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Quantum Condensates in Extreme Gravity:

Implications for Cold Stars and Dark Matter*
M. P. Silverman
Department of Physics
Trinity College, Hartford CT 06070 USA

E-mail: mark.silverman@trincoll.edu

SUMMARY
Stable end-point stars currently fall into two distinct classes—white dwarfs and neutron stars—
differing enormously in central density and radial size. No stable cold dead stars are thought to
span the intervening densities nor have masses beyond ~2-3 solar masses. I show, however, that
the general relativistic condition of hydrostatic equilibrium augmented by the equation of state of
a neutron condensate at 0 K generates stable sequences of cold stars that span the density gap and
can have masses well beyond prevailing limits. The radial sizes and mass limit of each sequence
are determined by the mass and scattering length of the composite bosons. Solutions for
hypothetical bosons of ultra-small mass and large scattering length yield huge self-gravitating

systems of low density, resembling galactic dark matter halos.

*This paper received Honorable Mention in the 2007 Gravity Research Foundation Essay Competition.
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One of the most challenging problems in contemporary astrophysics is to understand the
final fate of stars that have exhausted their nuclear fuel and can no longer sustain themselves
against gravitational collapse. Within the framework of Einstein’s general theory of relativity,
the problem is attacked by adopting an equation of state (EOS) relating the pressure and density
of stellar matter and solving the Tolman-Oppenheimer-Volkoff (TOV) equations of hydrostatic
equilibrium.! Depending on the central mass density, this procedure has led to two basic
sequences of terminal equilibrium states: white dwarfs (WD) and neutron (or neutron-quark)
stars (NS).

White dwarfs originate from progenitor stars of less than about five solar masses

(Mg=2x 10*° kg) and are sustained by electron degeneracy pressure at radii of a few thousand
kilometers with core densities of ~10° —10"" kg/m3. More massive progenitors can collapse to

neutron stars of a few tens of kilometers with core densities ~10'7 —10'° kg/m3 maintained by
the degeneracy pressure of unbound neutrons formed by inverse beta decay of disrupted atomic
nuclei. No stable states are predicted within the wide gap of densities between the WD and NS
regions nor in the limitless range beyond NS densities. Moreover, the TOV solutions have led to
mass limits of about 2-3 M for both white dwarfs and neutron stars. Cold stars over the limit
collapse to black holes where matter falls into a central singularity and the laws of physics break
down.

In this paper I solve the TOV equations for a self-gravitating Bose-Einstein condensate
(BEC) at 0 K formed by fermion condensation of neutrons into composite bosons. In contrast to
previous results for unbound neutronic matter, I show that it may be possible for stable
equilibrium states of neutron BEC stars to exist in the range between WD and NS core densities
and have masses much higher than the Chandrasekhar (for WD) or Oppenheimer-Volkoff (for

NS) limits.
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The energy density &, of a quantum condensate is derivable from the Gross-Pitaevskii
(GP) nonlinear Schrodinger equation®. Under steady-state conditions with neglect of kinetic
energy (Thomas-Fermi approximation valid at 0 K) and addition of a rest-mass contribution, the

energy density &, takes the dimensionless form

£ (V1)

b 1 2. 142
xXp = =M+ +2 A (1a)
b (mbCZ/v) My 2(77b) g’vb o

where my, is the boson mass, n, is the boson number density, and 7, =n,v is the number of

particles in an interaction volume v defined by
2
v =4mak, (1b)
in which A, =#%/myc is the (reduced) boson Compton wavelength and a is the scattering length

that appears in the GP equation. The last term in Eq. (1a) is a quantum zero-point energy which
can be neglected when the condensate healing length &, = (SJranb )-”2 is much smaller than

the mean particle separation dj, = n;”3 as will be shown to be the case for condensed neutrons
in a neutron star. Throughout the paper I retain familiar units employing the speed of light c,

universal gravitational constant G, and (reduced) Planck’s constant %= h /27 .

From Eq. (1a) follow dimensionless forms for the boson chemical potential u,

Wy  dxp
Ep= =—==1+7 2)
b mbC2 d’?b b

and condensate pressure P,

% E(—jpbz =Myl =Xy =3 3)
myc /V

from which one derives the condensate EOS in a form suitable for the TOV equation

2
Pressure-Energy Xp=2p+422, ofr g =%[‘/1 +2Xx, —1] (4a)



IJMPD 2007 M P Silverman

Pressure-Chemical Potential = % (&, - l) . (4b)

It is to be noted that EOS (4a,b) is causal; i.e. the derivative,

dB, _ gy

2o, ", T ©

which corresponds to the square of the ratio of the speed of sound to the speed of light, is always

) dP,
in the range | ># 2 0 because Cb is always =1.
b

Hydrostatic equilibrium within a nonrotating neutron-condensate star at 0 K in a

Schwarzschild geometry is expressed by the set of TOV equations in the form

dz, _ (G/c )(22,, +J22_b)[ r)+4m r(m, /v)zb]

6:
ar - ( sz( )) )
nr——-=_
c
dm(r) 2
& = 4w r*(m, /v)[zb+ 2z, | - (6b)

The equations are solved by specifying a central mass density (from which Eq. (4a) gives the
central pressure) and integrating outward over radius r until » = R at which pressure zZ(R) = 0.

Then R is the stellar radius and M = M(R) is the stellar gravitational mass as inferred by a

distant observer. Besides relation (5), stability requires that M be less than the composite mass

M, of the unbound particles at rest at infinity, given by

wob-

Tar 2 R 26M(r)
My = f4.7tr 8 (rYmynydr = f47'—"' (mb /V)JZZI, I—T dar (6c)
0 0
2GM(r) K
where g,, (r) =(1__2_r) is the radial element of the (diagonal) Schwarzschild metric
rc

tensor.
The EOS of the condensate is determined by two length parameters: X, (~inverse of the

boson mass) and a (~strength of the boson S-wave interaction). For each pair of EOS parameters
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a sequence of equilibrium stellar masses is generated from the TOV equations by varying the

central mass density. Figure 1 shows an example of such a sequence for parameters

corresponding to neutron pairing with mass parameter Q= mj, [2m, = 1.2 and a/k, = 10°.
Figure 2 shows the radial variation in mass density and pressure for the maximum-mass star in
this sequence.  Although I have examined numerous cases of EOS parameters and resulting
stellar sequences, 1 draw particular attention in this paper to solutions with a/X, >> 1. As
illustrated in Table 1, these are solutions for which the mean particle separation within the stellar
bulk is much smaller than the scattering length, yet much larger than the healing length. The first
condition corresponds to the unitarity limit for which fermion behavior is universal, i.e. largely
independent of the scattering potential and therefore applicable to dense nuclear matter as well as
to dilute atomic gases.”> The second condition justifies neglect of the zero-point quantum pressure
(except in the proximity of the surface).

Foremost to be noted is that the densities of stable equilibrium states (left of the peak in
Figure 1) fall within the range between white dwarf and neutron stars, and that equilibrium

masses can far exceed the Oppenheimer-Volkoff limit.

TABLE 1: Neutron Condensate Solutions to the TOV Equations (Q =1.2)

a/A Mmax/Msun | LOog(p)* | R (km) a/dy Ey/d,
200 1.7 15.00 15 17.3 0.048
2000 5.5 14.00 47 104.5 0.020
4000 8.3 14.00 57 116.4 0.018
8000 11.7 13.70 81 184.7 0.015
12000 14.1 13.70 90 266.3 0.012
24000 19.6 13.00 158 338.4 0.011
1000000 130.4 11.70 850 4870 0.003
* o in kg/m’
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The stellar model presented here raises a number of fundamental issues. At present, it is
not known whether neutrons will condense under sufficiently high pressures to form a BEC.*
However, since there is strong evidence that neutron pair correlations give rise to superfluidity in
the outer layers of a neutron star’, the formation of a condensate within the denser interior is
highly conceivable. This inference is supported by recent experiments on cold fermionic gases
demonstrating the parametric variation between superfluid and BEC states in the unitarity limit.*

A second issue is whether the neutron condensate, presuming it forms under high
compression, will be the denser and therefore more stable phase. A comprehensive analysis of
this problem would exceed the space limits of this paper. The formal structure of the calculation
is outlined in the Appendix. In brief, I have solved the TOV equations for a two-phase system,
employing the Gross-Pitaevski EOS for the condensate phase and a modified Bethe-Johnson’
EOS for the neutron phase, and have found sequences of stable states with a dense condensate
core for reasonable choices of parameters.

A third and particularly noteworthy issue is the potential implication of the present work
for theories of dark matter, a seemingly distinct problem that also lies at the forefront of
contemporary astrophysics. The solutions to the TOV equations for a self-gravitating condensate,
as reflected in Table 1, reveal a progression of increasing mass limits as a/A, increases. The
wider significance of this trend may be seen as follows. The intrinsic material property of the

self-gravitating condensate enters the TOV equations (6a-c) only through the ratio my, /v which

2 3
m clh)" m
can be re-expressed in the form —% = (4—2)—1’. Thus, letting a—> o for fixed boson mass
v JT a

my, , is equivalent to letting m, — O for a fixed interaction a. Therefore, apart from application
to cold dense stars, solutions in the unitarity limit can also be interpreted as pertaining to self-

gravitating condensates of very low-mass bosons. Table 1 suggests that stable states may be
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generated with high gravitational masses, low mass densities, and radii on a galactic scale by
selection of sufficiently low values of the boson mass. Such states could provide an apt
description of galactic dark matter.

Prevailing theories attribute dark matter to various species of weakly interacting bosons
with masses many times greater than a proton mass. However, although dark matter has been
detected indirectly through gravitational lensing®, experimental searches have failed to find any
reproducible direct evidence of the hypothesized massive particles.” I have previously proposed a
theory of dark matter as a condensate of very low mass bosons with a density function determined
from the GP equation.' The predicted mass distribution, which agreed reasonably well with
observations based on rotation curves of spiral galaxies, is quite different from the density

profiles generated by TOV solutions such as illustrated in Figure 2. However, the low density of

galactic dark matter is precisely the condition (7, < (81ra)_3) for which the quantum zero-point

2 (V) dxo
b in Eq. (1a) and corresponding quantum pressure Zg = 1J,,

1
energy X =< A
e"s b dny,

_xQ,

hitherto neglected, are expected to play a dominant role. It remains to be seen, therefore, whether
a general relativistic analysis of a quantum condensate with quantum zero-point stress-energy
tensor elements can provide a satisfactory description of galactic dark matter. An endeavor to

answer that question is under way.

APPENDIX

Self-Gravitating Neutron and Neutron-Condensate Phases in Equilibrium

The neutron phase can be characterized by a modified Bethe-Johnson EOS

£ z 7, |
Pressure-Energy X, = —= =( 2 )+( ") (A1)

mcing \v-1) \v-1
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P g -1 v/i(v-1)
Pressure-Chemical Potential 2, I—= =2 ) (A2)

2
m,c ny v

expressed in terms of dimensionless quantities for energy density ¢, , pressure P,, and chemical

potential , = ‘u"2 = dx,

m,c dn,

, where 1, = (n,, /no) is the dimensionless particle density, and

the exponent v and number density ng are characteristic parameters of the model.  Typical

values, based on comparison with nuclear data, are v = 2.5 and ng =10ny, where the saturation

nuclear density is ny =0.15 fm®.

The Bethe-Johnson EOS is not causal over the entire range of chemical potentials. From

the relation

dP, dz, -1
lzds,, =E=(v—1)(1-§,, )zo (A3a)
one deduces the restriction
volo e o (A3b)
v-2 "

or 328, 21 for the parameters previously specified. Actually, the lower limit may be larger
than 1 as a consequence of meeting the condition of chemical equilibrium.

The reversible transformation of unassociated neutrons into a neutron condensate,
represented by the reaction sn <>b where s = 2 for pairing, is subject to baryon conservation

from which the condition of chemical equilibrium follows as an equality of chemical potentials
SUp =Hp Or Cb =£,/10 (QEmblsmn)' (A4)
The transition pressure P, at which the condensate phase begins to form is determined from Eqs.

(4b) and (A2) by the equality P, =P,,,

T I

v 2ngy
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For the condensate to be the stable phase in the core, it must be the denser phase at

pressures P > P,, as a consequence of which it may be shown that Q >1, and Q becomes the
lower limit in Eq. (A3). If Q is too large, §, (Pc) exceeds the upper limit of the causal region of
the Bethe-Johnson EOS (a problem presumably circumvented by a more comprehensive theory of
compressed nuclear matter). Choosing for illustrative purposes Q =1.2 and a/%, = 200 yields
¢,(P.) = 2.866 and P.=2.08x 10 Pa. As points of comparison, note that the pressure

(according to Newtonian gravity) at the center of a solar-mass neutron star of radius 10 km is

3 GM?
8_ Iz =32x10% Pa, and that a neutron gas of density 1 particle per cubic Compton
1
i mc®  mc3 34
wavelength yields a characteristic pressure —— = —h-3—- =6.5x10"" Pa. The mass, size, and

n
density distribution of the two-phase star is obtained by integrating the TOV equation with the

neutron-phase EOS for P < P, and the condensate-phase EOS for P > P,.
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Figure 1: Equilibrium stellar masses (in units of solar mass) as a function of the logarithm of the

central density for a/&,, = 10° and 0 = 1.2. Stars to the right of the vertical line are in unstable

equilibrium because M > M,,.
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Ratio

R (km)

Figure 2: Variation in mass density (relative to the central density pp =5 x 10' kg/m3 ) and
pressure (relative to the central pressure Fy=5.1x 10%° Pa) for condensate stars with

alk, =10° and 0 = 1.2.
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