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ABSTRACT 
 

The original role of astrocytes was believed to have been as a neuronal-

supportive cell in the brain. It has now been discovered that they play imperative roles, 

from reuptake of neurotransmitters from the extracelluar space to signal propagation 

and developmental control by the release of factors into the extracellular space. SH-

SY5Y and IMR-32 cells are common neuroblastoma cell lines which model cancerous 

brain cells when left undifferentiated. In recent studies tissue inhibitors of 

metalloproteinases (TIMPs) have been implicated in neurodegenerative diseases, but 

their exact role in cell death is unknown. A double-blind cell culture experiment was 

conducted using astrocytes from wild type and TIMP-1 knockout mice to evaluate the 

role of TIMP-1 in neuronal cell death. Undifferentiated and differentiated SH-SY5Y cells, 

as well as undifferentiated IMR-32 cells, were treated with either wild type glial cell 

media (WT-GCM) or TIMP-1 knockout glial cell media (KO-GCM) for 24 hours and cell 

viability was evaluated. Undifferentiated SH-SY5Y and IMR-32 cells exposed to WT-

GCM showed a significant increase in cell death when compared to cells exposed to 

KO-GCM. The glial conditioned media had no effect on SH-SY5Y cells differentiated 

using retinoic acid. Supplementation of the KO-GCM with recombinant TIMP-1 to 

physiological levels had no impact on cell death in SH-SY5Y undifferentiated cells, 

while supplementation of WT-GCM with recombinant TIMP-1 completely blocked the 

cell death seen following WT-GCM treatment alone. Heating of the WT-GCM 

completely eliminated the increased cell death produced by the WT-GCM. These results 

suggest that TIMP-1 may be modulating a temperature-dependent, cell media-soluble 

factor that is released by astrocytes and influences cell death mechanisms of 

undifferentiated neuroblastoma cells.  
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PROJECT FOCUS 
 
 

 Astrocytes and other cells in the brain, such as other glia, neurons, and even 

cancerous cells, communicate with each other by releasing factors into the extracellular 

space. These factors have the ability to bind to other chemicals within the extracellular 

space, enter cells, or even bind to receptors on the cell membrane triggering various 

types of cascades. Often, to investigate these mechanisms within the brain, studies are 

conducted on cell cultures. An optimal in vitro model shares morphological and 

biochemical similarities with the cells of focus in the research project, and fortunately, 

there are many types of cell cultures that consist of proliferative neuroblastomal cancer 

cells. This study investigates the neurochemical interactions between astrocytes, 

neurons, and neuroblastomal cells to further elucidate the mechanisms involved with 

cancerous brain tumors. 
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1. INTRODUCTION 
 
 
1.1 Astrocytes 
 

The nervous system is formed by two major cell types: neurons and glial cells. 

Glial cells are subdivided into different types, with different functions: oligodendroglia, 

microglia, and astroglia.1 Based upon the first original descriptions of the cellular basis 

of the nervous system, neurons were swiftly recognized as the main cellular elements 

involved in the transfer and processing of information, as they show cellular processes 

that extend towards sensory organs, muscles, and glands.1 The concept that neurons 

were electrically excitable further supported this idea. It has been well established that 

neuronal electrical excitability is based on the expression of numerous ligand and 

voltage-gated membrane channels that give rise to membrane currents and membrane 

potential variations. Furthermore, cell signaling pathways have been recently explored 

in these cell types, helping to promote understanding of neurodegenerative diseases as 

well as brain tumor metastasis. 

Until the past 30 years or so, neuroscientists believed neurons communicated 

only with each other, represented our ideas and thoughts, and glial cells were only the 

glue holding the brain together. There are a few types of glial cells, but recently the 

focus on is on astrocytes, as they make up 90% of the cells in the cortex.1 Many studies 

have exhibited that astrocytes are important functional elements of the synapses, 

reacting to neuronal activity and regulating synaptic transmission and plasticity.2-4 

Accordingly, they are actively involved in the processing, transfer and storage of 

information by the nervous system, which tests the commonly accepted paradigm that 

brain function results exclusively from neuronal network activity, and suggests that 
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nervous system function and homeostasis actually arises from the activity of neuron-

glia networks.1  

  
 

 
Figure 1: Santiago Ramon y Cajal’s original protoplasmic astrocyte slides impregnated by the 
Golgi-Cox method. a = astrocytes, bv = blood vessels, ef = endfeet, gf = gliofilaments, n = 
neuron, p = processes.5 
 
 
 On the other hand, glial cells, and particularly astrocytes, were considered to 

simply play supportive roles, as the cells lack the long processes that connect to sensory 

and effector organs (Figure 1). Astrocytes have since been discovered to play relevant 

roles in numerous processes of the development and physiology of the central nervous 
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system, such as trophic and metabolic support for neurons, neuronal survival and 

differentiation, neuronal guidance, neurite outgrowth, and synaptogenesis.3-4 They are 

also key elements in brain homeostasis, regulating the local concentrations of ions and 

neurotransmitters, and in control of local cerebral blood flow.1 There has been an influx 

of research focused on these previously assumed passive cells, as they have been found 

to perform an incredible amount of cell signaling by releasing astrocytic factors into the 

extracellular space, in turn affecting other cells around them.3 Whether these cells 

release neuroprotective, apoptosis-inducing, or other factors these astrocyte-mediated 

mechanisms are at the forefront of neuroscience research, as they may provide answers 

to neuroblastoma cell growth and even neurodegenerative diseases. 

 
 
1.1.1 Astrocyte Roles 
 
     
 Astrocytes are known to play important roles in the homeostasis of the 

extracellular environment, providing the adequate conditions for the appropriate 

function of neurons and synapses.4 Since astrocytic processes are highly dynamic 

subcellular elements capable of mobility, retraction, and extension, astrocytes can 

dynamically shape the extracellular space, which may have a strong impact on where 

astrocytic-factors are being secreted and how these factors affect the cells around them, 

and which type of cells are being affected.  

Additionally, hippocampal astrocytes have also been shown to rapidly extend 

and retract their processes in coordination with changes in dendritic spine location, 

neurotransmitter release, and even in changes involving neuronal cell death.6 Changes 

in the amount of glutamate have been shown to affect the dendritic spine locations of 

astrocytes (Figure 2). In rat hippocampal cultures, an increase of synaptic transmission 



 11 

induced the movement of astrocytic dendrites to the synapse location, allowing for the 

reuptake of extracellular glutamate via the EAAT2 channel on the astrocytic dendrites.2 

The expression of the EAAT2 glutamate transporter by astrocytes has shown to be 

crucial in the clearance of glutamate from the synaptic cleft to terminate synaptic 

function.7 This research has demonstrated the immense capacity of astrocytic mobility 

within dynamic, in vivo, environments, allowing for a glimpse into the molecular 

dynamics of these cells.  

 

 
Figure 2: The remodeling of EAAT-2 clusters associated with lateral filopodia on developing 
astrocytes. (A) High-magnification time-lapse sequence of a region on an astrocyte, which 
shows the remodeling of four filopodia and spine-like protrusions containing EAAT-2 clusters. 
(B) Different region of the same astrocyte showing a persistent protrusion elongating over a 15-
minute period, carrying an EAAT-2 cluster at its tip.7 
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1.1.2 Astrocyte Signaling 
 
 

The main focus on astrocytes has been on calcium signaling between neurons 

and other astrocytes.1 This presents a novel and dynamic way in which astrocytes are 

able to communicate with each other, and other neurons, within the brain. Numerous 

studies performed during the past few years, have established the existence of 

bidirectional signaling between neurons and astrocytes.8 The calcium-based cellular 

excitability displayed by astrocytes can be triggered by neuronal and synaptic activity 

through activation of neurotransmitter receptors expressed by astrocytes. In turn, 

astrocyte calcium elevations stimulate the release of different substances, such as 

glutamate, ATP, and D-serine, which regulate neuronal excitability and synaptic 

transmission. These findings have led to the establishment of a new concept in synaptic 

physiology, the tripartite synapse, in which astrocytes exchange information with the 

neuronal synaptic elements.8  

  Astrocytes not only communicate via calcium signaling, they have also been 

known to release several other factors such as the proteins Hevin and SPARC, that act 

as regulators of excitatory synaptogenesis in vitro and in vivo. Through the regulation of 

these proteins astrocytes control the formation, maturation, and plasticity of synapses in 

vivo.3 As mentioned earlier, astrocytes also have the capability of releasing soluble 

factors that aid in the differentiation of CNS stem cells. A factor known as the ciliary 

neutrotrophic factor is secreted from pre-existing astrocytes and has the capability of 

promoting astrocytic differentiation of multipotent cortical stem cells. Furthermore, 

astrocytes also have shown the capacity to induce neuronal differentiation by secreting 

bone morphogenetic proteins, which cause this functional and morphological change.4  
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Other studies have discovered that astrocytes promote the differentiation of rat 

embryonic neuronal cells by releasing the chemokines: IL-4, MIP-1, KC, and RANTES.9 

The differentiation of rat embryonic neuronal cells was promoted by treatment with 

astrocyte and microglia-conditioned medium.9 Mature astrocytes have also 

demonstrated the opposite phenomenon of de-differentiating into neural/stem 

progenitor cells following a mechanical injury.10 In this study it was discovered that 

following mechanical injury sonic hedgehog (Shh) production in astrocytes was 

significantly elevated, and that the incubation of astrocytes with the injured astrocyte 

medium caused astrocytes to gradually lose their immunophenotypical profiles, and 

acquire neural stem/progenitor cells characteristics.10 

Astrocytes also have demonstrated major neuroprotective roles in an in vitro 

environment when given pramipexole, a dopamine D2/D3 receptor agonist, which is 

used in the treatment of Parkinson’s disease. In this study cell death was induced by a 

proteasome inhibitor, lactacystin, on primary mesencephalic neuronal cultures and SH-

SY5Y cells, a common neuroblastoma cell model. The protective effect of pramipexole 

against lactacystin-toxicity was found to be not a direct effect, but instead a secondary 

effect mediated by astrocytes. Mesencephalic astrocytes were treated with pramipexole 

and grown in culture. Medium from the treated astrocytes was collected and then given 

to SH-SY5Y cells, which were formerly treated with lactacystin. A significant reduction 

of cell death was seen compared to SH-SY5Y cells just treated with lactacystin, 

demonstrating a protective effect by the astrocytic media.11 

Another study demonstrated the neuroprotective effect of astrocytic media after 

an acute CNS lesion, which in turn is known to release neurotoxic substances. Hailer et 

al. (2001) treated organotypic hippocampal slice cultures with N-methyl-D-aspartate 

(NMDA), which resulted in a visible loss of viable granule cells, partial destruction of 
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the regular hippocampal cytoarchitecture and a concomitant accumulation of amoeboid 

microglial cells at site of neuronal damage. Astrocyte-conditioned media reduced the 

amount of NMDA-induced neural injury by 45.3%, diminished the degree of microglial 

activation, and resulted in an improved preservation of the hippocampal 

cytoarchitecture, yet the neurochemical mechanism underlying this reaction is 

unknown.12  

 In some situations, astrocytes are also able to promote neuronal death by 

secreting varying factors. Further elucidating these mechanisms can help promote the 

understanding of the underlying pathology of diseases as well as having the ability to 

take advantage of these mechanisms to promote death in unwanted cells, such as 

cancerous tumors. Recently, it has been discovered that astrocytes become reactive in 

neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), 

Huntington’s disease, Parkinson’s disease, and Alzheimer’s disease.13,14 Controlled 

activation of these astrocytes is considered to be beneficial to neurons, as they may 

exhibit differential expression of astrocytic receptors, transporters, and transmitters, yet 

overactive astrocytes can be harmful.15 

 In most neurodegenerative diseases reactive astrocytes lose neuroprotective 

function and can gain neurotoxic properties. One example of how astrocytes lose their 

neuroprotective function is via the dysfunction of glutamate reuptake via the 

EAAT2/GLT1 transporter. In mice, GLT1 deficiency has been shown to lead to synaptic 

glutamate accumulation and subsequent excitotoxicity.16 When astrocytes become 

reactive during neurodegeneration they gradually lose GLT1 function and expression.17  

In addition to this loss of neuroprotective function, it is speculated that reactive 

astrocytes also have the capability of gaining neurotoxic properties. Cultured astrocytes 

expressing mutant superoxide dismutase 1 (SOD1) secrete unknown neurotoxic factors 
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into the medium, and adding this conditioned medium to cultured motor neurons can 

induce cell death.17,18  In a recent study, the astrocytic reaction was further investigated, 

and it was discovered that these astrocytes secrete lipocalin 2, an inducible factor, that is 

strictly toxic to neurons in transgenic rats that express a mutant form of TAR DNA-

binding protein 43 in neurons, which is an incredibly common mutation.19,20   

  Although the research presented in this paper focuses on the neurodegenerative 

role of astrocytes within the glial-neuronal and glial-neuroblastomal environment, the 

examples above allow for this general principle to be extracted: factors secreted by 

astrocytes may have several effects depending on the target cells and the neuronal 

elements as well as the activated receptor subtypes, providing a high degree of 

complexity for astrocytic effects. This research hopes to elucidate the role of astrocyte 

secretion factors in a system containing human neuroblastomal cells. Cancerous, 

undifferentiated, cell viability within an astrocytic environment has not been studied, 

but furthering our understanding on this topic may help treat neuroblastomal tumors in 

the future. 

 
 
 
1.2 NEUROBLASTOMA CELLS 
 
 
1.2.1 Neuroblastoma 
 
 
 Neuroblastoma is the most common extracranial solid cancer in childhood, and 

the most common cancer in infancy with an annual incidence of about six hundred and 

fifty cases per year in the U.S. alone. It is considered a neuroendocrine tumor, arising 

from the primordial neural crest element of the sympathetic nervous system. These 

tumors may regress spontaneously, reflecting induction of apoptosis or differentiation, 
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or they may exhibit extremely malignant behavior. Additionally, they are insensitive to 

conventional cancer treatment, furthering their enigmatic qualities.21  

 
 
1.2.2 SH-SY5Y cells 
 
 
 The SK-N-SH cell line was originally established from a bone marrow biopsy of a 

neuroblastoma patient with sympathetic adrenergic glangial origin in the early 1970s.22 

The popular neuroblastoma cell model, the SH-SY5Y cell line, is a thrice cloned subline 

of the SK-N-SH cells, and has been widely used since these cells posses many 

biochemical and functional properties of neuroblastomal cells.23  

The SK-N-SH cell line contains cells with three different phenotypes: neuronal (N 

type, seen in Figure 3 A), Schwannian (S type, seen in Figure 3 B), and intermediary (I 

type).24 On the other hand, the SH-SY5Y cell line is homogenous, containing only the 

neuroblast-like cell line, with occasional S type cells (Figure 3 B).  This cell line shows 

neuronal marker enzyme activity, specific uptake of norepinephrine, and expresses one 

or more neurofilament proteins. As for enzymes, the cells express low levels of tyrosine 

hydroxylase (TH) and dopamine-beta-hydroxylase, as well as norephinephrine uptake 

transporters, and high levels of nestin, which are all markers for immature 

dopaminergic/noradrenergic neurons. Fortunately, these cells have the capability of 

proliferating in culture for long periods without contamination, making them perfect 

for use as an in vitro cell model.23 When left undifferentiated, the SH-SY5Y cell line is a 

great model in studying brain tumor cell growth and neuroblastoma.  
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Figure 3: Undifferentiated SH-SY5Y cells at 20x. A) Undifferentiated n-cells show 
morphologically round cell bodies and short neurites. B) S-type cells stained with fluorescent 
calcein AM. S-type cells have much larger and flatter cell bodies compared to the N-cells. 
 
 
 

 
1.2.3 Differentiation of SH-SY5Y Cells 
 
 
 The differentiation of SH-SY5Y cells has been observed using a variety of 

treatments: all-trans retinoic acid (RA)25,26, phorbol ester 12-O-tetradecanoylphorbol-13-

acetate (TPA)27, brain-derived neurotrophic factor (BDNF)28, and dibutyryl cyclic AMP 

(dBcAMP)29. All-trans RA is the most commonly used differentiation treatment in SH-

SY5Y studies.26 Upon differentiation, the cells stop proliferating, become a stable 

population, and show extensive neurite outgrowth with morphological similarity to 

living neurons in the human brain (Figure 4).30 The effect of all-trans RA causes 

morphologically changes as early as 48 hours after treatment.31 

When differentiating SH-SY5Y cells with all-trans RA, it binds to two classes of 

non-steroid nuclear hormone receptors, the retinoic acid receptors (RARs) and the 

retinoic X receptors (RXRs).32-34 Although RA can bind only to the RARs, activated RAR 

heterodimerizes with RXR and the RAR/RXR heterodimers bind to RA response 

A B 
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element (RARE), resulting in transcriptional activation.35 RA induces differentiation 

through regulation of the transcription of neurotrophin receptor genes36, the Wnt 

signaling pathway37, and pathways involving type II protein kinase A (PKA)38. 

 Once the cells become differentiated they possess more biochemical, structural, 

morphological, and electrophysiological similarity to neurons.33 Additionally, once 

differentiated using all-trans RA, the SH-SY5Y cells express a variety of neuronal-

specific markers, including norepinephrine, growth-associated protein (GAP-43), 

receptors for neurotrophic factors, neuropeptides, neurosecretory granula, neuron-

specific enolase (NSE), neuronal nuclei (NeuN), vesicle proteins such as synaptophysin, 

and neuronal-specific cytoskeletal proteins, including microtube associated protein 

(MAP), Tau, and neurofilament proteins.29,30 MAP, GAP-43, NeuN, and synaptophysin 

are classical makers of mature neurons. These differentiated cells also contain higher 

levels of dopamine-!-hydroxylase, TH, and DAT activity, which are all indicators of 

functional neuron differentiation.33  

 
Figure 4: Fluorescent SH-SY5Y cells differentiated using all-trans RA at 20x. Differentiated cells 
display longer neurites. 
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1.2.4 IMR-32 Cells 
 
 
 IMR-32 is another human neuroblastomal heterogeneous cell lineage: containing 

both N and S-type cells in culture. The predominant N-cell is a small, highly light-

refractile, fibroblast-like or teardrop-shaped, neuroblast-like cell, which grows densely 

and often forms focal accumulation (Figure 5).39 The S-type cell is considered minor, 

and is relatively large, well-spread, fibroblast-like cell. The S-type cells are only known 

to be observed in the residual cells remaining in flasks after subcultivation procedures.39 

These cells have been shown to express nestin, polysialylated acid-neural cell adhesion 

molecule, and neural cell adhesion molecule. This cell line also has the capability of 

becoming differentiated into neuronal cells using specific neurotrophic growth factors.39 

IMR-32 cells represent an in vitro model for neuroblastoma as well as cancerous brain 

tumors. 

 

 

Figure 5: Fluorescent undifferentiated IMR-32 cells at 20x. These cells are round, and have small, 
and short neurites. 
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 The proliferative nature of these neuroblastoma cells poses an experimental 

problem in vitro, as they replicate too quickly to measure a total accurate effect of 

chemical manipulation in experiments that have long time frames.40 Subsequently, the 

newly formed cells that just underwent cell division might be biochemically different 

from the older cells in the cell culture, producing varied, or inaccurate results. 

 

 

1.3 TIMPs and MMPs 
 
 
 Tissue inhibitors of metalloproteinases, otherwise known as TIMPs, are 

considered a family of small extracellular proteins, which inhibit the enzymatic activity 

of matrix metalloproteinases (MMPs). MMPs are implicated in the pathophysiology of 

many diseases, including Alzheimer’s and Parkinson’s disease, and are extracellular, 

zinc-dependent endopeptidases.41 TIMPs are generally known to block MMP-mediated 

proteolysis by noncovalently binding to the MMP active site in a 1:1 stoichiometric 

ratio.42 Homeostasis is achieved by a tight balance of MMP proteolysis to TIMP 

expression. Many diseases of the central nervous system (CNS), such as Alzheimer’s 

disease, ischemic brain injury, CNS infections, Parkinson’s disease, and multiple 

sclerosis (MS) might be due to a dysregulation of this balance.43,44 Most articles interpret 

the increase of MMP/TIMP protein levels as an increase in proteolytic activity, relating 

to disease pathology; yet, this interpretation does not take into account TIMP signaling 

functions, and how they can relate to mechanisms of tissue injury or repair. 41  

 This alternative view comes from two observations: (1) the identification of 

functional receptors that mediate downstream signaling via TIMPs, and (2) findings 

which indicate that TIMPs and MMPs can be coincidentally expressed in pathology, 
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and sometimes from the same cells.41 For example, when interleukin-1!, a 

proinflammatory cytokine, is applied to primary glial cultures there is a large induction 

of MMP-3, and its inhibitor TIMP-1.45 Increased production of both MMPs and TIMPs 

within the same cellular population would abolish the activities of MMPs; and if the 

MMP-independent actions of TIMPs are researched, these results could reflect counter-

regulation of MMPs in TIMP signaling.41 

 All TIMPs have two basic structural domains: an N-terminal domain consisting 

of six conserved cysteine residues forming three disulfide loops, which possess MMP-

inhibitory activity, and a C-terminal domain that also contains six conserved cysteine 

residues and forms three disulfide loops.46 TIMPs inhibit MMPs through coordination 

of the zinc of the MMP active site by the amino and carbonyl groups of the TIMP N-

terminal cysteine residue. TIMPs are regulated at the transcriptional level by various 

cytokines and growth factors, resulting in tissue-specific, constitutive, or inducible 

expression.46  

 
 
1.3.1 TIMP-1 and Growth 
 
 
 Many distinct signaling pathways have been implicated in TIMP growth-

promoting activity, including the mitogen activated protein kinase (MAPK) and 

adenosine 3’,5’-monophosphate (cAMP)-protein kinase A (PKA) pathways.47,48 The 

growth and promoting activities of TIMP-1 and TIMP-2 may require activation of Ras, 

by distinct pathways suggesting independent receptor mechanisms. Growth-promoting 

activity was only observed in the presence of free TIMPs, independent of MMP-binding 

or MMP inhibition.46  
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1.3.2 TIMP-1 and Anti-apoptosis 
 
 
 TIMP-1 expression inversely correlates with the susceptibility to induction of 

apoptosis in various human Burkitt’s lymphoma cell lines. Treatment with recombinant 

TIMP-1, or forced expression of TIMP-1 in a TIMP-negative cell, reduces susceptibility 

to induction of apoptosis and suppresses caspase-3 activity.50 As well, TIMP-1 enhances 

the expression of survival and differentiation cytokines, such as interleukin-10 (IL-10), 

that also contribute to the anti-apoptotic effect.51 In human breast epithelial cells in vitro 

TIMP-1 also inhibits apoptosis. Bcl-2 overexpression increased the abundance of TIMP-1 

protein in breast epithelial cell lines (MCF10A and MCF7), and showed no effect on 

MMP or TIMP-2 expression; showing that the anti-apoptotic activity of TIMP-1 is 

independent of MMP inhibition.51 In this anti-apoptotic model system TIMP-1 activates 

the focal adhesion kinase (FAK)-phosphoinositol-3 kinase (PI3K) pathway to protect 

cells from intrinsic and extrinsic cell death.46 

 

 

1.3.3 TIMP-1 and Binding 
 
 
  The high-affinity cell surface binding of TIMP-1 to myeloid leukemia cells and 

keratinocytes suggested the presence of cellular binding partners. Recently, CD63, a 

member of the tetraspanin family, was identified as a cell-binding partner for TIMP-1 in 

MCF10A human breast cancer cells.52 Confocal microscopy confirmed the colocalization 

of TIMP-1 with CD63 and the !1 integrin subunit. Downregulation of CD63 with 

shRNA resulted in reduced TIMP-1 binding, and cell apoptosis. Furthermore, 

independent investigations have demonstrated that CD63 regulates PI3K, FAK, Src, and 
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Akt signaling pathways that have been implicated in the anti-apoptotic activity of 

TIMP-1 (Figure 6).46 

 

 

Figure 6: The multiple pathways of TIMP-1-CD63 signaling. TIMP-1 or TIMP-4 interact with the 
CD63 receptor, inhibiting intrinsic and extrinsic cell death pathways though activation of the 
FAK-PI3K pathway. These effects are mediated by activation of the extracellular regulated 
kinase (ERK). TIMP-1 also inhibits cell growth by suppressing cyclin D1 and upregulating 
p27Kip1. The cell cycle is arrested in the G1 phase via the hypophysphorylation of pRB.46 
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1.3.4 TIMP-1 and Disease 
 
 
 In animal models of CNS diseases, TIMP-1 has been shown to play important 

roles in neuroprotection, neural plasticity, and tissue repair via trophic function (Figure 

7). In a recent study it has been determined that TIMP-1 can directly stimulate the 

differentiation of oligodendrocytes from their precursor cells.53 Elevated TIMP-1 

expression in the CNS can represent an endogenous signal for remyelination. Another 

study demonstrated that overexpression of TIMP-1 was shown to lessen clinical disease 

progression and to preserve CNS myelination in a transgenic model of spontaneous 

demyelination.54  

 

 
 
Figure 7: MMP regulation of TIMP-mediated signaling. The N-terminus of TIMPs regulate 
MMP proteolysis, while the C-terminus interacts with cell surface receptors to initiate 
intracellular signaling cascades.41 
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1.3.5 TIMP-1 and Glial Cells 
 
 
 Additionally, TIMPs and MMPs play neurochemical roles within the brain 

involving glial cells. TIMP-1 has a restricted expression, and is only expressed in 

astrocyte-enriched cultures after stimulation by IL-1! or lipopolysaccharide (LPS). LPS 

promotes astrocyte TIMP-1 expression through an indirect mechanism, in which LPS 

induces microglia to secrete a soluble factor which then stimulates astrocyte TIMP-1 

expression. The addition of microglia, or conditioned medium taken from LPS-activated 

microglia restored astrocyte TIMP-1 expression. This effect was lost after depletion of 

IL-1! from the conditioned medium.55 These results indicate the importance of 

microglial-astrocyte communication in neurochemistry. The mechanism of TIMPs, 

specifically TIMP-1, has yet to be understood, when in the presence of astrocytes and 

neuroblastoma cells, involved in cell death. Furthering our understanding on these 

interactions could help us grasp the pathology, or even a sort of treatment, for brain 

cancer. 
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2. MATERIALS AND METHODS 

 

2.1 Materials 

  1:1 Dublecco’s modified Eagle’s medium nutrient mixture F-12 with 15 mM 

HEPES, pyridoxine and NaHCO3, without L-glutamine, PGS (Pen-Strep Glutamine 

solution containing 200 mM L-glutamine, 10,000 units penicillin g/mL, 10 mg 

streptomycin/mL in normal saline), all-trans retinoic acid and Hank’s Balanced Salt 

Solution (HBSS) were purchased from Sigma Aldrich (St. Louis, MO). Fetal bovine 

serum was purchased from Atlanta Biologics (Lawrenceville, GA) and the Live 

Cell/Dead Cell Assay, containing calcein AM and ethidium, was from Invitrogen 

(Carlsbad, CA). Recombinant mouse TIMP-1 was obtained from R & D Systems 

(Minneapolis, MN).  Eagle’s Minimum Essential Medium (EMEM) was obtained from 

ATCC (Manassas, VA). Wild type and knockout for TIMP-1 astrocytic media (WT-GCM 

and KO-GCM) was obtained from Dr. Stephen Crocker’s lab, including Kasey Johnson 

and Kumiko Ijichi at the University of Connecticut Health Center. 

 A stock solution of recombinant TIMP-1 was prepared by diluting the original 

TIMP-1 solution with 50 mM of Tris buffer, 10 mM CaCl2, 150 mM NaCl, and 0.05% Brij-

35 in deionized water to create a concentration of 100 "g/mL. The solution was sterile 

filtered prior to use in experiment 2. The diluted recombinant TIMP-1 was added to the 

wild type glial cell media, as well as the knockout glial cell media in order to raise the 

TIMP-1 concentration. 
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2.2 Cell Cultures 

 Human neuroblastoma SH-SY5Y cells and IMR-32 cells were purchased from 

ATCC (Manassas, VA). The SH-SY5Y cells were grown in 1:1 DMEM F-12 with 10% 

fetal bovine serum (FBS) and 1% PGS. The IMR-32 cells were grown in 1:1 Eagle’s 

Minimum Essential Medium (EMEM) and 10% FBS, and both of these cell cultures were 

grown in 75 cm2 flasks and kept in an incubator at 37°C with 5% CO2. When the cells 

had reached 70-80% confluence they were detached from the flask surface using trypsin 

and split into more flasks, or seeded on plates for use in experiments. 

 For experiments, cell cultures were seeded on 24-well plates (Nunc), which were 

coated with Nunclon Delta Surface. Plating density was kept between 1 and 2x105 

cells/well, which was determined by using a hemocytometer (hemocytometer 517040, 

Fisher Scientific, Pittsburgh, PA). 

 

2.3 Treatment 

 Every two days (or 48 hours) after plating onto 24-well plates, half of the feeding 

media was replaced with low serum feeding media (LSFM); which consists of DMEM F-

12, or EMEM for the IMR-32 cells, with 2% FBS and 1% PGS. In experiments where 

differentiation was induced, retinoic acid was added to the LSFM to give a 

concentration of 10 "M in the wells.59 Cells were monitored at each feeding to evaluate 

morphological changes associated with differentiation; and differentiation was defined 

as a morphological change consisting of neurite outgrowth and extension of the cell 

body.  

 For each experimental treatment the feeding media was completely removed from 

each well, the cells were rinsed with 400 "L of HBSS and the treatment solution for that 



 28 

experiment was then applied to each well. 24 hours later cell viability was analyzed.  

 In addition, for the denatured media experiment (Experiment 3), the wild type 

glial cell media was held in boiling water for 10 minutes, with a recorded temperature 

of 43°C. The media changed to a slightly lighter shade of red. 

 
 
 
2.4 Determination of Cell Viability 
 
 
 The cell viability assay used for analysis was the live cell/dead cell assay. The 

assay was then put on ice for half an hour along with HBSS. The cells were rinsed with 

ice-cold HBSS, and then 400 "L of the ice-cold assay solution was added to each well. 

The plate was covered and left in the dark, at room temperature, for 30 minutes. The 

cells were observed using a fluorescence microscope (Nikon eclipse TE2000-U) and 

through a color mosaic camera (Diagnostic Instruments Inc.) at 20x magnification. 

Pictures taken were observed through SPOT Advanced software (SPOT Imaging 

Solutions, Sterling Heights, MI). Three arbitrary fields per well were photographed 

using two fluorescent colors, green (live cells) and red (dead cells).  

 
 
2.5 Statistics 
 
 
 The number of total live cells and dead cells per each field in each well were 

counted using Adobe Photoshop.  

 The data represents results from four experiments that are presented as mean 

values ± SEM. Statistical differences between various treatment groups were conducted 

using GraphPad, using a Student’s t-test. 
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3. RESULTS 
 
 
3.1  SH-SY5Y Cell Treatment with Glial Cell Media 
 
 

Treatment of undifferentiated SH-SY5Y cells with WT-GCM for 24 hours 

significantly increased cell death over DMEM controls as seen in Figure 8. There was no 

change over DMEM controls on cell death when SH-SY5Y cells were treated with KO-

GCM.  Overall, the wild type glial cell media increased average cell death to 15% 

compared to 8% for the DMEM controls and 6% for KO-GCM (Figure 8). 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8: Undifferentiated SH-SY5Y cell viability when treated with wild type or knockout for 
TIMP-1 glial cell media for 24 hours. DMEM was used as a control, and was also given to the 
cells for 24 hours. Height of the columns indicates percentage of dead cells; error bars represent 
SEM. Student’s t test: ** p <0.005. (n=35 DMEM pits; 33 WT GCM pits; 17 KO GCM pits) 
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This increased cell death is shown in Figures 9 A-C, fluorescent pictures of the 

cells treated with DMEM, wild type glial cell media, and knockout glial cell media. The 

undifferentiated cells that were treated with the WT-GCM visually show much more 

clumping, compared to those treated with DMEM (Figure 9 B). On the other hand, the 

KO-GCM showed no significant difference of cell viability compared to that of the 

control, (Figures 8 and 9 C) suggesting that TIMP-1 plays a role in the apoptotic affect 

demonstrated by the wild type glial cell media on the undifferentiated SH-SY5Y cells. 

 

 

 

 

 

 

 

 

 

 

 

C 
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Figure 9: Fluorescent pictures of undifferentiated SH-SY5Y cells, at 20x, treated with (A) 
DMEM; (B) wild type glial cell media; and (C) knockout glial cell media for 24 hours. Cells are 
stained using the live cell/dead cell assay. Cells stained green are live, and cells stained red are 
dead. 

 
 

In the same set of experiments the reactions of differentiated SH-SY5Y cells 

towards the two glial medias (WT-GCM and KO-GCM) were investigated. There were 

no significant changes seen in viability over DMEM controls when the cells were given 

the glial medias for 24 hours as seen in Figure 10. The average cell death was much 

higher overall, including the DMEM treatment group, as well as the glial cell media 

treatments, compared to the undifferentiated cells (Figure 10).  

A B 

C 
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Figure 10: Differentiated SH-SY5Y cell viability when treated with wild type or knockout for 
TIMP-1 glial cell media for 24 hours. DMEM was used as a control, and was also given to the 
cells for 24 hours. Height of the columns indicates percentage of dead cells; error bars represent 
SEM. (n= 26 DMEM pits; 14 WT GCM pits; 18 KO GCM pits) 
 
 
 
 Overall, these results suggest that a compound being secreted by the wild type 

astrocytes is having a selective effect on the SH-SY5Y cells, only inducing 

undifferentiated SH-SY5Y cell death, as the differentiated cells were not affected by the 

WT-GCM (Figure 10). Interestingly, the KO-GCM did not have the same effect on the 

undifferentiated, and even the differentiated cells, implying that the release of an 

astrocytic factor into the extracellular media depends on the presence of TIMP-1 within 

the astrocyte.  

These results are strikingly odd, as TIMP-1 is known to have anti-apoptotic 

activities by suppressing caspase-3 activity 48, and even enhancing the expression of 

survival and differentiation cytokines 49. These experiments, which demonstrate the 

effect of TIMP-1 on cell survival, have only been done with differentiated types of cells, 
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and not undifferentiated neuroblastoma cells. The results provided instead show an 

apoptotic effect, due to the presence of TIMP-1 in the astrocyte, on cancerous 

neuroblastoma cells.  

 
 
3.2  Increasing TIMP-1 in Wild Type and Knockout Glial Cell Media 
 

In order to determine the role of TIMP-1 within this apoptotic mechanism 

recombinant mouse TIMP-1 (reTIMP-1) was added to the knockout glial cell media, as 

well as the wild type glial cell media in order to raise the concentration to 

supraphysiological levels. The reTIMP-1 was directly added to the two medias in order 

to determine if the astrocytes are releasing a factor due to the presence of TIMP-1, or if 

TIMP-1 is acting directly upon the undifferentiated SH-SY5Y cells to induce death.  

The effect of increased levels of TIMP-1 on the undifferentiated SH-SY5Y cells 

was investigated by adding reTIMP-1 to both glial cell medias in order to increase the 

total concentrations. Assuming that the WT-GCM already contains an approximate 

concentration of 10 ng/mL of TIMP-1,41 the total concentrations were 20 ng/mL and 35 

ng/mL of TIMP-1 in WT-GCM. Increasing levels of TIMP-1 in the WT-GCM for 24 

hours significantly reduced undifferentiated SH-SY5Y cell death compared to the WT-

GCM with no extra reTIMP-1 (Figure 11). Additionally, the increased level of TIMP-1 in 

the WT-GCM, significantly reduced cell death over DMEM controls. 
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Figure 11: Undifferentiated SH-SY5Y cell viability when treated with wild type glial cell media 
with supraphysiological levels of TIMP-1 for 24 hours. Wild type glial cell media has on average 
10 ng/mL of TIMP-1. DMEM was used as a control, and was also given to the cells for 24 hours. 
Height of the columns indicates percentage of dead cells; error bars represent SEM. Student’s t 
test: ** p <0.005; *** p <0.001. (n=23 DMEM pits; 33 WT GCM pits; 20 WT GCM + 10 ng/mL T1 
pits; 20 WT GCM + 25 ng/mL T1 pits) 
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Figure 12: Fluorescent picture of undifferentiated SH-SY5Y cells, at 20x, treated with wild type 
glial cell media plus an additional (A) 10 ng/mL of TIMP-1 and (B) 25 ng/mL for 24 hours. 
Cells are stained using the live cell/dead cell assay. Cells stained green are live, and cells 
stained red are dead. 
 
 
 
 
 This attenuating affect, presented by the addition of recombinant TIMP-1, can 

visually be seen in comparing both Figure 12 A and B to Figure 9 B, where much more 

cell death is seen. Additionally, when the undifferentiated cells were treated with the 

WT-GCM with the additional recombinant TIMP-1, the cells were not clumpy 

compared to when treated with just the WT-GCM that had no recombinant TIMP-1.  

 
 
 
 
 
 
 
 
 
 
 
 

A B 
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 Adding reTIMP-1 to the KO-GCM provided no significant changes in cell death 

in comparison to the KO-GCM with no additional reTIMP-1, and to the DMEM control 

(Figure 13). Adding extra reTIMP-1 to the knockout glial media slightly reduced cell 

death compared to the DMEM control from 8% to 5%.  

 
 

 
 
 
Figure 13: Undifferentiated SH-SY5Y cell viability when treated with knockout glial cell media 
with supraphysiological levels of TIMP-1 for 24 hours. Knock out glial media has 0 ng/mL of 
TIMP-1. DMEM was used as a control, and was also given to the cells for 24 hours. Height of 
the columns indicates percentage of dead cells; error bars represent SEM. (n=23 DMEM pits; 20 
KO GCM pits; 10 KO GCM + 10 ng/mL T1 pits; 10 KO GCM + 25 ng/mL T1 pits) 
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Figure 14: Fluorescent picture of undifferentiated SH-SY5Y cells, at 20x, treated with knockout 
glial cell media plus an additional (A) 10 ng/mL of TIMP-1 and (B) 25 ng/mL for 24 hours. 
Cells are stained using the live cell/dead cell assay. Cells stained green are live, and cells 
stained red are dead. 
 
 
 
 When the undifferentiated SH-SY5Y cells were treated with KO-GCM, with the 

additional recombinant TIMP-1, there was no morphological effect seen, when 

compared to the DMEM control and the KO-GCM without the addition of reTIMP-1 

(Figure 14 A and B). 

 
 
 
 
 
 
 
 

A B 
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Figure 15: Undifferentiated SH-SY5Y cell viability when treated with wild type glial cell media 
and knockout glial cell media with supraphysiological levels of TIMP-1 for 24 hours. Knock out 
glial media has 0 ng/mL of TIMP-1. DMEM was used as a control, and was also given to the 
cells for 24 hours. Height of the columns indicates percentage of dead cells; error bars represent 
SEM. Student’s t test: ** p <0.005 
 
 
 In addition, the knockout glial cell media with a concentration of 10 ng/mL of 

TIMP-1, identical to that of the wild type glial cell media, showed no apoptotic effect 

towards the undifferentiated SH-SY5Y cells, verifying the apoptotic factor as astrocyte-

secreted. Figure 15 shows that there is a significant difference in average percent cell 

death when comparing the cells treated with the WT-GCM, and then those treated with 

the KO-GCM with the same concentration of TIMP-1. This indicates that TIMP-1 is not 

acting alone, and the apoptotic factor, affecting the undifferentiated cells, is being 

secreted by astrocytes. 
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3.3  Undifferentiated SH-SY5Y Cell Treatment with Heated/Denatured Wild Type 
Glial Cell Media 

 
 
 Since it was established that wild type glial cell media induces apoptosis in 

undifferentiated SH-SY5Y cells via an astrocytic apoptotic factor, the identity of the 

factor, and the mechanism needs to be elucidated. Based on the assumption that the 

apoptotic factor is a protein, it will become denatured and inactive when boiled, 

inhibiting the apoptotic effect on the undifferentiated cells.  

 When the WT-GCM was heated to 43°C the cell death was significantly reduced 

compared to non-heated WT-GCM (Figure 16).  These results indicate that this 

apoptotic factor is present within the WT-GCM, and can become easily nonactive when 

heated, suggesting that it is a protein or an enzyme. Additionally, the heated wild type 

glial cell media lowered undifferentiated cell death slightly in comparison to the 

knockout glial cell media. 
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Figure 16: Undifferentiated SH-SY5Y cell viability when treated with denatured wild type glial 
cell media for 24 hours. Height of the columns indicates percentage of dead cells; error bars 
represent SEM. Student’s t test: ** p <0.005; *** p <0.001. (n=23 DMEM pits; 20 KO GCM pits; 30 
WT GCM pits; 33 denatured WT GCM pits) 
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Figure 17: Fluorescent picture of undifferentiated SH-SY5Y cells, at 20x, treated with denatured 
wild type glial cell media for 24 hours. Cells are stained using the live cell/dead cell assay. Cells 
stained green are live, and cells stained red are dead. 
 
 
 
 As seen in Figure 17, a fluorescent picture of undifferentiated cells treated with 

denatured/heated WT-GCM, one can see the difference compared to Figure 9 B, a 

picture of cells treated with just the WT-GCM. There is a difference in the amount of 

dead cells compared to live ones when they are treated with the denatured/heated 

media, compared to the regular wild type glial cell media, and much less cell clumping. 

 
 
 
3.4 Undifferentiated IMR-32 Cell Treatment with Glial Media 
 
 
 In order to determine if this apoptotic reaction is just seen in undifferentiated 

SH-SY5Y cells, another type of neuroblastoma cell, called IMR-32, underwent the same 

glial cell media treatment. These cells showed the same morphological, and are known 

to have the same biochemical characteristics as SH-SY5Y cells.36  
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 Figure 18 shows that the undifferentiated IMR-32 cell death significantly 

increased when treated with the WT-GCM over the EMEM control, mirroring the 

results seen in Figure 8 with the SH-SY5Y cells. The KO-GCM, again, did not affect the 

undifferentiated IMR-32 cells.  

 

Figure 18: Undifferentiated IMR-32 cell viability when treated with wild type or knockout for 
TIMP-1 glial cell media for 24 hours. EMEM was used as a control, and was also given to the 
cells for 24 hours. Height of the columns indicates percentage of dead cells; error bars represent 
SEM. Student’s t test: ** p <0.005. (n=72 EMEM pits; 36 WT GCM pits; 36 KO pits) 
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Figure 19: Fluorescent pictures of undifferentiated IMR-32 cells, at 20x, treated with (A) EMEM 
and (B) wild type glial cell media for 24 hours. Cells are stained using the live cell/dead cell 
assay. Cells stained green are live, and cells stained red are dead. 
 
 
 
 Figure 19 A and B demonstrate the increased undifferentiated IMR-32 cell death 

that occurs when the cells are treated with WT-GCM for 24 hours compared to the 

EMEM control. These results are not surprising, as these neuroblastoma cells have 

many identical characters compared to the SH-SY5Y cells that also demonstrate this 

reaction in the presence of wild type glial cell media.  

 Figure 20 summarizes the major findings of this research project, showing that 

the WT-GCM is inducing an apoptotic effect on both undifferentiated SH-SY5Y and 

IMR-32 neuroblastoma cells. These results also confirm that TIMP-1 needs to be 

expressed within the astrocyte in order for the apoptotic factor to be released, as the 

KO-GCM showed no effect on the undifferentiated cells.  

 

 

A B 
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Figure 20: Undifferentiated SH-SY5Y and IMR-32 cell viability when treated with wild type or 
knockout for TIMP-1 glial cell media for 24 hours. Solid colored bars represent SH-SY5Y cells 
and striped bars represent IMR-32 cells. DMEM and EMEM were used as a control, and were 
also given to the cells for 24 hours. Height of the columns indicates percentage of dead cells; 
error bars represent SEM. Student’s t test: ** p <0.005. 
 
 
 
 It can therefore be concluded from these results that wild type astrocytes, 

expressing TIMP-1, are releasing an apoptotic factor that induces apoptosis in only 

undifferentiated SH-SY5Y and IMR-32 neuroblastoma cells. The action of the apoptotic 

factor can be inhibited by denaturing (boiling the media), suggesting the factor is a 

protein or enzyme. Additionally, the supplementation of reTIMP-1 to the WT-GCM can 

completely alleviate undifferentiated cell death, demonstrating the anti-apoptotic and 

pro-survival qualities of TIMP-1. 
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4. DISCUSSION 
 
 
 The wild type glial cells are releasing an apoptotic factor that is only inducing 

apoptosis in undifferentiated neuroblastoma cells. The factor is believed to be an 

enzyme or protein, that is temperature-dependent, and has the capability of binding to 

receptors on the outside of the cell, or even entering the cell inducing an apoptotic 

pathway.  

The astrocytes, only when in the presence of TIMP-1, are releasing a factor that 

induces stress on the undifferentiated cells. The WT-GCM is only invoking stress on the 

undifferentiated cells, demonstrating their biochemical differences compared to the 

differentiated cells. Since the undifferentiated cells have not morphologically and 

biochemically chosen their cellular path, they have many different receptors that are 

sensitive towards specific chemicals, making them susceptible to chemical responses.25  

On the other hand the differentiated dopaminergic SH-SY5Y cells show 

completely different biochemical and morphological properties, which is why they 

might not demonstrate the same effect towards the WT-GCM.25 The results demonstrate 

that the excess recombinant TIMP-1, when added directly to the WT-GCM, inhibits the 

apoptotic effect seen in the undifferentiated cells. One theory might be that the wild 

type astrocytes only release an apoptotic factor, which affects only undifferentiated cells, 

and this factor can be inhibited by excessive TIMP-1 when it is added directly to the 

WT-GCM. The apoptotic factor could possibly have the same structure and biochemical 

properties as an MMP, making it a great candidate to be blocked by the additional 

recombinant TIMP-1 in the media. The apoptotic factor binds to the N-terminus of 

TIMP-1, causing inhibition of the factor. This therefore prevents the apoptotic factor 
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from binding to a receptor on the undifferentiated cells, or even entering the cell, 

inhibiting cell death. 

 Undifferentiated SH-SY5Y cell death is reduced when additional reTIMP-1 is 

added to the WT-GCM, even when compared to the DMEM control. The additional 

reTIMP-1 within the WT-GCM may be acting as an anti-apoptotic factor by suppressing 

the normal activity of caspases and increasing survival cytokines, causing the DMEM 

control wells to have higher cell death compared to wells with additional TIMP-1. These 

results pose a paradox for the action TIMP-1: when available at normal levels in 

astrocytes in causes a release of an apoptotic factor, but when in excess it acts as an anti-

apoptotic agent. 

 

Tumor protein 53, also known as p53, is commonly known to cause apoptosis in 

cells that have undergone major stressors, such as DNA damage induced by UV, IR, 

and chemical agents, oxidative stress, osmotic shock and ribonucleotide depletion.56 

Within the undifferentiated cells p53 might become activated due to stress, brought 

upon by the WT-GCM. p53 activation causes the upregulation of three multidomain 

proapoptotic proteins: Puma, Noxa, and Bax.57 All three of these proteins, when 

upregulated, disrupt the outer mitochondrial membrane causing the activation of 

cytochrome c, inducing apoptosis.57 When the excess reTIMP-1 was added to the WT-

GCM it could bind to the stressor inducing this apoptotic reaction, preventing p53 from 

becoming activated within the cell, inhibiting the apoptotic effect. In addition, the 

recombinant TIMP-1 could also bind with p53 inhibiting the apoptotic cascade that it 

induces. With this effect, the TIMP-1 acts as an anti-apoptotic factor by binding with 

p53, but it also has the capability of enhancing pro-survival cytokines, which might 

account for the alleviated undifferentiated cell death. 
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The CD63 receptor, which is known to be located on cancer cells, binds with 

TIMP-1 and inhibits intrinsic and extrinsic cell death pathways through activation of the 

FAK-PI3K pathway.45 The apoptotic factor released by astrocytes could have the ability 

to bind to the CD63 receptor and block its action, preventing TIMP-1 from binding, and 

initiating this pathway. When the reTIMP-1 is added to the media it could knock out 

this factor, and then activate this pro-survival pathway, which is unwanted in 

cancerous cells. When there is no TIMP-1 available, such as in the KO-GCM, the 

apoptotic factor is not released, so this effect is void. 

 

Another theory comes from new research on the TRAIL (TNF-related apoptosis-

inducing ligand) death receptor 5, which has been only found in various cancer cells.58 

TRAIL binds to DR4 and DR5 receptors, which both activate apoptosis through intrinsic 

factors. Once TRAIL binds the Fas-associated death domain is activated (FADD). FADD 

recruits initiator caspase-8 through its N-terminal death-effector domain, which then 

form death-inducing signaling complex (DISC).58 This pathway induces apoptosis via 

caspase activation.  

The apoptotic factor being released by the wild type astrocytes and is in the WT-

GCM could closely resemble a TRAIL protein; therefore it could act as a ligand to death 

receptors located on the undifferentiated cells. When reTIMP-1 is added to the WT-

GCM, it could block this apoptotic factor from binding to the DR4 or DR5 receptors, 

attenuating cell death. This new research shows promising results, as the death receptor 

is only located on cancer cells, allowing us to just target unwanted cells within the body.  
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In order to further investigate these mechanisms proposed the activation of p53 

could be blocked via chemical alterations, the CD63 receptor could be knocked out, and 

death receptors could be blocked. Using these proposed methods one can narrow down 

the apoptotic pathway seen in the undifferentiated cells treated with the wild type glial 

cell media. Once this is done, this mechanism can be taken advantage of in order to only 

selectively target apoptosis in cancerous cells. 
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