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Summary

Fermionic Cooper pairing leading to BCS-type hadronic superfluidity is believed to
account for periodic variations (“glitches”) and subsequent slow relaxation in spin rates
of neutron stars. Under appropriate conditions, however, fermions can also form a Bose-
Einstein condensate of composite bosons. Both types of behavior have recently been
observed in tabletop experiments with ultra-cold fermionic atomic gases. Since the
behavior is universal (i.e. independent of atomic potential) when the modulus of the
scattering length greatly exceeds the separation between particles, one can expect
analogous processes to occur within the supradense matter of neutron stars. In this paper
I show how neutron condensation to a Bose-Einstein condensate, in conjunction with
relativistically exact expressions for fermion energy and degeneracy pressure and the
relations for thermodynamic equilibrium in a spherically symmetric spacetime with
Schwarzschild metric, leads to stable macroscopic equilibrium states of stars of finite

density, irrespective of mass.
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The collapse of a massive relativistic degenerate star to a stellar black hole poses
what is perhaps the most serious challenge to the laws of physics as they are currently
understood. Prevailing theory, starting with the first comprehensive analysis of the
problem by Oppenheimer and his group ['], holds that all matter and energy, once having
passed through the event horizon, fall irretrievably into a central singularity. To the

extent that a black hole is a real physical object and not merely a mathematical solution to

the differential equations of general relativity, it is difficult to believe that 10%° or more

kilograms of matter can actually collapse to a geometric point (or, according to some

theories, to a region of Planck length size ~ 107 m). Clearly something important has
been omitted from the relevant physics.

During the past few years there have been several attempts to stabilize the
collapse of a star beyond the Oppenheimer-Volkoff (O-V) mass limit by taking account
of long-range magnetic interactions among nucleons [’], by recognition of a vacuum
quantum field process (particle resorption) [*] complementary to the process responsible
for Hawking radiation [*], and by appeal to loop quantum gravity to suppress the
formation of an event horizon [°].

Very recent advances in the investigation of degenerate fermi gases at ultra-low
temperature [*][’]1[®][’], however, suggest a new possibility by means of which known
physical laws (in contrast to as yet hypothetical quantizations of gravity) may prevent the
singular collapse of a degenerate star.  Currently under intensive theoretical and
experimental investigation, ultra-cold gases of fermionic atoms (e.g. K and 6Li) with
magnetically tunable interactions provide a means of exploring the predicted transition

between Bardeen-Cooper-Schrieffer (BCS) superfluidity and Bose-Einstein condensation
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(BEC) into composite bosons. In such systems, the modulus of the scattering length can
be made much larger than the mean atomic separation, a condition believed to hold in
neutron stars. Thus, degenerate atomic fermi gases provide experimentally accessible
model systems for exploring processes that can occur in dense nuclear matter [ |l [ i

The existence of neutron and proton BCS-type superfluids in neutron stars has
long been supposed to account for sudden period changes (“glitches”) and their
subsequent slow relaxation ["], although questions remain concerning the exact nature
and distribution of hadronic superfluids ['*]. Fermionic BCS and BEC behavior represent
two extremes in the condensation of fermions, depending on whether the scattering
length asymptotically approaches negative or positive infinity ['*], whereupon the
behavior becomes universal, i.e. independent of the details of the atomic potential. In the
first case, which entails formation of Cooper pairs, the underlying Fermi statistics play an
essential role['®]; in the second case, all fermions are bound into quasi-molecular
composite bosons with no fermionic degree of freedom remaining. Both kinds of
fermionic behavior have been observed in the recent experiments on cold fermionic
gases. Since there is compelling evidence that hadronic BCS superfluids exist in neutron
stars, it is not unreasonable to consider that fermionic matter may also condense to a BEC
under the conditions of supranuclear density and strong magnetic fields encountered
within degenerate stars over the O-V limit.

In this paper I show that nucleon (or, if hadrons disrupt, then quark) condensation
to a BEC, in conjunction with relativistically exact expressions for fermion energy and

degeneracy pressure and the relations for thermodynamic equilibrium in a spherically
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symmetric spacetime with Schwarzschild metric, lead to stable macroscopic equilibrium
states of degenerate stars irrespective of mass.

To understand qualitatively how fermion condensation may stabilize stellar
collapse, one must recall why standard physical arguments lead to no equilibrium in the
first place. As the fermionic matter in a collapsing degenerate star becomes relativistic,
the dependence of the degeneracy pressure on the density changes from a 5/3 power
dependence to a 4/3 power dependence. In consequence of this softening, the hydrostatic
balance between degeneracy pressure and weight is broken, and, in the absence of any
other mechanism to stiffen the pressure law, the matter continues to collapse to a
singularity. In the process presented here, however, the fermionic fluid of neutrons (or
quarks), compressed to densities well in excess of normal nucleon density (i.e. neutron
mass divided by the cube of the neutron Compton wavelength), undergoes a reversible
transformation to a BEC of composite bosons, the equilibrium concentrations of which
depend on the density, and therefore size, of the collapsing star. As neutrons are removed
from the fermion phase, the Fermi energy consequently falls, and the degeneracy pressure
eventually stiffens. I will show that condensation to a BEC leads again to hydrostatic
equilibrium with an equilibrium radius comparable to that of a neutron star or quark star.

As the simplest model to illustrate the preceding principles, I consider a uniformly
dense two-component system of degenerate neutrons of mass m, and Bose-Einstein

condensate of composite bosons of mass m; . The internal energy function of this

system can be written as [']['®]

U =[m,g(yp)V/88°32]+ Nymyc? + (1 - fOIMC? = Mc? 1)
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where the first bracketed term is the fermion energy Uy of N, degenerate neutrons in
volume V,

Vg = pplmge = (3n2N,,/V)”3x,, (2a)
is the ratio of the fermi momentum to the product of neutron mass and light speed,
X,=h/mge ~ 021 fm is the reduced Compton wavelength of the neutron, and the
function g(y) is defined by

8 =y2y* + DYy? +1 - sinh ™). (2b)
The second term is the ground-state energy U, of the Bose-Einstein condensate of N,
bosons of mass m,,. The third term is the gravitation energy U, of the entire system of

mass M defined by

R
M= f4n:r2 pdr = 4nR’p/3 (3a)
0

and evaluated for uniform density p. The function f{x), which defines a spherical
volume of radius R in the Schwarzschild spacetime as
V=0@=nR}I3)f(x), (3b)

takes the form

-
@) =(3/2x2)[s'“x x. —xz], (3b)

where the square of the argument is the ratio of the Schwarzschild radius to the stellar
radius

x2 =2GM/Rc® = Rg/R. (c)
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From Egq. (1) there follows the relation between mass density p and number densities of
the fermions (n, = N,/ V) and bosons (n, = N, / V):

= mng()’F)

Differentiation of U with respect to volume and particle numbers, under the
assumption of total mass conservation, leads to the thermodynamic first-law relation

dU =—(Ps + F)dV + (u, + m,@)dN, +(p, + my$)dN, (52)

in which the fermion degeneracy pressure and gravitational pressure are respectively

P, =—(ou, Jav) o = (mac® 124278 IyF(Zypz ~3)Jye? +1+3sinh”! yF] (5b)

2 xf'(x)
P, =-\dU,[oV) = "=df Idx), 5¢
=)y =0 s (il )
the fermion and boson chemical potentials are respectively
U= (U1 0N, ), = m,c? 1 + y7 (5d)
2
wy = (U, 10N,),, = mye? (Se)
and the gravitational potential is defined by
2 2 1
() /c* = (oU, [ aMc )N=-[ — -1‘. (5
-x

In deriving Eq. (5a) and the succeeding expressions, I have neglected the entropy
contribution (7°dS) since the mean temperature T of the system, although it can be
numerically high (e.g. T ~ 10’ K) initially, is negligibly small compared to the Fermi
temperature Ty = u,/ kg where kg is Boltzmann’s constant (7z > 10" K for a solar-

mass neutron star) and the BEC-BCS cross-over temperature (T, ~0.157x [**]). For all
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practical purposes, therefore, the degenerate matter, both fermionic and bosonic, is
effectively at a temperature of absolute zero.

Consider next the reversible transformation sn <> b, whereby an even number s
of neutrons correlate to produce a composite boson with mass parameter Q =my/sm,.
Studies of neutron superfluidity in neutron stars ['°] have generally assumed s = 2, but
other correlations are conceivable given the greater densities occurring in stars collapsing
to black holes. The preceding transformation law leads to the differential change in
particle number dN, = —-dN, /s, which, upon substitution into Eq. (5a), results in the
equality

sty +mu$) = py + myd (6)
at equilibrium (dU =0, d*U <0 ). Eq. (6) is a generalization of the equality of chemical
potentials for systems in a weak gravitational potential [*°]. Likewise, hydrostatic
equilibrium requires

Py + P, =0. @)
Substitution of Eqgs. (5d,5¢,5f) into Eq. (6) leads to the equilibrium relation between the

neutron Fermi parameter yr and the Schwarzschild parameter x

1
1-

5 qir2
YF= [Q+(Q—l)[1— 2]] —l‘ (0sx2s3/4), (8a)
x

or equivalently

2
x2=RS/R=1—[ o-1 ) (OsyFsJQz-l) (8b)

2Q-1-J1+y§=
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from which the variation in neutron density as a function of stellar radius can be

calculated (Eq. 2a)
n, =(yp(x)/ &, ) 1357 . (8¢)

The density of the composite bosons then follows from the relation

1{Vy o
= YRl ). (8d)

where n,? is the initial fermion density at the volume V; just before onset of the fermion-

BEC transition. The requirement that yr and x> be real-valued and positive sets the

limits of variation shown in Egs. (8a,b)

The equilibrium value of x,, to be used in Eq. (8¢c) is determined by solution to

the pressure-balance equation (7). In this regard, it is necessary to take note of the
uniquely quantum mechanical implications of having a self-gravitating BEC. As is well
known, a boson condensate at effectively zero temperature exerts no pressure because all

particles are in a state of zero relative momentum [*']. (The pressure of a nonrelativistic

Bose gas approaches zero with temperature as T’ 512

independent of volume.) What must
also be realized, however, is that a self-gravitating condensate in its ground state exerts
no weight. Were the particles of the condensate to fall inwards towards the center of the
star, they could not maintain a ground state of zero relative momentum, yet the effective
temperature of the boson condensate is so far below the BEC critical temperature that the
condensate cannot be excited [*]. The outcome, therefore, is that the condensate, in
accordance with the quantum uncertainty principle, cannot collapse to a singularity, a

characteristic already noted in a model of galactic dark matter as a BEC of low-mass

bosons [?]. Only the fermionic matter (the neutron or quark fluid) within the star
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continues infalling, until hydrostatic equilibrium is attained. In view of the fact that the
self-gravitating BEC exerts no weight, it is not the total density p that must appear in Eq.
(5¢) for the gravitational pressure, but only the fermion contribution to the density. Thus,
in place of Egs. (4) and (5¢), one must instead employ in Eq. (7) the pressure

2 xf(x)
x f'(x) -6 f(x)

}Tg = P,C (Qa)

with density
24 3
Pn = mg(yr) 8%°K;, . (9b)
Examination of Eq. (8a) shows that yr indeed decreases (i.e. neutron density
falls) as x increases (i.e. the star collapses) over the allowed range of variation. Eq. (7),

which is highly nonlinear in the variable x, can be solved numerically by computer for

initially specified parameters: e.g. maximum Fermi parameter yp, condensation factor s,
and condensate mass parameter Q. Figures 1, 2, and 3 illustrate the principal features of
such a solution for a relativistic degenerate star for which fermion condensation occurs
with condensate parameters s = 2, and Q = 4.  As the stellar radius decreases, the
equilibrium neutron density falls and the equilibrium composite-boson density rises
(Figure 1A), although the number of composite particles can never exceed the initial
number of neutrons (Figure 1B). Both degeneracy pressure and gravitational pressure
fall in magnitude, achieving hydrostatic equilibrium at a radius of approximately 1.5 R;
(Figure 2). At equilibrium, the neutron Fermi parameter yr is approximately 1.5.
Several points are worth noting explicitly. First, for relativistic degenerate stars
sufficiently dense that neutrons condense to form a BEC, the terminal equilibrium state is

not a black hole with central singularity, but a new stellar species of size marginally
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larger than the theoretical Schwarzschild radius. This is the case irrespective of the
condensate parameters, the values of which a more complete theory of supradense
nuclear matter would presumably specify. Second, the case Q = O effectively
corresponds to the previously reported process of gravitationally-induced particle
resorption into the vacuum [*]. Third, although the preceding analysis was implemented
for intact neutrons, the basic principles apply as well to the condensation of quarks in
neutron stars with hadron disruption. In such a case, however, the expressions
determining equilibrium composition must be generalized to take account of different
quark flavors and the quantum chromodynamical modification of the quark chemical
potential [**]. Fourth, a more complete analysis than can be presented here must also take
account of the effect on BEC formation of the long-range magnetic interactions among
neutrons (or quarks). Previous investigations of magnetic interactions in degenerate stars
collapsing under Newtonian gravity [*] have led to macroscopic stable states marginally
smaller in size than the Schwarzschild radius. Such a star would qualify as a black hole
although with no singularity. Further work is now under way to see whether magnetic
interactions in conjunction with fermionic BEC formation in a Schwarzschild spacetime
lead to similar results.

The question arises of how one can determine observationally whether a
degenerate star of mass greater than the O-V limit is a black hole (with an event horizon
and matter and energy concentrated at the interior singularity) or a star, such as predicted
here, with neutrons (or quarks) in equilibirum with a BEC of composite bosons. The
usual distinguishing criteria of mass (estimated from orbital data for stars in binary

associations or from gravitational microlensing events) and size (estimated from

10
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fluctuations in X-ray emissions by accreting matter), may be inconclusive. More likely
to succeed would be astronomical observations that can reveal the physical characteristics
of the stellar surface, in particular to determine its emissivity and presence of a a physical
crust.

In concluding this paper, it is perhaps pertinent to recall the desperate comment
made by Sir Arthur Eddington with respect to Chandrasekhar’s discovery of his
eponymous limit on white dwarf masses and the irreversible collapse that it implied [**]:
“Various accidents may intervene to save the star, but I want more protection than that. I
think there should be a law of nature to prevent a star from behaving in this absurd way.”
If it can be convincingly demonstrated that self-gravitating supradense degenerate
hadronic matter must indeed undergo a transition to a BEC state, then the mechanism
herein proposed will at long last provide that “law of nature” that Eddington called for. It
is fascinating to contemplate how a rare form of matter that can be made only with great
difficulty and exists in relatively few terrestrial laboratories may turn out to be one of the
most common components of the cosmos and central to the gravitational stability of

degenerate stars.

11
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Figure 1: (A) Variation in neutron and composite boson densities with radius (in units of
Schwarzschild radius R). The densities are in units of the initial neutron density when
BEC formation begins.. (B) Variation in neutron and composite-boson particle numbers

(in units of initial number of neutrons). Condensate parameters are s =2 and Q = 4.

12
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Figure 2: Variation in fermion degeneracy pressure and gravitational pressure with
radius (in units of Schwarzschild radius) for condensate parameters s=2, O=4. The insert
(total pressure vs radius) shows the region where hydrostatic equilibrium is attained at R

~ 1.5 R;. Pressures are expressed in units of Ry = m,,c2 / 24n27£?, = 6.9x 107" Pa.
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P +Po (units of P )

Figure 3: Variation in total (degeneracy + gravitational) pressure with Fermi

momentum parameter yp for condensate parameters s=2, O=4. Pressures are expressed
. . 2 243 34 : CRr ; .
in units of By =m,c”/24nx"k, = 6.9x10"" Pa. Hydrostatic equilibrium is attained at

approximately y. ~ 1.5.

14



International Journal of Modern Physics D M P Silverman

References

'J. R. Oppenheimer and G. M. Volkoff, Phys. Rev. 55, 374 (1939).

2 M. P. Silverman, Int. J. Mod. Phys. D 13, 2281 (2004).

3 M. P. Silverman, Int. J. Mod. Phys. D 14, 2285 (2005).

4S. W. Hawking, Nature 248, 30 (1974).

> M. Bojowald, et al, Phys. Rev. Lett. 95 091302-1 (2005).

¢ C. A. Regal et al, Phys. Rev. Lert. 92, 040403 (2004).

" R. Grimm, Nature 453, 1035 (2005).

8 M. W. Zwierlein, et al., Nature 453, 1047 (2005).

®J. Kinast, et al., Phys. Rev. Lett. 92, 150402-1 (2004).

19 L. Pitaevskii and S. Stringari, Science 298 (2002) 2144.

' K. M. O’Hara et al, Science 298 (2002) 2179.

12 J. Kinast et al, Science 307 (2005) 1296.

13D Pines and M. A. Alpar, Nature 316 (1985) 27

4 B. Link, Phys. Rev. Lett. 91 (2003) 101101.

15 E. Burovski et al, Phys. Rev. Lett. 96 (2006) 160402.

' H. T. C. Stoof et al, Phys. Rev. Lett. 76 (1996) 10.

' W. Greiner et al, Thermodynamics and Statistical Mechanics (Springer, New York,
1995) 358.

18 C. Misner, K. Thorne, and J. Wheeler, Gravitation (Freeman, San Francisco, 1973) 604

19 C. Schaab, et al., Astronomy & Astrophysics 335 (1998) 596.

15



International Journal of Modern Physics D M P Silverman

2].. Landau and L. Lifshitz, Statistical Physics (Addison-Wesley, Reading MA, 1958)
72.

2! L. Landau and L. Lifshitz, op cit, 170.

2 J. Annett, Superconductivity, Superfluids, and Condensates (Oxford, New Y ork, 2004)
8.

2 M. P. Silverman and R. L. Mallett, Gen. Rel. & Grav. 34 (2002) 633.

2 R. C. Duncan et al, Ap. J. 267 (1983) 358

% L, Chandrasekhar in Black Holes and Relativistic Stars, Ed. by R. M. Wald,

(University of Chicago Press, Chicago, 1998) 274.

16



	Fermion Condensation in a Relativistic Degenerate Star: Arrested Collapse and Macroscopic Equilibrium [post-print]
	tmp.1641325030.pdf.mZU1l

