computation times.  

Altogether, the three sections of Table 6 consistently support the conclusion 
that the observed correlation between height and weight can be accounted for 
entirely by a bivariate lognormal distribution. In other words, the five parame-
ters defining the bivariate lognormal distribution of height and weight suffice to 
predict any measureable function or test of the correlation of height and weight 
of a healthy adult human population. 

5. Marginal Statistics of ANSUR Height and Weight Data 
Previous sections concentrated on the bivariate lognormal correlation of height 
and weight. This section examines the marginal statistics of H and W, which are 
predicted to follow the respective univariate lognormal distributions ( )2,H Hm sΛ  
and ( )2,W Wm sΛ , and on lnH and lnW, which are predicted to follow the respec-
tive univariate normal distributions ( )2,H HN m s  and ( )2,W WN m s  as discussed 
in Section 1.1. 

Table 7 summarizes the outcomes of chi-square tests of fitness of the four va-
riables H, W, lnH, lnW to their respective distributions, identified explicitly in 
column 3. As a reminder, the chi-square statistic 2

νχ , in column 7 of the table, is 
determined empirically from the relation 

( ) ( )2
2

1

1 i i

emp i i

O E
E

κ

νχ κ =

−
= ∑                   (51) 
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Table 7. Chi-square tests of goodness of fit of ANSUR height and weight. 

Test 
Variable 

Cohort: 
M (4082) 
F (1986) 

Distribution 
Critical 
Value 

d.o.f P-Value 
2
νχ  

Statistic 

Height H 
Male ( )20.5624,0.0390Λ  82.529 63 0.5952 59.686 

Female ( )20.4869,0.0394Λ  60.481 44 0.1754 52.600 

Weight W 
Male ( )24.4351,0.1654Λ  82.529 63 0.9694 43.720 

Female ( )24.2030,0.1604Λ  60.481 44 0.6225 40.498 

Log Height 
lnH 

Male ( )20.5624,0.0390N  82.529 63 0.3626 66.339 

Female ( )20.4869,0.0394N  60.481 44 0.2700 49.287 

Log Weight 
lnW 

Male ( )24.4351,0.1654N  82.529 63 0.7587 54.828 

Female ( )24.2030,0.1604N  60.481 44 0.3201 47.826 

 
where κ  is the number of test categories (bins), iO  is the observed value in 
the ith bin, and iE  is the expected value in the ith bin. The subscript ν  (Greek 
nu) is the number of degrees of freedom (d.o.f.) in column 5 equal to 1κ − . The 
chi-square tests were implemented with the Maple Statistics Package, which de-
termined the number of bins as the integer closest to the square root of the sam-
ple size. The critical values in column 4 of the table are the values of 2

νχ  result-
ing in P-values of 5%, which is the conventional threshhold of statistical signi-
ficance; i.e. a tested hypothesis is deemed unsupported if the P-value is below 
threshhold. A P-value is the probability of obtaining a test result at least as ex-
treme as the observed result 2

obsχ , and is calculated from the expression 

( )2
2
obs

dP p z z
νχ

χ

∞

= ∫                        (52) 

with chi-square PDF 

( )
( )2

1 1 22

2

e
2 2

zzp z
ν

ν

νχ ν

− −

=
Γ

.                     (53) 

The outcomes summarized in the table show that all 8 propositions (the dis-
tributions of 4 variables of 2 genders) passed their respective chi-square tests 
with P-values far above threshhold. This means that the propositions cannot be 
rejected on the basis of these tests. It does not necessarily mean, however, that 
the propositions are true.  

For further confirmation, consider again the information in Table 1. In the 
first section of the table, empirical values of the mean, standard deviation, skew-
ness, and kurtosis of ANSUR heights H and weights W are compared with cor-
responding values predicted by lognormal expressions (7) to (10), based on the 
parameters in the second section of the table, derived from the variates of lnH 
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and lnW. Agreement of experiment and theory is seen to be within 1 standard 
error (se) in most cases. Table 1 employed the following published estimators of 
the standard errors for skewness and kurtosis [36]  

( ) ( )
( )( )( )

6 1
2 1 3Sk

n n
se n

n n n
−

=
− + +

                 (54) 

( ) ( )
( )( )( )

2

2

6 1
2

2 5 9K

n n
se n

n n n
−

=
− + −

.               (55) 

In the second section of Table 1 the empirical skewness of both lnH and lnW 
for both cohorts are close to zero, as expected for normal variables. Likewise, the 
empirical kurtosis is very close to 3, as expected for normal variables. Skewness 
is a measure of the asymmetry of a distribution about the mean. Kurtosis (from 
the Greek root for “bulging”) is a measure of the curving or arching of the tails 
of a distribution; in other words, kurtosis is an indicator of the extent of outliers, 
relative to the normal distribution. 

Ordinarily, standardized statistical moments employed in physical science and 
medicine include at most only the first four orders (mean, variance, skewness, 
kurtosis). Beyond these, higher standardized moments, such as “hyperskewness” 
and “hyperkurtosis” [37], are rarely used in the author’s experience, presumably 
because they are less readily interpetable as well as have greater measures of un-
certainty for a given sample size. Nevertheless, in testing a proposed statistical 
distribution, it is useful to examine these higher moments, particularly if the va-
lidity of all lower moments has been confirmed. 

In the terminology and notation of this paper, the hyperstatistic ( )pS X  of 
the random variable X is the pth standardized central moment defined by the re-
lation 

( )
( )

( )

( )
( )2 22

2

p
X p

p p p

X

X X
S X

XX

µ µ
µµ

−
≡ ≡

−
              (56) 

where Xµ  is the mean of X, and ( )p Xµ  is the mean of the random variable  

( ) ( ) p
p Xm X X µ≡ −                     (57) 

referred to as the pth central moment. To simplify symbolic notation in the en-
suing text, the argument (X) will be omitted whenever the context is clear. 

Substitution in relation (56) of the univariate lognormal PDF, mean, and va-
riance leads to the operational expression 

( )
( )

( )

2

2 2

1
2

22

e e d

e e

p
ssu

X

p p
s s

p u u
S X

∞
Λ

−∞

 
−  

 =

−

∫
              (58) 

where s is the standard deviation of the variable lnX. Skewness and kurtosis cor-
respond respectively to p = 3, 4. Table 8 lists the theoretical expressions for 
hyperstatistics of order 1 through 6 derived from relation (58). 
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Table 8. Theoretical hyperstatistics of univariate lognormal distribution.  
(Notation: ( ) ( )expE x x≡ ). 

Statistic Expectation Value 

( )1S X  0 

( )2S X  1 

( )3S X  ( )2 2
3

2 2 2 22 9 5 3e e 3 2
2 2 2

s s E s E s E s
−       − − +      

      
 

( )4S X  ( ) ( ) ( )2 2 24 2 3 3 2 3E s E s E s+ + −  

( )5S X  ( )2 2
5

2 2 2 2 2 22 25 17 11 7 5e e 5 10 10 4
2 2 2 2 2

s s E s E s E s E s E s
−           − − + − +          

          
 

( )6S X  
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

2 2 2 2 2

2 2 2 2

12 3 11 6 10 10 9 15 7

10 6 15 4 20 3 15 2 5

E s E s E s E s E s

E s E s E s E s

+ + + +

+ − − − +
 

 
Table 9 summarizes the empirical results for hyperstatistics of orders p = 5, 6 

for the variables H and W of the ANSUR population. The empirical entries 
(column 3) are the sample statistics 

( )
( )

( ) ( )
22

1 12
2

1 1
p

n npp
p i ipemp

i i

m
S X x x x x

n n
m = =

 = = − − 
 

∑ ∑       (59) 

where x  is the sample mean  

1

1 n

i
i

x x
n =

= ∑                           (60) 

and the numerator  

( )
1

1 n p
p i

i
m x x

n =

= −∑                       (61) 

is the expectation of the sample pth central moment (57). Theoretical entries in 
column 4 were calculated from Equation (58). Overall, agreement between 
theory and experiment appears reasonably close, but several statistics show what 
may be significant deviations. To ascertain whether any deviation between 
theory and experiment is statistically significant requires knowing the standard 
error of the mean statistic, but the author is unaware of any published expres-
sions for the distributions or standard errors of hyperskewness and hyperkurto-
sis. To estimate the pertinent standard errors, three independent approaches 
were taken. 

The first approach was to use the approximations of error propagation theory 
[38] together with expressions for variance and covariance of central moments 
in Chapter 10 of Ref. [28] to derive an estimate of the variance of hyperstatistic 

( )pS X   
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Table 9. Test of hyperstatistics of height and weight of ANSUR population. 

Hyperstatistic Sp(X) 
p = (5, 6) X = (H, W) 

Cohort 
M: 4082 
F: 1986 

Empirical Theory 
Simulation 

M: 4082 
F: 1986 

( ) ( )5 5
5 H HS H H µ σ= −  

Mean ( )5S H  

male 0.9679 1.1784 
0.5997 
1.0966 
1.1013 

female 0.4836 1.1907 
0.6304 
1.2628 
0.5685 

Standard Error ( )5S H  
male 0.3983 0.4518 0.5016 | 0.1664 

female 0.4835 0.6487 0.6943 | 0.2218 

( ) ( )5 5
5 W WS W W µ σ= −  

Mean ( )5S W  

male 4.8791 5.6489 
7.6398 
4.7215 
5.6557 

female 6.5463 5.4361 
4.1332 
3.7024 
5.9618 

Standard Error ( )5S W  
male 0.5518 1.0841 2.9183 | 0.8604 

female 1.3757 1.4869 2.2594 | 0.6926 

( ) ( )6 6
6 H HS H H µ σ= −  

Mean ( )6
HS  

male 15.6714 15.5060 
15.9807 
13.5489 
14.4296 

female 14.3941 15.5165 
13.1332 
15.0664 
13.1147 

Standard Error ( )6
HS  

male 1.0394 1.4580 2.8475 | 0.7108 

female 1.1307 2.0974 1.9517 | 0.6475 

( ) ( )6 6
6 W WS W W µ σ= −  

Mean ( )6S W  

male 21.3981 25.4523 
38.8263 
21.0697 
26.7901 

female 29.0534 24.7436 
18.5144 
17.0547 
24.5282 

Standard Error ( )6S W  
male 1.9545 6.0795 17.7566 | 5.2329 

female 6.0559 8.1822 7.4735 | 2.2870 
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( ) ( )
( ) ( )

2 2

2 22 1
2 2 2

var
var var cov ,

4
p p k

p kk k k

m p p
S m m m

µ µ
µ µ µ+ += + −       (62) 

in which  

( ) 2 2 2
2 2 1 1 1var 2p p p p p pm p pµ µ µ µ µ µ− − += − + −            (63) 

and  

( ) 2 1 1 1 1 1 1cov ,p q p q p q p q p q p qm m pq p qµ µ µ µ µ µ µ µ µ µ+ − − − + + −= − + − − . (64) 

The standard error is then 

( ) ( )var p
p

S
se S

n
= .                    (65) 

Theoretical evaluations of Equation (65) by means of the univariate lognormal 
PDF are recorded in column 4. 

The second approach was to evaluate the means of all moments in Equation 
(62) by their sample expectations given by Equation (61). The resulting empiri-
cal standard errors are recorded in column 3.  

In the third approach three independent simulations of the male and female 
ANSUR populations were made with correlated lognormal RNGs representing 
the variables H and W, from which empirical values of the individual hypersta-
tistics were obtained. The three values for each hyperstatistic (p = 5, 6) of the 
two variables (H, W) for the two genders (M, F) are listed in column 5 in the 
cells for the mean of ( )pS X . The sample standard error of each set of 3 inde-
pendent means was calculated from the relation 

( )( )
( )

( ) ( )( )
3 2

1

1
1

p p pk
k

se S X S X S X
n n =

= −
−

∑          (66) 

and recorded as the first entry in the cells for standard error in column 5. Note 
that n is Equation (66) is 3 and not the ANSUR population size of 4082 males or 
1986 females. Also, because a sample size of 3 is statistically small, one uses the 
unbiased sample estimate of variance in Equation (66) in which the denominator 
is 1n −  [39]. The second entry (separated from the first by a vertical bar) is the 
difference between the largest and smallest of the three estimated means of each 

( )pS X .  
In examining the three sets of estimated standard errors, one sees that they are 

approximately of the same magnitude, and that the empirical values of the 
hyperstatistics agree with theory within 2se±  for at least one of the three esti-
mates. However, one glaring exception is the value of ( )( )6 Mse S W  for the 
male cohort obtained by simulation, which is much larger than the other stan-
dard errors for the same statistic. This occurs because of what appears to be an 
exceptionally high value (~38) of the mean of ( )6 MS W  returned by one of the 
simulations. This occurrence raises an important conceptual issue that calls for 
caution when estimating standard errors under conditions where the exact sta-
tistical distribution is unknown.  
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As pointed out in Chapter 10 of Ref [28], the approximations based on error 
propagation theory (or some variant thereof) give a valid measure of precision 
provided that the distribution of the statistic approaches normality in the limit 
of a sufficiently large sample. This is not the case for higher orders of the hyper-
statistics. The mere fact that a mean value of the statistic ( )6 MS W  can arise 
within just 3 simulations that is 6 times the theoretical and 17 times the empiri-
cal standard errors of error propagation theory shows that such outlying values 
occur with much higher probabilities than would be predicted by a normal dis-
tribution. Under such circumstances, the appropriate way to proceed is to de-
termine whether the empirical mean values of the hyperstatistics fall within the 
range between the lowest and highest corresponding statistics obtained by simu-
lation; in other words to rely on a kind of Monte Carlo validation. Evaluated this 
way, all the empirical hyperstatistics in Table 9 are seen to be consistent with 
theory.  

Taken together, the chi-square tests and agreement of theoretical and empiri-
cal moments (or functions of moments) up to the 6th power of the variables 
support the propositions that H and W are marginally lognormal variables. 

6. Implications for Body Mass Index (BMI) 

The BMI, defined by the random variable B in Equation (1), has long been used 
as a measure of obesity and a risk factor for associated diseases under the as-
sumption that it is correlated with weight but largely independent of height. In 
Section 2 the conditional expectation function of weight, given height, was de-
rived on the basis of lognormal theory and shown to be very nearly a quadratic 
power law ( ) 2W H H∝  (27) for the ANSUR male and female cohorts. If 
weight varies as the square of height, then the BMI (1) would be unaffected by 
variations in height, or, in other words, statistically independent of height.  

Figure 14 provides additional justification of the BMI assumption. The left 
panels of the figure display scatter plots of the correlation of scaled BMI and 
scaled height for the ANSUR male cohort (top), ANSUR female cohort (middle), 
and RNG simulated female cohort (bottom). The isotropic patterns (apart from 
fluctuations) are very close to what are expected for the correlation of indepen-
dent vectors, as shown in the first panel of Figure 5. Quantitatively, the lines of 
regression (dashed red for ANSUR, dashed blue for simulation) yield Pearson 
correlation coefficients 32.096 10−×  (male), 25.406 10−×  (female), and  

26.700 10−×  (simulation). The three sets of variables are not standard normal 
variables, so a null Pearson correlation does not necessarily imply total inde-
pendence.  

However, evaluation of the distance correlation of the scaled variables ( ),H B  
for the male and female cohorts (black points) respectively yielded by the me-
thod of repeated sampling empirical dCor values of 0.2475 ± 0.0116 and 0.2301 
± 0.0147, which are statistically equivalent to the dCor value for correlation of 
independent standard normal variables generated by computer simulation  
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Figure 14. Scatter plots of body mass index (BMI) with height (left panels) and weight 
(right panels). Patterns in black were calculated from the ANSUR population of male (top 
panels) and female (middle panels) cohorts. Patterns in red (bottom panels) were simu-
lated for a population of 2000 (corresponding to the size of the female cohort) by means 
of correlated bivariate lognormal RNGs. The slopes of the lines of regression (dashed red 
or dashed blue) of the left panels are close to zero, signifying independence of BMI and 
height. The slope of the lines of regression of the right panels are close to 0.88 for the 
male cohort and 0.87 for the female cohort. 
 
(red points). It is therefore reasonable to conclude that, if the ANSUR popula-
tions can serve as baselines, then the BMI and height of healthy adult male and 
female populations are largely statistically independent.  

By contrast, the right panels of Figure 14 (black for empirical and red for si-
mulation) show that BMI and weight are strongly linearly correlated, which was 
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a desirable characteristic of the BMI. The Pearson correlation coefficients are 
respectively 0.8814 (male cohort), 0.8706 (female cohort), and 0.8755 (simula-
tion of female cohort) as deduced algebraically from Equation (15) or from the 
slopes of the lines of regression.  

7. Computer Simulation of Correlated Lognormal Random  
Vectors 

Throughout this paper computer simulation of correlated random variables 
(RVs) has been employed for both analytical and graphical comparisons with 
corresponding empirical results. A brief description of the implementation of 
these simulations is given in this section.  

The essential objective is the simulation of a pair of correlated lognormal RVs 
of specified parameters ( )1 2 1 2, , , ,m m s s r . The starting point for the construction 
is the well-known algebraic identity for decomposition of a general normal va-
riable [16] 

( ) ( )2
1 1 1 1 1 1, 0,1N m s m s N= +                   (67) 

( ) ( )2
2 2 2 2 2 2, 0,1N m s m s N= +                  (68) 

where ( )1 0,1N  and ( )2 0,1N  are independent standard normal variables (ISNVs) 
of mean 0 and variance 1 that serve as basis states. Each ISNV represents a ran-
dom number generator (RNG) of one’s mathematical software. Populations of 
size n are simulated by creating sets of n variates from each ISNV. The cova-
riance ( )( ) ( )( )2 2

1 1 1 1 2 2 2 2, ,N m s m N m s m− −  is theoretically 0 (because  
( ) ( )1 20,1 0,1N N  is zero) and empirically should approach 0 numerically in 

the limit of increasing sample size n. 
To create a normal RV ( )2

2 2 2, ,cN m s r  correlated with the RV in Equation 
(67), one makes the following linear superposition 

( ) ( ) ( )2 2
2 2 2 2 2 1 2 2, , 0,1 1 0,1cN m s r m rs N r s N= + + − .        (69) 

Note that, according to the algebraic rules [16] that govern manipulation of 
independent normal RVs, 

( ) ( ) ( ) ( ) ( )2 2 2 2
1 2 1 20,1 0,1 0, 0, 0,aN bN N a N b N a b+ = + = + ,     (70) 

where a and b are constants, one could combine the second and third terms in 
the right side of Equation (69) to recover the marginal distribution represented 
by Equation (68), since the correlation parameter r drops out. The set of RVs 
(67) and (69) then comprise a pair of correlated bivariate normal RVs, which, 
when implemented numerically on a computer, generate the respective variates 
( )1, 2,,i iy y  for 1, ,i n=  . In the context of simulating samples of human height 
and weight, these variates are 

( )
( )

1,

2,

ln

ln
i i

i i

y h

y w

=

=
                        (71) 

Once one has created the sets of normal variates (71), it remains only to ex-
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ponentiate them  

( )
( )

1, 1,

2, 2,

exp

exp
i i i

i i i

x y h

x y w

= =

= =
                       (72) 

to simulate a sample of correlated bivariate lognormal RVs. With some mathe-
matical applications such as Maple, one can work with the abstract vectors and 
simply enter a statement like ( )expX Y= , whereupon the application will know 
to exponentiate the individual variates as in relation (72). Thus, the bivariate 
lognormal vectors corresponding to Equations (67) and (69) generated by Maple 
were defined and implemented by the forms 

( ) ( )( )2
1 1 1 1 1 1, exp 0,1m s m s NΛ = +                  (73) 

( ) ( ) ( )( )2 2
2 2 2 2 2 1 2 2, , exp 0,1 1 0,1c m s r m rs N r s NΛ = + + −        (74) 

For completeness, a final comment as to the actual nature of the RNGs em-
ployed in this paper is called for. All RNGs that employ a mathematical algo-
rithm, in contrast to RNGs based on some random quantum process such as ra-
dioactive decay [40], generate pseudo-random numbers. These are sets of num-
bers that are generated reproducibly from a known starting point (seed value), 
yet nevertheless pass diverse statistical tests for randomness. The more stringent 
a test, and the more tests a RNG passes, the better is the RNG.  

The MersenneTwister algorithm supplied by the Maple RandomTools Sub-
package has passed the diehard tests of randomness [41] by G. Marsaglia as well 
as other tests, and provides numbers that can be considered cryptographically 
secure [42] [43]. It is safe to accept, therefore, that the independent normal basis 
states with which the simulation algorithm began and from which the correlated 
bivariate lognormal distributions were created were for all practical purposes 
sufficiently uncorrelated.  

8. Conclusions and Interpretation 

Knowledge of the exact distribution function of a random quantity provides the 
most complete statistical information attainable about that quantity. This is es-
pecially important in regard to anthropometric attributes the statistics of which 
are essential to clinical medicine and epidemiology. 

The fundamental conclusion of this paper is that human height H and weight 
W in a population of healthy adults are statistically distributed as correlated bi-
variate lognormal random variables. Moreover, for all practical purposes, this 
distribution is thought not to be approximate, but empirically rigorous in sam-
ples of sufficient size. This means that five measurable parameters, comprising 
two means ( ),H Wm m , two variances ( )2 2,H Ws s , and the Pearson linear correla-
tion coefficient (r), suffice to determine all statistical attributes (probabilities, 
moments, correlations) regarding the relation of height and weight in a specified 
population.  
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In support of this conclusion, detailed statistical analyses of an extensive anth-
ropometric data base of diverse individuals have shown the following: 
 The variates of H and W of both gender cohorts satisfy chi-square tests of 

fitness to univariate lognormal distributions. 
 The variates of lnH and lnW of both gender cohorts satisfy chi-square tests of 

fitness to univariate normal distributions.  
 The sample moments of ( ),H W  up to 6th order are consistent with the 

lognormal distribution. 
 The sample moments of ( )ln , lnH W  up to 6th order are consistent with the 

normal distribution. 
 Theoretical correlation functions ( ),p qR r  of the normal distribution predict 

correctly the sample correlation coefficients ,p qr  of the variates of 
( )ln , lnH W . 

 Theoretical correlation functions ( ), , ,p q H WC r s s  of the lognormal distribu-
tion predict correctly the sample correlation coefficients ,p qc  of the variates 
of ( ),H W . 

 Computer simulations using correlated lognormal random number genera-
tors (RNGs) produce correlation functions and probability density plots of 
the variables ( ),H W  that statistically match the corresponding empirical 
functions and plots. 

 Computer simulations using correlated normal (RNGs) produce correlation 
functions and probability density plots of the variables ( )ln , lnH W  that sta-
tistically match the corresponding empirical functions and plots. 

 Empirically measured distance correlation (dCor) values of the variables 
( ),H W  agree with dCor values obtained from comparably sized populations 
simulated by correlated lognormal RNGs. 

 Empirically measured distance correlation (dCor) values of the variables 
( )ln , lnH W  agree with dCor values obtained from comparably sized popu-
lations simulated by correlated normal RNGs. 

 Removal of the line of regression in the empirical density plot of lnW vs lnH 
produces an isotropic density with null Pearson correlation coefficient. The 
density plot, null Pearson correlation coefficient, and dCor values statistically 
match the corresponding outcomes from two independent normal RNGs. 

In short, taken altogether, the preceding extensive set of tests supports the 
proposition that the distribution and correlation of height and weight of a healthy 
adult human population are fully accounted for by a bivariate lognormal distri-
bution.  

A secondary point worth noting, given the importance of body mass index 
(BMI) to current medicine and epidemiology, is that the conditional expectation 
of weight, given height, theoretically derived from the lognormal distribution 
function yielded functional relations (23), (24) between weight and height. These 
functions, when evaluated with the lognormal parameters of the ANSUR male 
and female cohorts, led in both cases to a nearly exact quadratic power law (27), 
thereby justifying theoretically a long-held assumption underlying the use of 
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BMI as a risk factor for obesity-related diseases.  
In concluding this paper, it is useful to clarify what is meant by an “exact” sta-

tistical distribution. In the opinion of the author, who is an atomic and nuclear 
physicist, statistical distributions in science can arise, broadly speaking, in two 
ways.  

The most fundamental way is as a consequence of a particular dynamical 
model. In physics, for example, the decay of radioactive nuclei is rigorously ac-
counted for by a binomial probability function, based on a physical model of the 
independent decay of discrete, uncorrelated nuclei [44]. If the assumption of in-
dependence were found to be invalid—and there have been a considerable number 
of such challenges, only to have been debunked by more careful experiment and 
analysis [45] [46] [47] [48]—the discovery would have led to deep new insights 
into the structure and behavior of matter.  

The second, less fundamental way, but nevertheless one of practical utility, is 
by empirical recognition and subsequent verification. To return to the previous 
physics example, suppose that the phenomenon of radioactive decay was dis-
covered before there was any understanding or general acceptance of atoms as 
discrete units of matter3. Then radioactive decay would have been empirically 
observed to be a Poisson process, and, indeed, the Poisson distribution is widely 
depicted in books as a rigorous physical law. (See, for example [49].) However, 
in retrospect, a Poisson process can be interpreted as a degenerate case of a bi-
nomial process in the limit of a large number N of radioactive atoms with low 
probability p of decay, such that Np is the mean number of decays within a spe-
cified time interval.  

The point of the foregoing examples is this: The rigorously exact distribution 
(binomial) revealed critical information about the constituents (discrete, inde-
pendent) of the system. The apparently exact distribution (Poisson) was empiri-
cal and utilitarian, but revealed little about the system other than that the decay 
products were discrete. Under appropriately conceived radiation experiments, 
the difference between the binomial and Poisson distributions can be observed 
[50], and the fundamentality of the binomial distribution is established.  

In regard to the statistical attributes of human height and weight, the consis-
tency with a correlated bivariate lognormal distribution is, as shown in this pa-
per, so extensive and close, that one must wonder whether it is a rigorously exact 
consequence of some biophysical mechanism or a limiting case of some other 
statistical process. How, for example, might a lognormal distribution arise from 
other distributions?  

One such process might entail a random variable X comprising a product of 
some set of arbitrarily distributed random variables, in which case application of 
the Central Limit Theorem to lnX could result in a normal distribution. Then 
the parent variable X would itself be lognormal. It is difficult to conceive in de-

 

 

3This supposition is actually historically correct. Radioactivity was discovered by Henri Bequerel in 
1896, whereas opposition to the existence of atoms by some leading scientists of the day lasted until 
about 1910. 
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tail, however, of mechanisms by which real biological processes responsible for 
human height and weight could engender such a hypothetical X as to produce a 
correlated bivariate lognormal distribution.  

More generally, a lognormal distribution can also arise under circumstances 
where an intrinsically positive variable has a low mean and high variance, lead-
ing to a pronounced skewness. However, any of a large number of other skewed 
distributions could also arise, so the mechanism is not unique. Moreover, as 
demonstrated in this paper, whatever mechanism is invoked must produce not 
only the correct skewness, but also kurtosis and other hyperstatistics as well. 

At this stage and until testable mechanisms are proposed, refutation of the 
exactness of the correlated bivariate lognormal distribution of human height and 
weight can only come from further detailed statistical analysis of larger popula-
tions. And if such future tests further confirm the exactness of the bivariate log-
normal relation of height and weight, then, like the example of radioactivity 
cited above, this knowledge will have revealed something fundamental about the 
physical processes underlying human development.  
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Appendix—Glossary of Abbreviations 

BMI—Body Mass Index 
CDF—Cumulative Distribution Function 
CF—Characteristic Function 
d.o.f.—Degrees of Freedom 
dCor—Distance Correlation 
dCov—Distance Covariance 
dVar—Distance Variance 
ISNV—Independent Standard Normal Variable 
PDF—Probability Density Function 
RNG—Random Number Generator 
RV—Random Variable  
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