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Extraction and Assessment of Diagnosis-Relevant

Features for Heart Murmur Classification

Alisa D. Levina,∗, Anthony Ragazzia, Skyler L. Szota, Taikang Ninga,

aDepartment of Engineering, Trinity College

Abstract

This paper presents a heart murmur detection and classification approach
via machine learning. We extracted heart sound and murmur features that
are of diagnostic importance and developed additional 16 features that are
not perceivable by human ears but are valuable to improve murmur classifi-
cation accuracy. We examined and compared the classification performance
of supervised machine learning with k-nearest neighbor (KNN) and support
vector machine (SVM) algorithms. We put together a test repertoire having
more than 450 heart sound and murmur episodes to evaluate the performance
of murmur classification using cross-validation of 80-20 and 90-10 splits. As
clearly demonstrated in our evaluation, the specific set of features chosen in
our study resulted in accurate classification consistently exceeding 90% for
both classifiers.

Keywords: heart sounds, heart murmurs, classification, supervised machine
learning

1. Introduction

Heart disease is the number one cause of death worldwide. In fact, in
2016, 31% of deaths across the globe were due to cardiovascular disease
[1]. The primary and most common tool for bedside diagnosis of possible
cardiovascular alteration is the classical stethoscope, which was invented over
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two hundred years ago. With the aid of the stethoscope, doctors use their ears
to detect abnormal heart murmurs that signify the presence of heart disease.
However, cardiac auscultation is subjective and varies in accuracy depending
on each individual physician’s experience and hearing ability. Studies of
primary care physicians have found that proficiency in cardiac auscultation
for clinically important heart sounds and murmurs ranges only between 20
and 50 percent [2][3]. It is therefore no wonder that many patients referred
to cardiologists for echocardiograms and further examinations are found to
be healthy. This not only results in a negligible use of medical resources and
unnecessary expenses, but also demonstrates the need for a more accurate
method of cardiac auscultation [4].

Modern diagnostic medical equipment has witnessed great improvement
with embedded microprocessors, from digital thermometers to blood pressure
monitors, yet many medical professionals still rely on analog stethoscopes for
cardiac auscultation despite their documented limitations. Automatic car-
diac auscultation and heart murmur classification algorithms have been de-
veloped [5], but they are limited by the patterns that researchers can find to
distinguish between different heart sound features and heart murmur types.
With the recent explosion in online data and low-cost processing capabili-
ties, it is only a logical step to apply machine learning methods to automatic
cardiac auscultation in order to facilitate more evidence-based diagnoses in
healthcare [6]. Machine learning algorithms can distinguish features, and
relationships between features, that human eyes and ears cannot recognize.
Additionally, as a heart sound travels through a physician’s analog stetho-
scope and into their ear, it becomes gradually distorted. To simulate this,
some digital cardiac auscultation analyses modulate recorded heart sounds to
resemble the distortion of sounds processed by the human ear. In this study,
we instead used unaltered signals with the full frequency range in order to
maximize the amount of data that could be useful in classifying different
types of murmurs.

Machine learning has become an increasingly popular decision-making
method in all industries—from marketing and commerce to science and ed-
ucation [6]. In recent years, it has been applied to biomedical classification
and diagnostic algorithms for health issues such as skin disease, diabetic
retinopathy, and breast cancer [7]-[9]. One study, for example, proposed a
feature extraction and support vector regression model to classify EEG spec-
tral activity [10]. In our biomedical research, we are using machine learning
for heart murmur classification. For example, a physician might describe a
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ventricular septal defect as having a mid-systolic, decrescendo mitral mur-
mur with a “blowing” quality. Through feature extraction, these qualitative
measures can be transformed into quantitative features such as pitch, heart
sound duration, heart murmur duration, and onset time [11]. A machine
learning analysis of these features allows us to find connections between the
physician’s description and their diagnosis. Furthermore, machine learning
can identify connections between features and heart murmur classifications
that are not known or used by physicians in heart murmur diagnoses.

There have been recent efforts to implement feature extraction and ma-
chine learning classification algorithms for automatic cardiac auscultation.
One study presents a decision tree approach to classify heart sounds from
the PhysioNet Computing in Cardiology (CinC) Challenge 2016 dataset as
either normal or abnormal [12]. Another study proposes a pre-trained im-
age classification convolutional neural network (CNN) approach to classify
heart sounds from the same PhysioNet dataset into normal or abnormal
[13]. Expanding from binary classification, another study presents a feature
extraction and cardiac auscultation algorithm utilizing support vector ma-
chine (SVM), deep neural network (DNN) and centroid displacement based
k-nearest neighbor to classify heart sounds into five different categories based
on clinical diagnoses [14]. In this study, we aimed to classify heart sounds via
machine learning into seven categories with a focus on expanding the feature
extraction capabilities in this field.

Investigating further into trends of data-driven decision-making in health-
care, this paper presents a method for heart murmur classification using su-
pervised machine learning. Several intuitive parameters are used to describe
a particular heart murmur (Outlined in Section II. A). These parameters can
be extracted from a given heart sound recording using methods described
in previous studies [10]. In addition to common heart sound parameters de-
scribed by physicians and used for automatic cardiac auscultation in previous
studies [11], [15], [16], we extracted a number of other, nontraditional features
based on our expert domain knowledge. We hypothesized that these features,
imperceptible to even a highly trained human ear, would be advantageous
to heart murmur classification. We propose a supervised machine learning
approach using these parameters to identify and classify the different types of
heart murmurs. For this study, we trained two popular classification models,
the k-nearest neighbor model and support vector machine model, and eval-
uated their performance in order to determine the usefulness of our feature
set for identifying different types of murmurs. The remainder of this paper
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is organized as follows: Section II is devoted to murmur feature extraction
and machine learning classification methods. In Section III, the validity
of the proposed feature extraction methods is evaluated with heart sound
episodes containing distinct types of murmurs—including early, mid-, late
and holosystolic murmurs, and early and mid-diastolic murmurs—through
the presentation and discussion of our results. A conclusion is provided in
Section IV.

2. Material & Methods

2.1. Automatic Heart Sound Segmentation

To extract relevant features that capture essential characteristics of heart
sounds and murmurs, we developed an automatic segmentation algorithm
that can divide a cardiac cycle into the following segments: S1, systole,
S2, and diastole. Within each identified segment, we extract useful bedside
diagnosis features both in time and frequency domains. The success of a
segmentation approach hinges on accurate detection of S1 and S2. We note
that a cardiac cycle is delineated by its intensity variation in S1-systole-S2-
diastole sequence. We developed an Average Magnitude Value (AMV) index
to outline this intensity variation. To begin, an underlying heart sound signal
of interest is divided into non-overlapped consecutive 10-msec slices; AMV
index is calculated for each slice as follows.

ABVn =
1

N

N∑
k=1

|x(k)− µn| (1)

where µ represents the mean value of the nth 10-mesc slice.
The choice of 10-msec duration for each slice leads to few advantages.

Firstly, an underlying heart sound signal is much simplified and compactly
represented by an AMV index profile that resembles intensity change of heart
sound signals. Secondly, consecutive 10-msec slices can correctly capture
even the short-term intensity variation in each segment of S1, systole, S2,
and diastole. Slices less than 10-msec also can be used to achieve the same
purpose, however, at more computation.

As seen in most phonocardiogram recordings, the first S1(lud) and the
second S2(dub) heart sounds exhibit higher amplitude during a cardiac cycle.
This observed high amplitude can be effectively captured by the suggested
AMV index. Figure 1 exemplifies three types of heart sound signals: healthy,
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systolic murmur, and diastolic murmur. The AMV profiles in the middle
trace of Fig.1 provide an effective means to delineate the intensity changes
of original heart sound signals measured with a high sampling rate.

Figure 1: Three types of heart sound signals.

We have found that AMV indices are effective in identifying the possible
occurrence of S1 and S2 from local maximal of AMV profile. Without loss
of generality, we used the assumption that systole duration (from S1 to S2)
is shorter than diastole duration (from S2 to S1). In addition, we imposed
that the duration of either systole or diastole must satisfy prescribed range
limits. With imposed thresholds and prescribed conditions, a detected local
maximum in AMV profile could be counted as either S1 or S2. When S1
and S2 were identified (bottom trace in Fig.1), the boundaries of S1/S2
were determined when the AMV values dropped below 10% of S1/S2. With
identified heart sounds, the systole segment is the interval from the boundary
of S1 to the boundary of S2, and the diastole segment is the interval from the
boundary of S2 to the boundary of S1 of the next cardiac cycle. Without loss
of generality, heart sound episodes used in our study all began with systole
and followed by diastole.
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2.2. Feature Extraction

The features of heart sounds and murmurs previously described are essen-
tial to machine learning. To extract relevant features that capture essential
characteristics of heart sounds and murmurs in both the time and frequency
domains, we adopted a slice by slice analysis approach, where essential fea-
tures were extracted from each 10-msec slice to provide a profile description
cardiac cycles indicating short term variations.

We have found that AMV indices not only are effective in identifying
S1 and S2 occurrence, they also are good indicators of detecting murmurs
with additional conditions. For example, murmur is called when a sufficient
number of consecutive AMV indices in the systole segment and/or diastole
segment exhibiting large values above specified thresholds. More specifically,
the existence of a murmur in systole and/or diastole was marked when contin-
uous 10-msec segments showed an AMV more than 25% either the magnitude
of S1 or S2 values. It should be noted that the detection threshold could be
adjusted for varying sensitivity as needed.

Systolic murmurs and diastolic murmurs were detected and described sep-
arately using a similar procedure. Once detected, the murmur onset and du-
ration time were recorded. In addition to time domain features thus derived
from AMV index, we also extracted the average murmur pitch in the fre-
quency domain. The murmur pitch was efficiently estimated using a second-
order linear prediction AR model [17].

Figure 2: Extracted early systolic murmur and pitch frequency.
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We used the forward-backward prediction AR model (2) and computed
the optimal AR model coefficients with the least sum of squared prediction
errors. The forward and backward prediction errors are given, respectively,
below:

ef = x(k)− a1x(k − 1)− a2x(k − 2)

eb = x(k)− a1x(k + 1)− a2x(k − 2)
(2)

The optimal AR model coefficients {a1, a2} are estimated by minimizing
the sum of squared forward and backward prediction errors

min
∑
k

ef(k)2 + eb(k)2 (3)

The AR coefficients can be effectively used to capture the murmur pitch
frequency [17] by the following

pitch =
fs
2π
tan−1(

√
4a2 − a12
a1

) (4)

where fs is the heart sound signal sampling frequency. The pitch frequency
of each 10-msec segment of the detected murmur is estimated. The example
of a detected early systolic murmur and pitch frequency by 10-msec segments
is shown in Fig. 2.

3. Calculation

Through our repeated trial and error and experience, we noticed some
additional patterns that would be valuable for heart murmur recognition and
classification. Inspired by our observations, we generated 16 unique features
that are not currently used by physicians for heart murmur diagnosis. For
example, we calculated features based on the ratio of average amplitude of
systole and diastole to the average amplitude of S1. These features, we
theorized, could be beneficial since such ratios are usually very small when
no murmur is present.

We also generated a series of features using two threshold values for each
period, 40% and 10% of S1 for systole and 40% and 10% of S2 for diastole.
This created three regions: above the largest threshold, between the two
thresholds, and below the smallest threshold. Each peak in systole and dias-
tole was placed into one of these three regions. We found that murmurs are
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likely to have more peaks that exceed higher thresholds, but reasoned that
it would be advantageous to measure this at different levels to accommodate
variations in amplitude, and consequently detect quieter murmurs.

Additionally, we calculated features relating to the variance in peaks in
both systole and diastole periods. These features reveal a rough estimate of
frequency variance, which could be useful because murmurs typically have
more consistent frequency. Finally, we noticed that there were differences in
the silhouettes of each heart sound signal. For example, the silhouettes of
systole and diastole of healthy heart sounds are flat and constant. If there is a
murmur present, on the other hand, the silhouette is sloped. To capture this,
we extracted features based on the derivatives of both systole and diastole
silhouettes. In total, we observed and extracted an additional 16 heart sound
and murmur features in this study. These features provide useful signatures
for classification and are shown below:

1. Ratio of average systole amplitude to average S1 amplitude
2. Ratio of average diastole amplitude to average S1 amplitude
3. Theorized presence of systolic murmur, determined by whether Feature

1 crosses an empirically determined threshold
4. Theorized presence of diastolic murmur, determined by whether Fea-

ture 2 crosses an empirically determined threshold
5. Sum of the absolute values of the derivatives of every point in the

systole silhouette
6. Sum of the absolute values of the derivatives of every point in the

diastole silhouette
7. Number of peaks in the systole
8. Number of peaks in the diastole
9. Variance in the time between peaks within the systole

10. Variance in the time between peaks within the diastole
11. Number of peaks in systole below a threshold 1a, which is 10% of the

amplitude of S1
12. Number of peaks in systole above threshold 2a, which is 40% of the

amplitude of S1
13. Number of peaks in systole in between threshold 1a and threshold 2a
14. Number of peaks in diastole below threshold 1b, which is 10% of the

amplitude of S2
15. Number of peaks in diastole above threshold 2b, which is 40% of the

amplitude of S2
16. Number of peaks in diastole in between threshold 1b and threshold 2b
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3.1. Machine Learning Classification

Once the heart sound features were successfully extracted from the heart
sound recording, these data served as parameters for our machine learning
models. We implemented a supervised machine learning approach to clas-
sify the heart sounds into seven categories: early, mid-, late and holosys-
tolic murmurs, diastolic murmurs, a combination of systolic and diastolic
murmurs, and normal heart sounds without murmurs, testing the validity
of our extracted features. We applied the k-nearest neighbor (KNN) and
support vector machine (SVM) classification algorithms and compared their
performance using 80–20 and 90–10 splits through 10-fold cross-validation.
We compared the accuracy of correctly classified heart sounds for KNN and
SVM classification algorithms under these different testing scenarios.

3.2. Gini Gain

We utilized Gini Gain, which provides a quantification of which features
provide the most information about the classification, to eliminate potentially
redundant or unimportant features. First, we trained eight decision tree
models with depths of 3–10 on our entire feature set, and identified the five
most important features for each of them. Finally, we aggregated all of the
unique features among the top five lists of all of our models, resulting in a
total of eleven features: #1, 3, 5, 6, 7, 8, 9, 11, 12, and 14 from the feature
list above, as well as the measured onset time of a diastolic murmur. We
again applied the KNN and SVM classification algorithms to evaluate the
efficacy of this refined feature set.

4. Results & Discussion

We have completed extensive tests to examine classification accuracy un-
der changed conditions. For example, to ensure a consistent evaluation of
our approach, our classification accuracy score was calculated with 10-fold
cross-validation on 453 clinically recorded heart sound episodes. Fig. 3 ex-
emplifies a few short heart sound and murmur episodes that were analyzed
in our study.
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Figure 3: Different heart sound and murmur examples.

Since overfitting and underfitting are important concerns in machine
learning, we addressed the issue by comparing the accuracy scores of each
model between 80–20 split and 90–10 training and test set splits. Our KNN
model had a classification accuracy of 90.11% with an 80–20 split and an
accuracy of 91.43% with a 90–10 split. Similarly, our SVM model with a
linear kernel had a classification accuracy of 92.09% with an 80–20 split and
an accuracy of 94.73% with a 90–10 split (See Table I). The fact that the
classification accuracy scores of KNN and SVM increased by only about 1.5%
and 2.9% respectively with a 90–10 split indicates that the models are not
sensitive due to our robust features.

Model
Train/Test

Split

Accuracy (%)

10-fold cross-val.

Average

Precision

Average

Recall

KNN
80–20 90.11 0.863 0.869

90–10 91.43 0.866 0.860

SVM
80–20 92.09 0.913 0.922

90–10 94.73 0.917 0.923

Table 1: Classification Results
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After investigating misclassification patterns of our classifiers throughout
multiple confusion matrices, we garnered the following observations:

• Holosystolic murmurs are most likely to be mistaken for mid-systolic
or diastolic murmurs, and vice versa. The former misclassification is
possibly due to the fact that holosystolic and mid-systolic murmurs
often extend for the vast duration of the systole.

• Late systolic murmurs are most likely to be mistaken for healthy heart
sounds without murmurs present, perhaps because late systolic mur-
murs can be so brief that they blend into the S2 heart sound.

• Early systolic murmurs are most likely to be mistaken for holosystolic
murmurs, perhaps because some early systolic murmurs extend quite
far into the systole period.

• Heart sounds with both systolic and diastolic murmurs present are
most likely to be mistaken for holosystolic murmurs. This is perhaps
because the systolic murmurs in these heart sound episodes are often
mid-systolic murmurs, which are frequently mistaken for holosystolic
murmurs.

It is important to note that in our test signals we grouped them into six com-
mon types of murmurs and normal heart sounds without murmurs—without
designating additional labels for noted abnormalities, such as heart sounds
with clicks, splitted S1 or S2, etc. These additional abnormalities are likely
to contribute to murmur misclassification described above.

In spite of prescribed factors for potential misclassification, our method
performed accurately well in both precision and recall. With a 90–10 split,
we found that our KNN classifier had an average precision of 0.866 and an
average recall of 0.860. Our SVM classifier, even better, had an average
precision of 0.917 and an average recall of 0.923 (See Table I). Table II
features an example of precision and recall scores of each heart sound category
for our best performing model, SVM with a 90–10 split, which are then
used to calculate the model’s average precision and recall in Table I. These
scores, which are considered more representative of classification performance
than simple classification accuracy, show that our features lend themselves
to effective heart sound analysis via machine learning.
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Heart Sound Type Precision Recall

normal 0.949 0.987

early systolic 0.846 0.1.000

mid systolic 0.918 0.918

late systolic 0.957 0.880

holosytolic 0.857 0.842

diastolic 0.933 0.913

systolic & diastolic 0.960 0.923

Table 2: SVM 90–10 Split Precision & Recall

Finally, we examined the accuracy of these same models when trained on
our refined feature set of only the top 11 features that emerged in our Gini
Gain analysis. With a 90–10 split, we found that our KNN classifier had an
average precision of 0.907 and an average recall of 0.872. Our SVM classifier,
even better, had an average precision of 0.927 and an average recall of 0.928
(See Table III). We found that Gini Gain was a useful tool for eliminating
unimportant or potentially redundant features. In fact, this smaller feature
set allowed us to maintain the classification accuracy of our KNN model, and
even slightly improved the accuracy of our SVM model ( 2% for the 80–20
split.) Although we successfully trained our models on 26 features initially
(See Table I), we were able to refine our feature set to only 11 features with
a marginal difference in classification performance. Interestingly, 10 out of
these 11 top features (marked with * in the feature list) were derived from the
additional 16 features that we introduced above. This demonstrates the merit
of our additional heart sound features for the detection and classification of
heart murmurs.
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Model
Train/Test

Split

Accuracy (%)

10-fold cross-val.

Average

Precision

Average

Recall

KNN
80–20 89.01 0.890 0.851

90–10 90.33 0.907 0.872

SVM
80–20 94.18 0.957 0.958

90–10 95.27 0.927 0.928

Table 3: Classification Results (refined feature set using Gini Gain)

5. Conclusions

We have shown in this study that effective and accurate heart murmur
classification is achievable by taking advantage of supervised classification via
machine learning. Accurate classification is possible if relevant heart sound
and murmur features are extracted and adopted in model training. We de-
veloped an easy and effective automatic segmentation method to divide an
underlying signal into S1, systole, S2, and diastole segments. Each segment
is represented by consecutive slices of time and frequency domain features
proposed in our study. The information value embodied in these features
were examined using Gini Gain to assess influence on supervised classifica-
tion. This knowledge, in turn, allowed us to expedite and improve heart
sound and murmur classification. Our study has shown that classification
accuracy that consistently exceeds 90% in KNN and SVM machine learning
classifiers. Encouraged by the promising progress, we are making an effort to
expand the satisfactory results from our current study to larger heart sound
datasets and to encompass additional types of abnormal heart sounds using
machine learning. While powerful machine learning algorithms are emerg-
ing, we maintain that suitable features essential to heart sound and murmur
behaviors are crucial to achieve satisfactory classification. The results of
our study shed light on a promising future of dependable automatic cardiac
auscultation via machine learning by introducing information-rich features.
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