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Small-scale production poultry operations are increasingly common worldwide. To investigate how these opera-
tions influence antimicrobial resistance and mobile genetic elements (MGEs), Escherichia coli isolates were sam-
pled from small-scale production birds (raised in confined spaces with antibiotics in feed), household birds (no
movement constraints; fed on scraps), and humans associated with these birds in rural Ecuador (2010–2012). Iso-
lates were screened for genes associated with MGEs as well as phenotypic resistance to 12 antibiotics. Isolates
from small-scale production birds had significantly elevated odds of resistance to 7 antibiotics and presence of
MGE genes compared with household birds (adjusted odds ratio (OR) range = 2.2–87.9). Isolates from humans
associated with small-scale production birds had elevated odds of carrying an integron (adjusted OR = 2.0; 95%
confidence interval (CI): 1.06, 3.83) compared with humans associated with household birds, as well as resistance
to sulfisoxazole (adjusted OR = 1.9; 95% CI: 1.01, 3.60) and trimethoprim/sulfamethoxazole (adjusted OR = 2.1;
95%CI: 1.13, 3.95). Stratifying by the presence of MGEs revealed antibiotic groups that are explained by biological
links toMGEs; in particular, resistance to sulfisoxazole, trimethoprim/sulfamethoxazole, or tetracycline was highest
among birds and humans when MGE exposures were present. Small-scale production poultry operations might
select for isolates carrying MGEs, contributing to elevated levels of resistance in this setting.

antimicrobial resistance; Escherichia coli; integrons; plasmids; poultry production

Abbreviations: AMR, antimicrobial resistance; CI, confidence interval; int1, class-1 integron; int2, class-2 integron; MDR, multiple-
drug resistance; MGE, mobile genetic elements; OR, odds ratio; tetA, tetracycline class A; tetB, tetracycline class B.

Antimicrobial resistance (AMR) threatens global health by
increasing morbidity and mortality, complicating treatment, and
increasing health-care costs (1). Therapeutic and nontherapeutic
antibiotic use among humans and animals contribute to commu-
nity and environmental reservoirs of AMR, such as those found
in livestock operations (2). Antibiotic use among animals in the
United States is 4 times higher by weight than among humans,
and it remains largely unregulated and undocumented (3–6).

Poultry production is a quickly expanding form of livestock
farming worldwide (7). In developed nations with industrial-
scale operations, thousands of birds are often raised in confined
spaces with feed or water laced with antibiotics (given for the

purposes of disease prevention, treatment, and/or growth pro-
motion). Higher frequencies of AMR have been found in poul-
try from these production operations compared with free-range
birds not exposed to antibiotics (8). In addition, isolates from
humans associated with different types of production poultry
operations with varying degrees of antibiotic utilization have
similar resistance frequencies and profiles to those found in
corresponding poultry isolates (9) and higher resistance fre-
quencies when compared with humans in the surrounding
community not associated with production operations (10, 11).
However, poultry farms worldwide are dominated by small-scale
production operations (<100 birds), particularly in developing
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nations where poultry are raised for income and/or household
consumption (12, 13). While a small number of studies have
documented high levels of AMR in poultry in small-scale pro-
duction operations (14–16), not all of these studies have appro-
priate nonproduction bird or human comparisons (nonclinical,
from the immediate surrounding community), and so less is
known about AMR development and transmission within these
settings.

While many of these studies investigate resistant pheno-
types, genetic factors also mark AMR spread. Mobile genetic
elements (MGEs), such as integrons and plasmids, transfer
genes conveying phenotypic resistance among diverse bacte-
rial genera. Certain phenotypic resistance profiles might be
associated with different MGEs; genes conveying resistance
to tetracycline are often found on plasmids (17), and some in-
tegron types contain a gene conveying resistance to sulfona-
mides at the 3′ end of the integron structure (18). The high
prevalence of MGEs documented in industrial-scale poultry
operations from developed nations might contribute to elevated
frequencies of AMR in these operations (19). A diverse array of
AMR genes have been found in integrons located on plasmids,
making them a common mechanism for horizontal spread
of AMR andmultiple-drug resistance (MDR) (20), andMGEs
might be more important than bacterial cells in the transmis-
sion of AMR genes from livestock to humans (21).

The construction of a road in Esmeraldas province, Ecuador,
has led to an influx of small-scale production poultry (chicken)
operations using antibiotics in feed and water for growth pro-
motion and prophylaxis. This increase provided an opportunity
to observe how antibiotic use in small-scale production opera-
tions influences the epidemiology of AMR and MGEs in com-
mensal gut bacteria of poultry and humans. A serial cross-sectional
community-based study was conducted to examine how small-
scale poultry production practices affect the frequency ofMGEs
and phenotypic AMR in poultry and human isolates across rural
communities in northern Ecuador.

METHODS

Study area and design

The location and overall design of the parent case-control
study have been described elsewhere (22, 23); briefly, the study
included a total of 31 villages distributed along roads and river
basins near Borbón, a major population hub in northern coastal
Ecuador, that were visited between 2003 and 2012. This analy-
sis was restricted to data from 20 of these villages, where
fecal samples from both humans and chickens were collected
(August 2010 toMay 2012). Each village was visited for 15 days
once a year during this period. Because the study period encom-
passed 20 months, some villages were visited once and others
twice. Consent to participate was obtained from all households,
and all study protocols were reviewed and approved by the Uni-
versity of Michigan Institutional Review Board and the Univer-
sidad San Francisco deQuito Bioethics Committee.

Poultry sample collection

Starting in August 2010, two types of birds were sampled
from each village during study visits. Birds from small-scale

production operations were production-breed broiler chick-
ens and laying hens, raised in close contact with other birds
within poultry coops, and were not allowed or able to leave
the coop environment. Coop sizes ranged from tens to hun-
dreds of birds (the majority housed 50–100). Diets of produc-
tion birds were composed largely of formula feed containing
antibiotics, and antibiotics were sometimes directly adminis-
tered to these chickens in their water. Coop-level information
on antibiotics included in feed was not available. Furthermore,
the specific antibiotics used varied by brand and over time for
a given brand. (Using mass spectrometry, a previous analysis
of a commonly available feed for laying and broiler hens in
the area revealed the presence of chloramphenicol, virginia-
mycin, lincomycin, and tetracycline (15).) In contrast, house-
hold chickens, kept for personal consumption (meat and
eggs), did not have movement restrictions and had diets com-
posed primarily of ground corn and kitchen scraps.

To obtain poultry cloacal samples, teams visited all house-
holds with active small-scale production poultry coops as well
as households with no small-scale production coops that were
located as far as possible from active coops (one nonproduc-
tion household was sampled for each household with an active
coop). At least 5 small-scale production chickens in each coop
were sampled. For villages with no small-scale production op-
erations present at the time of the visit, 3–10 households were
chosen at random to sample household birds. The exact num-
ber was dependent on the proportion of households in the vil-
lage that were raising household birds at the time, which
ranged from 10%–30%.

Human sample collection

As part of the original case-control study, human stool samples
were collected from individuals who had cases of diarrhea, identi-
fied through daily household visits during the 15-day village vis-
its. We used the World Health Organization case definition
of diarrhea, which requires 3 or more loose stools (self-reported
or, for children<13 years of age,maternally reported) in a 24-hour
period (24). A 10% random sample of the community was
selected to identify controls, defined as individuals without diar-
rheal symptoms during the prior 6 days. Humans were linked to
birds from small-scale production operations or household birds
through a shared household identification number.

Markers for phenotypic AMR

Isolates of Escherichia coli from each human and chicken
fecal sample were selected and grown on Chromocult agar
(Merck, Darmstadt, Germany). Phenotypic resistance was
measured for up to 5 isolates per chicken and (given the larger
number of human samples collected over the entire study period)
1 isolate at random per human using disc-diffusion assays by
standard antibiogram methods. Because the study comparisons
were within bird and human groups (see below), any bias intro-
duced by this approach should have been nondifferential. The
following classes were tested: beta-lactams (ampicillin, amoxicil-
lin/clavulanate acid, cefotaxime, cephalothin), quinolones (cipro-
floxacin and enrofloxacin), aminoglycosides (gentamicin and
streptomycin), sulfonamides (sulfisoxazole, sulfamethoxazole),
trimethoprim (tested with sulfamethoxazole), chloramphenicol,
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and tetracycline. Clinical and Laboratory Standards Institute
(CLSI) breakpoints were used to determine an isolate’s suscepti-
bility or resistance to antibiotics from a clinical perspective (25).
An isolate was defined asMDR if the isolate was resistant to 2 or
more classes of antibiotics.

Markers for MGEs

To test for the presence of MGEs, genes associated with the
following integrons and resistance genes were used as markers:
class-1 integrons (int1), class-2 integrons (int2), and 2 tetracy-
cline genes (class A: tetA, and class B: tetB). Presence or absence
of each gene was determined using high-throughput dot-blot
hybridization on the library-on-a-slide (LOS) array platform
developed previously in our laboratory (26), with internal gene
probes prepared with primers listed inWeb Table 1, available at
https://academic.oup.com/aje. Hybridization conditions and the
analysis of the probing results have been described in detail
elsewhere (26–29).

Statistical analysis

To examine the role of small-scale production operations on
the prevalence of AMR in E. coli isolates, the AMR prevalence
in isolates from small-scale production birds was compared with
the prevalence in isolates from household birds. To investigate the
role that small-scale production operations have on the prevalence
ofAMR isolates from household birds in the surrounding commu-
nity, household birds were stratified by village type (household
birds from villages with small-scale production operations and
household birds from villages without small-scale production
operations at the time of sample collection). To investigate how
MGEs influence AMR levels, another stratified analysis was
done stratifying isolates by both small-scale production andMGE
status. AMR prevalence in isolates from humans associated with
birds from small-scale production operations was compared with
the prevalence of AMR in isolates from humans associated only
with household birds. As with the poultry comparisons above, the
latter group was also stratified by the presence or absence of a
small-scale production operation in the village at the time of visit,
as well as by both small-scale production andMGE status.

Multiple levels of clustering potentially occur for poultry
(bird, household, and village-level) and human (household and
village-level) isolates. To investigate potential clustering, odds
ratios and 95% confidence intervals were generated by building
nested mixed models with random intercepts for each level of
clustering with PROC GLIMMIX in SAS, version 9.4 (SAS
Institute, Inc., Cary, North Carolina). Evidence for clusteringwas
assessed through significance of the household and village-level
random effect variance. For isolates from both birds and humans,
there was no evidence for clustering at the village level (i.e., the
village-level random-effect variance was not significantly differ-
ent from zero). Due to high correlation of isolates within birds
that manifested in highly variable covariate effect estimates (data
not shown), a random effect for birds was not used. Instead, iso-
lates were collapsed across birds (i.e., if there was an isolate posi-
tive for a marker, then that bird was considered positive for that
marker), and this bird-level observation was used for the models.
Therefore, final mixed models for both poultry and humans
included a random intercept only for the household.

To compare the odds of AMR in isolates from small-scale
production birds (and associated humans) with those in house-
hold birds (and associated humans), the above models were
used to calculate unadjusted and adjusted odds ratios and 95%
confidence intervals. To calculate adjusted odds ratios, we
controlled for variables based on hypothesized causal rela-
tionships between these variables and the exposure/outcome.
Year of sample collection can influence the presence of a small-
scale production operation and levels of AMR. Diarrheal case
status of humans might be causally linked to AMR levels: If a
person is sick and takes antibiotics, that might then select for
AMR organisms (adjusting for a variable that is causally linked
only to the outcome can increase statistical efficiency (30)).
Model adjustments, therefore, included year of sample collection
for isolates from birds and year of sample collection and origi-
nal diarrheal case status for isolates from humans. In addition to
the latter adjustment for humans (in model 1), because MGEs
might be related to both small-scale production operations and
AMR, we constructed a second model controlling for MGEs
(model 2).

RESULTS

Poultry data

We collected 1,245 isolates from 376 chickens (186 small-
scale production birds and 190 household birds) in the 20
villages. Higher prevalence of AMR for all markers was seen in
isolates from small-scale production birds compared with those
from household birds (Table 1). Unadjusted and adjusted odds
ratios from mixed models showed significantly elevated odds
for the presence of allMGEmarkers among small-scale produc-
tion birds, and significantly elevated odds of resistance for 7 of
12 antibiotics tested (as well as MDR), compared with house-
hold birds (Table 2). Low prevalence of resistancewas observed
for amoxicillin/clavulanate acid, cephalothin, cefotaxime, enroflox-
acin, and gentamicin, particularly among isolates from house-
hold birds; therefore, models for these antibiotics gave unstable
odds ratios and are not reported.

To investigate the role of small-scale production operations
on household chickens, household birds were stratified by the
presence of a small-scale production operation in the village
(n = 68) or the absence of a small-scale production operation in
the village (n = 122) at the time of the visit (Table 3). House-
hold chickens from villages with small-scale production opera-
tions had significantly higher odds of resistance to 2 of the 4
MGE markers (for int1, adjusted odds ratio (OR) = 3.1 (95%
confidence interval (CI): 1.27, 7.69), and for tetA, adjusted
OR = 2.6 (95% CI: 1.20, 5.66)) compared with household
chickens from nonproduction villages. In addition, higher odds
of phenotypic resistance were observed for MDR (adjusted
OR = 2.4, 95% CI: 1.07, 5.40) and for 2 antibiotics (for sulfi-
soxazole, adjusted OR = 3.3 (95% CI: 1.35, 8.02), and for
trimethoprim/sulfamethoxazole, adjusted OR = 3.3 (95% CI:
1.35, 7.99)).

Human data

Human isolates (n = 799) were linked in the database to
small-scale production operation or household birds through
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a shared household identification number. There were 45 hu-
mans associated with production birds and 754 associated with
household birds. The prevalences of AMR to 8 of 12 antibiotics
and 4 of 4 MGE markers were higher for isolates from humans
associated with production birds compared with those associated
with household birds (Table 1). Odds ratios from nested mixed
models are shown in Table 4. As with the poultry data, there was
low AMR prevalence for a subset of antibiotics, and these mod-
els are not reported. There was also low prevalence of int2 and
tetB; thesewere combinedwith int1 and tetA for a single category
for integrons and one for tetracycline genes (Table 4). Models
with adjustment showed increased odds of the presence of an
integron (adjusted OR = 2.0, 95% CI: 1.06, 3.83), sulfisoxa-
zole resistance (adjusted OR = 1.9, 95% CI: 1.01, 3.60), and
trimethoprim/sulfamethoxazole resistance (adjusted OR = 2.1,
95% CI: 1.13, 3.95) among humans associated with small-
scale production birds compared with humans associated
with household birds. Similar patterns were observed upon
stratifying humans associated with household birds by village
type (Table 5), with higher odds of tetA/B becoming significant
when comparing humans associated with small-scale production

birds with humans associated with household birds in nonpro-
duction villages (model 1: adjusted OR= 2.0, 95% CI: 1.02,
3.78). Only tetracycline resistance (model 1: adjusted OR =
1.5, 95% CI: 1.03, 2.08) had significantly elevated odds
when comparing humans associated with household birds
in small-scale production villages with those in nonproduc-
tion villages.

Small-scale production operations, AMR, andMGEs

Elevated levels of markers for MGEs, particularly isolates
positive for int1 and tetA, were consistently observed in small-
scale production birds and associated humans compared with
household birds and associated humans. To explore howMGEs
might facilitate AMR in isolates from poultry and humans, the
prevalence of phenotypic AMR by small-scale production
exposure was further stratified by the presence or absence
of MGEs (results for int1 are shown in Figure 1). Three distinct
groups of phenotypic AMR emerged when using all isolates
from poultry, which we refer to here as group 1, group 2,
and group 3. Resistance to group 1 antibiotics (sulfisoxazole,

Table 1. Frequency of Antibiotic Resistance in Escherichia coli Isolates FromSmall-Scale Production Birds and Associated Humans in Rural
Ecuador, 2010–2012

Source andMarker

Type of Poultry Type of Human Association

Small-Scale
Production
(n = 619)

Household
Small-Scale
Production
(n = 45)

Household

Small-Scale
Production

Villages (n = 246)

Nonproduction
Villages (n = 380)

Small-Scale
Production

Villages (n = 385)

Nonproduction
Villages (n = 369)

No. of
Samples %a No. of

Samples %a No. of
Samples %a No. of

Samples %a No. of
Samples %a No. of

Samples %a

Microarray

int1 269 43.5 27 11.0 22 5.8 13 28.9 75 19.5 63 17.1

int2 65 10.5 6 2.4 2 0.5 4 8.9 14 3.6 12 3.3

tetA 307 49.6 54 22.0 53 13.9 15 33.3 88 22.9 64 17.3

tetB 88 14.2 19 7.7 23 6.1 7 15.6 54 14.0 46 12.5

Antibiogram

Sulfisoxazole 401 64.8 43 17.5 37 9.7 22 48.9 134 34.8 119 32.2

Trimethoprim/
sulfamethoxazole

368 59.5 39 15.9 32 8.4 21 46.7 116 30.1 104 28.2

Tetracycline 426 68.8 72 29.3 93 24.5 20 44.4 151 39.2 108 29.3

Ampicillin 279 45.1 29 11.8 29 7.6 16 35.6 131 34.0 115 31.2

Chloramphenicol 151 24.4 5 2.0 12 3.2 2 4.4 23 6.0 22 6.0

Ciprofloxacin 183 29.6 7 2.8 14 3.7 1 2.2 10 2.6 13 3.5

Enrofloxacin 196 31.7 7 2.8 13 3.4 2 4.4 10 2.6 13 3.5

Streptomycin 257 41.5 18 7.3 30 7.9 12 26.7 99 25.7 85 23.0

Amoxicillin/clavulanate
acid

112 18.1 3 1.2 0 0.0 2 4.4 13 3.4 7 1.9

Cephalothin 201 32.5 8 3.3 16 4.2 8 17.8 66 17.1 49 13.3

Cefotaxime 13 2.1 1 0.4 0 0.0 0 0.0 0 0.0 2 0.5

Gentamicin 101 16.3 3 1.2 1 0.3 1 2.2 1 0.3 8 2.2

MDR 429 69.3 53 21.5 58 15.3 21 46.7 151 39.2 129 35.0

Abbreviations: int1, class-1 integron; int2, class-2 integron; MDR,multiple-drug resistance; tetA, tetracycline class A; tetB, tetracycline class B.
a Columnsmight not sum to the total, as an isolate can be positive for more than 1 genetic marker, and/or resistant to more than 1 antibiotic.
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trimethoprim/sulfamethoxazole, and tetracycline) had the
highest levels of resistance whenever an integron was present,
regardless of poultry type (Figure 1A). In group 2 (Figure 1B),
both the presence of small-scale production operations and
int1 increased the prevalence of AMR. Resistance to group 3
antibiotics was high with production exposure, but some-
times both production and integron exposures were required
(Figure 1C). Similar grouping patterns were also seen when
stratifying by int2, tetA, and tetB (data not shown). In hu-
mans, there were low frequencies of resistance to group 2
and 3 antibiotics, and so similar patterns failed to emerge for
these groups (data not shown). However, the prevalence of
AMR for sulfisoxazole, trimethoprim/sulfamethoxazole, and
tetracycline (group 1) in human isolates showed similar pat-
terns to those seen in poultry isolates, with the highest AMR
prevalence (approximately 70%–80%) occurring whenMGEs
were present, intermediate prevalence (35%–40%) occurring
when only small-scale production operations were present,
and the lowest prevalence (approximately 20%) present when
neither small-scale production operations nor MGEs were pres-
ent (Figure 1D).

Given our observations that small-scale production opera-
tions are associated with elevated odds of MGEs (Tables 2–
5), and that MGEs are associated with elevated levels of AMR
(Figure 1), a second adjusted model for humans was created in
which presence/absence of MGEs was added (Table 5, model
2). Attenuated odds ratios and a loss of (moderate to weak) sig-
nificance for sulfisoxazole, trimethoprim/sulfamethoxazole, and
tetracycline for humans associated with production birds (and

tetracycline for humans associated with household birds in pro-
duction villages) were observed.

DISCUSSION

This study suggests that production operations on a smaller
scale, and not just industrial-scale poultry operations, are asso-
ciated with increases in resistant isolates in poultry and humans
associated with these operations. In addition, theMGE and phe-
notypic data presented here highlighted a potentially important
role of small-scale production operations within the study site,
namely an elevated occurrence of MGEs in E. coli carried by
production birds and associated humans. Integrons house a
wide array of resistance genes (20), which can result in the
expression of resistant phenotypes not directly related to anti-
biotics used in production farming. In a study of livestock farms
with heavy use of antibiotics, all types of resistance genes were
enriched, and such enrichment was highly correlated with the
abundance of MGEs such as transposases (31), often linked
with integrons (32).

The ability of class-1 integrons to carry AMR genes is the
most likely explanation for our observed relationship between
int1, small-scale production operations, and AMR (Figure 1).
For group 1 antibiotics (sulfisoxazole, trimethoprim/sulfameth-
oxazole, and tetracycline), the presence of int1 was associated
with an AMR prevalence of approximately 90% from bacterial
isolates taken from birds, regardless of poultry type. This find-
ing can be explained by physical links to MGEs. All class-1 in-
tegrons incorporate a sulfonamide (sul) resistance gene as part

Table 2. Odds Ratios FromMixedModelsa Comparing Escherichia coli Isolates FromSmall-Scale Production Birds
(n = 619) to Isolates FromHousehold Birds (n = 626) in Rural Ecuador, 2010–2012

Source andMarker

Small-Scale Production Bird vs. Household Bird

Unadjusted Adjustedb

OR 95%CI OR 95%CI

Microarray

int1 12.4 5.97, 25.7 14.1 6.44, 30.9

int2 22.1 6.00, 81.4 25.8 6.71, 99.3

tetA 9.6 4.74, 19.5 9.6 4.63, 19.8

tetB 2.2 1.21, 3.86 2.2 1.18, 3.99

Antibiogram

Sulfisoxazole 42.8 15.9, 115 44.1 15.8, 123

Trimethoprim/sulfamethoxazole 50.9 18.8, 137 52.7 18.9, 147

Tetracycline 5.3 2.69, 10.4 5.6 2.73, 11.3

Ampicillin 15.9 5.81, 43.3 15.6 5.59, 43.7

Chloramphenicol 17.3 6.40, 46.9 20.5 7.89, 53.0

Ciprofloxacin 19.2 6.59, 55.7 26.9 8.32, 87.1

Streptomycin 77.0 23.6, 251 87.9 25.7, 301

MDR 2.0 1.09, 3.69 2.2 1.13, 4.18

Abbreviations: CI, confidence interval; int1, class-1 integron; int2, class-2 integron; MDR, multiple-drug resistance;
OR, odds ratio; tetA, tetracycline class A; tetB, tetracycline class B.

a Mixed models accounted for clustering at the household level; isolates were collapsed across birds due to high
within-bird correlation. Models for 5 of 12 antibiotics not shown due to low frequencies.

b Adjustment includes year of sample collection.
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Table 3. Odds Ratios FromMixedModelsa Comparing Escherichia coli Isolates in Rural Ecuador, 2010–2012

Source andMarker

Small-Scale Production Bird Household Bird

Unadjusted Adjustedb Unadjusted Adjustedb

OR 95%CI OR 95%CI OR 95%CI OR 95%CI

Microarray

int1 18.4 7.74, 43.9 25.4 9.32, 69.1 2.5 1.06, 5.90 3.1 1.27, 7.69

int2 44.0 5.44, 355 56.1 6.61, 475 3.8 0.32, 45.9 4.6 0.38, 55.3

tetA 13.8 6.09, 31.2 15.1 6.38, 35.8 2.4 1.14, 5.10 2.6 1.20, 5.66

tetB 2.8 1.38, 5.80 3.0 1.39, 6.52 1.9 0.81, 4.55 2.0 0.82, 4.91

Antibiogram

Sulfisoxazole 65.7 21.5, 201 82.8 24.0, 285 2.8 1.20, 6.46 3.3 1.35, 8.02

Trimethoprim/sulfamethoxazole 78.0 25.5, 239 98.5 28.7, 339 2.8 1.20, 6.41 3.3 1.35, 7.99

Tetracycline 6.1 2.91, 12.9 6.9 3.08, 15.7 1.5 0.70, 3.07 1.6 0.75, 3.49

Ampicillin 21.0 6.70, 65.6 22.2 6.61, 74.7 1.9 0.74, 4.90 2.0 0.74, 5.34

Chloramphenicol 16.2 5.43, 48.4 21.9 7.43, 64.4 0.8 0.23, 3.03 1.2 0.34, 4.19

Ciprofloxacin 16.1 5.11, 51.1 25.2 6.92, 92.1 0.6 0.16, 2.51 0.9 0.21, 3.44

Streptomycin 79.9 23.0, 278 102.0 26.5, 392 1.1 0.42, 2.87 1.4 0.52, 3.67

MDR 2.7 1.34, 5.38 3.4 1.53, 7.33 2.0 0.95, 4.41 2.4 1.07, 5.40

Abbreviations: CI, confidence interval; int1, class-1 integron; int2, class-2 integron; MDR, multiple-drug resistance; OR, odds ratio; tetA, tetracy-
cline class A; tetB, tetracycline class B.

a Models compared E. coli isolates from small-scale production birds (n = 619) to isolates from household birds in villages without small-scale
production operations (n = 380) and household birds in villages with small-scale production operations (n = 246) to isolates from household birds in
villages without small-scale production operations (n= 380). Mixedmodels accounted for clustering at the household level; isolates were collapsed
across birds due to high within-bird correlation. Reference group was household birds in villages without small-scale production operations. Models
for 5 of 12 antibiotics not shown due to low frequencies.

b Adjustment includes year of sample collection.

Table 4. Odds Ratios FromMixedModelsa Comparing Escherichia coli Isolates FromHumans AssociatedWith
Small-Scale Production Birds (n = 45) to Isolates FromHumans AssociatedWith Household Birds (n = 754) in Rural
Ecuador, 2010–2012

Source andMarker

Human Associated with Small-Scale Production Birds vs. Human
Associated with Household Birds

Unadjusted Adjustedb

OR 95%CI OR 95%CI

Microarray

int1/2 2.0 1.08, 3.88 2.0 1.06, 3.83

tetA/B 1.7 0.91, 3.10 1.6 0.89, 3.04

Antibiogram

Sulfisoxazole 1.9 1.03, 3.47 1.9 1.01, 3.60

Trimethoprim/sulfamethoxazole 2.1 1.16, 3.90 2.1 1.13, 3.95

Tetracycline 1.5 0.83, 2.81 1.4 0.77, 2.66

Ampicillin 1.1 0.61, 2.14 1.1 0.60, 2.18

Streptomycin 1.1 0.57, 2.23 1.1 0.56, 2.24

MDR 1.5 0.81, 2.72 1.5 0.78, 2.74

Abbreviations: CI, confidence interval; int1/2, class-1 or class-2 integron; MDR, multiple-drug resistance; OR, odds
ratio; tetA/B, tetracycline class A or B.

a Mixed models accounted for clustering at the household level. Models for 7 of 12 antibiotics not shown due to low
frequencies.

b Adjustment includes year of sample collection and diarrheal case status.
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of their structure, and often carry dihydrofolate reductase (dfr)
genes (conveying resistance to trimethoprim) (33). In addition,
tetracycline resistance genes are often found on the same conju-
gative plasmids as integrons (34, 35).

In contrast to group 1, for group 2 antibiotics, the presence
of int1 contributed to some increases of resistance in isolates
from poultry, while additional exposure to small-scale produc-
tion operations resulted in even higher resistance levels. This
finding is plausible because, while genes conferring resistance
to the group 2 antibiotics have been found on class-1 inte-
grons, some are less common than the sul and dfr genes (33).
For group 3 antibiotics, exposures to small-scale production
operations or int1 genes alone tended to result in minor in-
creases in resistance. Only when both small-scale production
operations and integrons were present did we observe high le-
vels of resistance, suggesting that even antibiotics with overall
low AMR levels in a community can achieve higher levels
given the presence of both these exposures.

The selection of MGEs due to small-scale production opera-
tions might be an evolutionary response to exposure to a large
variety of antibiotics. In this study site, various types of antibio-
tics were detected in feed used in production coops (15). Such
broad antibiotic use in this setting might select bacterial isolates
in birds carryingMGEs, which in turn might influence AMR in
bacterial isolates from humans. This agrees with recent evi-
dence showing that transmission of AMR from animals to hu-
mans might be driven more by MGEs than cross-colonization
by resistant strains (21). The higher prevalence of tetA and
tetB genes in isolates from small-scale production birds could
also be explained by antibiotic use, because tetracycline has

been previously detected in feed used in small-scale produc-
tion operations in this area (15).

E.coli isolates from humans associated with small-scale pro-
duction birds had higher levels of MGEs and phenotypic AMR
than those from humans associated with household birds, par-
ticularly those linked to MGEs from Figure 1 (sulfisoxazole
and trimethoprim/sulfamethoxazole) (Tables 4 and 5). The lack
of significant differences for other markers might be due to the
small number of samples from humans associated with produc-
tion birds (n = 45). After adjusting for the presence of MGEs,
the relationships between small-scale production operations
and phenotypic resistance were attenuated, indicating overlap
in the variance in the outcome (AMR) explained by presence
of MGEs and these operations. One plausible explanation for
this overlap is that small-scale production operations increase
the prevalence of isolates containing MGEs, which in turn
increases prevalence of AMR isolates.

Isolates from household birds in small-scale production vil-
lages had significantly higher odds of resistance than samples
from those in nonproduction villages for int1, tetA, sulfisoxa-
zole, trimethoprim/sulfamethoxazole, and MDR (Table 3). In
addition, humans associated with household birds in small-
scale production villages had elevated odds of tetracycline resis-
tance (Table 5). Together, these results are indirect evidence of
environmental spread of AMR at the community level from
small-scale production operations, possibly through soil, air,
water, or meat.

A small number of studies have studied AMR patterns in
chickens and/or humans associated with small-scale production
operations in developing countries (14–16). We add a new

Table 5. Odds Ratios FromMixedModelsa Comparing Escherichia coli Isolates in Rural Ecuador, 2010–2012

Source andMarker

HumanAssociatedWith Small-Scale Production Birds HumanAssociatedWith Household Birds

Unadjusted Model 1b Model 2c Unadjusted Model 1b Model 2c

OR 95%CI OR 95%CI OR 95%CI OR 95%CI OR 95%CI OR 95%CI

Microarray

int1/2 2.2 1.13, 4.27 2.1 1.07, 4.30 1.1 0.81, 1.63 1.1 0.74, 1.66

tetA/B 1.9 1.03, 3.64 2.0 1.02, 3.78 1.3 0.96, 1.78 1.3 0.92, 1.88

Antibiogram

Sulfisoxazole 2.1 1.06, 4.06 1.9 0.95, 3.67 1.5 0.65, 3.31 1.1 0.82, 1.54 1.0 0.67, 1.39 0.9 0.59, 1.39

Trimethoprim/sulfamethoxazole 2.3 1.17, 4.52 2.0 1.03, 3.92 1.6 0.71, 3.66 1.1 0.80, 1.53 0.9 0.63, 1.34 0.8 0.53, 1.29

Tetracycline 1.9 1.03, 3.64 1.8 0.95, 3.55 1.2 0.03, 48.8 1.6 1.15, 2.12 1.5 1.03, 2.08 1.4 0.29, 7.22

Ampicillin 1.3 0.63, 2.60 1.2 0.59, 2.47 0.9 0.39, 1.86 1.1 0.83, 1.58 1.1 0.73, 1.53 1.0 0.69, 1.53

Streptomycin 1.2 0.60, 2.46 1.2 0.57, 2.51 0.9 0.40, 1.96 1.2 0.83, 1.62 1.1 0.75, 1.64 1.1 0.71, 1.64

MDR 1.6 0.87, 3.05 1.5 0.78, 2.96 1.1 0.47, 2.47 1.2 0.89, 1.62 1.1 0.75, 1.51 1.0 0.68, 1.57

Abbreviations: CI, confidence interval; int1/2, class-1 or class-2 integron; MDR, multiple-drug resistance; OR, odds ratio; tetA/B, tetracycline
class A or B.

a Models compared isolates from humans associated with small-scale production birds (n = 45) to isolates from humans associated with house-
hold birds in villages without small-scale production operations (n = 369) and humans associated with household birds in villages with small-scale
production operations (n = 385) to isolates from humans associated with household birds in villages without small-scale production operations (n =
369). Mixedmodels accounted for clustering at the household level. Reference group is humans associated with household birds in villages without
small-scale production operations. Models for 7/12 antibiotics not shown due to low frequencies.

b Model 1 includes year of sample collection and diarrheal case status.
c Model 2 includes year of sample collection, diarrheal case status, and presence of an integron (the model for tetracycline includes presence of

tetA/B).
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perspective by sampling E. coli isolates from three groups of
birds (small-scale production birds and household birds resid-
ing in small-scale production and nonproduction villages) and
from corresponding humans from the community rather than
clinics. In this region of Ecuador, high levels of AMR in
isolates from these groups were observed despite the small-
scale nature of the operations, suggesting that high levels of
AMR might be found in small-scale production operations
elsewhere in the developing world. Given the growing
interest in utilizing poultry as a tool for economic devel-
opment (36–38), the results presented here are important
when considering policy implications, especially in nations
that have not yet enacted or enforced regulations on nonthera-
peutic antibiotic use.
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Figure 1. Prevalence of antimicrobial resistance in E. coli isolates from small-scale production and household birds, stratified by the presence or
absence of class-1 integrons (int1), in rural Ecuador, 2010–2012. A) For poultry isolates in group 1, the association of small-scale production opera-
tions appeared to be driven largely by the presence or absence of int1. B) For poultry isolates in group 2, the association of small-scale production op-
erations and int1 was roughly additive. C) For poultry isolates in group 3, while small-scale production operations resulted in high resistance levels,
both int1 and small-scale production operation exposures were often needed to reach high levels of resistance. D) Resistance patterns in isolates
from humans associated with small-scale production or household birds for group 1 antibiotics mirrored those seen in isolates from poultry (see (A)).
White: household birds, int1-negative; dark gray: household birds, int1-positive; light gray: small-scale production birds, int1-negative; black: small-
scale production birds, int1-positive. AM, ampicillin; AMC, amoxicillin/clavulanate acid; C, chloramphenicol; CEF, cephalothin; CIP, ciprofloxacin;
CTX, cefotaxime; ENO, enrofloxacin; G, sulfisoxazole; GM, gentamicin; S, streptomycin; STX, trimethoprim/sulfamethoxazole; TE, tetracycline.
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