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NEW QUANTUM EFFECT OF CONFINED MAGNETIC FLUX ON ELECTRONS

M. P. Silverman*

Advanced Research Laboratory, Hitachi Ltd, Kokubunji, Tokyo 185, Japan

ABSTRACT

A charged particle analogue of the Hanbury Brown-Twiss experiments with
photons is described wherein the correlation of electron intensity at two
detectors is modulated by magnetic flux confined to a region from which the
electrons are excluded. The experimental conditions differ substantially

from those of the Aharonov-Bohm effect.

*Visiting Senior Researcher; permanent address: Department of Physics, Trinity
College, Hartford, Connecticut 06106 USA



In this paper is reported a novel influence of confined magnetic flux
on charged particles different from the well-known and experimentally sub-

stantiated Aharonov-Bohm (AB) effect.l

As commonly understood, the AB effect
on unbound charged particles interacting locally with electromagnetic poten-
tials, but not electromagnetic fields, is manifested by a magnetic (or
electric) flux dependent shift in the interference fringes (but not envelopez)
of a particle diffraction pattern. The phenomenon to be described differs
from the AB effect in several important ways. First, the influence of a
local vector potential is sought, not in the interference of particle proba-
bility amplitudes at a single detector, but rather in the correlation of
particle fluxes (intensities) at two detectors. Second, whereas the AB
effect can be in principle--and, in fact, has been—experimentally demonstra-
ted with single particle wave packets3, the proposed intensity correlation
effect requires wave packets of two or more particles and would therefore
give a null result under the conditions so far employed to observe the
AB effect on beams.

In analogy with optical processes, the AB effect resembles a magnetic
(or electric) flux dependent Young's two-slit experiment in that the resulting
interference pattern is characterized by the first order correlation function
of the particle field. The effect reported here is a charged particle,
magnetic flux dependent analogue of the Hanbury Brown-Twiss (HBT) experi-

ments4'5

» the results of which are characterized by the second order correla-
tion function. There are profound differences, however, in the expected

intensity correlation of charged particles, in particular electrons, compared
to that of light. The photon is a neutral boson; having no charge it cannot

6

couple directly to a local external vector potential field. W Thus, the

intensity correlation of light beams at two dectectors can not be affected



by the presence of an AB solenoid in an experimental configuration such

as is illustrated in Figure 1. Moreover, the requirement of symmetry under
particle exchange permits construction of photon states that lead to bunching
(chaotic lights) » No bunching (coherent or laser 1ight7) » or antibunching
(resonance fluorescence from single atomss) . Electrons are charged fermions.
The "minimal coupling” scheme, which follows from the requirement of gauge
invariance, results in a magnetic flux dependent intensity correlation for
the configuration of Figure 1, as will be demonstrated. To my knowledge,

no such possibility has been considered before in the extensive literature

of quantum effects of electromagnetic fluxes.9 The requirement of antisym-
metry under particle exchange leads to electron antibunching irrespective

of the coherence properties of the electron beam. The possibility of electron
antibunching is implicitly contained in the Fermi-Dirac expression for
particle density fluctuations as pointed out briefly by Pur:cell.10 This
point is developed explicitly and in a more general context here.

Figure 1 shows one schematic experimental configuration by which means
the predicted magnetic flux dependence and electron antibunching may be
demonstrated. A beam of electrons produced by source S is incident upon
a partition with two apertures Sl’ S2 which split the beam by wavefront
division; the two components, passing around, but not through, a solenoid with
confined magnetic flux, illuminate two detectors Dl' 02 whose instantaneous
outputs are sent to a correlator C. The correlation procedure has been

11 12

described in detail for photons™ and massive particles ‘.

The correlation of electron intensities at detectors D,, D, at times

tl, t2, respectively, is given by the (unnormalized) second order correlation

function



2
¢! )(Dl,tl; yrty) = Tr {P(¢+(Dl,tl) ¢+(D2.t2) $(D,,t,) ¢(Dl,tl))} (1)

where / is the density matrix characterizing the electron field of the source.
The second—-quantized flux operator ¢(Dj,tj) (J = 1,2) is a linear superposi-

tion of contributions from apertures S, and S

1 2
$0yets) <[y 0585 * 4y005,550] /12 (22)
In the absence of a vector potential field, d’i (Dj,tj) (1 =1,2) my be
expressed in the form12
- &o . (4) s (i)
$;(D5,t5) = 43 (Dy,t5) k%fi bs (05 exp-imtabl’ . (2b)

The factor Yk converts the standard field operator13

into a flux operator

in order that Eq. (1) may represent an intensity, rather than density, correla-
tion. The mode function u]g) is frequently taken to be a plane or spherical
wave, but will here be left unspecified. For nonrelativistic particles of
mass m, the energy (in units of A = c = 1) is W = k2/2m. The operators

b]isi) ’ b)g‘) 1 respectively annihilate and create an electron with momentum

k and spin projection s in the field that has emerged from aperture Si' For

apertures of equal size, one can write

b

s = B + 52 /{7 (@ hec.) (3a)

where bks' b]ts respectively annihilate and create the corresponding electron
in the beam incident upon the partition. All operators satisfy the standard

anticommutation relations

{bks'b]tr's'} - Ikk.k' ‘gss' 7 {bks’bk's'} = 0 (and h.c.) (3b)
{n@ 0t} =5 600 b s B I} <0 @ancy . o



In the presence of a vector potential each single-particle wave: function
from which is constructed the antisymmetric multiparticle wave function or
density matrix of the electron beam incurs a gauge—dependent phase factor.

In the second quantized formalism this leads to the flux operators

¢i(oj,tj) = ;(Dj,tj) exp(-ieij) (4a)

where

D,
e ;
%5 = qf/s Melyias, (4b)

q is the electron charge; the integration path is from S to Dj through Si'
Finally, to allow for a (possibly random) phase shift f\ in the transmissivity
of aperture 82 relative to that of Sl' one multiplies the flux operator 4)2

by exp(i§).
Evaluation of Bq. (1) leads to an expression of the form

G(Z} (Dlltl;DZItZ) = AO + Alcos (qﬂm+ al +8) +

Azcos{z (qf + a, +§) (5a)
where
A = [(11|11) + (22|22) + (12]21) + (21|12) + 2Re"(12|12)]/4 (5b)
D +a+0d
A1005(q m 1 ) ) (i(q¢,,.+5})) (SC)
=2Re([(11|12)+(11|21)+(12122)+(21|2 )]e

A, = |(11]22) /2 (3d)
2a, = arg { (11]22)} 5¢)

(ij|kn) = Tx {J’(¢§+(Dl,t1) ¢§+(D2,t2) ¢ (D, t,) ¢;(D1,tl)} . (5f)

The magnetic flux 9 n within the solenoid is given by
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mark
(5f)


= = - = - 5
a8, jSAds 810 = 85 =65~ 6 . (Sg)

It is of interest to record, for purposes of comparison, the corresponding
relation for the AB effect which is given by the first order correlation

function at one detector D at time t

M p,y= Tr{J°¢+(D,t) ¢(D,t)} . (6a)
BEq. (6a) reduces to

G(l)(o,t)= B, + Blcos (q(?)m + b1 + & ) (6b)
where

B, = (1]1) + (2]2) (6c)

B, = 2| (1|2)| (6d)

b, = arg {(112)} (6e)
and

613 = e @gtoe gm0} (6£)

From Egs. (5) and (6a) there follow several important consequences.
The intensity correlation G(Z) is a harmonic function of q(bm and 290 ' the
AB effect, represented by ¢!t , is a harmonic function of q{bm. For random
phase d , which makes S, and S, behave as two independent incoherent sources,

(1). In that case, G(l)

the flux dependence vanishes from both G'?) and G
is a sum of intensities from each aperture and shows no quantum interference.
In G(Z) , however, the surviving term A, exhibits interference effects in the
nondiagonal matrix elements (last three terms). This preservation of

phase information makes intensity correlation interferometry a useful technique
for determining scattering amplitudes.lls12

The detailed space~time behavior of G (2) depends on the matrix elements


mark


mark
(5g)


constituting coefficients Ao' a., Az which, in turn, depend on the characteris-

(2)

tics of the beam. Two points hold generally, however. First, G vanishes

identically at all space-time points for any electron field consisting exclu-
sively of single-particle wave packets, since each matrix element has two
annihilation operators. This is well-known in the case of intensity correla-

14

tion of light™" and corresponds to the fact that detection of a particle at

one detector precludes detection at the other detector; a nonvanishing correla-
tion at two detectors requires at least two particles. (This nontrivial
result lies at the root of the discrepancies between classical wave and quantum

14

determinations of second order correlations.” ) Second, it follows from the

antisymmetry of electron wave functions that G(z)

vanishes identically for
the case of instantaneous correlation (tl = t2) of spin-polarized electrons
at two contiguous detectors equidistant from both apertures.' This example of
electron antibunching may be seen as follows. Each matrix element (ij|k1)
leads to elements of the form <g¢| (l)+ b(3)+ bk bkl) |¢, where [¢>

is a particular n-particle, spin—polir:.zed state contrlbuting to the density

matrix. The element is nonvanishing for two sets of momentum equalities,

(k1 = k3, k2 = k4) and (kl k4, k2 = k3), which, because of the anticommuta-
tion relations, lead to functions with opposite signs. Since the mode functions
(1) (2)

Ups ¢ Yo for the specified experimental configuration have equal values
at both detectors, the two functions cancel one another when summed. The
individual terms (ij]kl), and hence G(Z), are null.

In conclusion, it has been shown that the local interaction of electrons
with a vector potential in a region free of magnetic and electric fields can
affect the correlation of electron intensity at two detectors. The second
order correlation function of the electron field manifests electron anti-

bunching for both coherent and incoherent sources. The influence of the

7



confined magnetic flux on the particle flux correlation occurs only for a
coherent source; the effect appears as a modulation of the second order correl-
ation function which still manifests electron antibunching.

The objective of this paper has been to demonstrate in general terms
the theoretical existence of the above effects. Detailed analysis of partic-
ular experimental configurations and the feasibility of producing the effects
with current technology, and extension to charged bosons will be presented

elsevhere. 15
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FIGURE CAPTION (Figure 1)

Schematic experimental configuration. an electron beam produced by source
S passes through apertures Sl and 82 and illuminates detectors D,, 02 whose
outputs are sent to correlator C and thence to recorder R. The second order
correlation function is sensitive to the magnetic flux ¢m confined to the

solenoid interior.
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