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Chapter 1

Preliminaries

1.1 Free Groups

The goal of this section is to provide the reader with a thorough understanding
of free groups, a topic whose comprehension is imperative for the discussion of
Group Presentation and, ultimately, the discussion of the Presentation of the
Lamplighter Group.

We begin with a series of definitions.

Definition 1.1.1. Let S be a set of symbols. Then a word w in S is a finite
sequence s1 · · · sk where ∀i, si ∈ S. We say the length of such a word, denoted
l(w) is k. Let w∅ denote the empty word, the word of length 0.

Consider the set T = {b1, b2, b3, b4} Then b1b2b3b4, b4b3b2b1, b1b3, b2b4, b1, and
w∅ are all words in T .

Definition 1.1.2. Given w = s1 · · · sn, a word in S, we say w′ = si · · · sj is a
sub-word of w for all 1 ≤ i < j ≤ n. Furthermore, w′ is a prefix of w if i = 1
and w′ is a suffix of w if j = n.

Definition 1.1.3. For S, a set of symbols, we define S−1 = {s−1|s ∈ S}.
Furthermore, ∀a ∈ S ∪ S−1, we define

a−1 =

{
t−1 if ∃t ∈ S with a = t
t if ∃t ∈ S−1 with a = t

Note that this definition does not refer to formal inverses. Rather, it refers
simply to the set formed by superscripting symbols in S with −1.

Definition 1.1.4. For S, a set of symbols, we define (S ∪ S−1)∗ to be the set
of all words in S ∪ S−1.

Again, we consider the set T = {b1, b2, b3, b4}. Then the following are words are
contained in (T ∪ T−1)∗:
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b1 · · · bn b−11 b2 b1b1b1b1
b−11 · · · b

−1
4 b2 b−11 b−11 b−11 b−11

b1b
−1
2 b3b

−1
4 w∅ b1b

−1
1 b1b

−1
1 b1b

−1
1

We define operation amongst words in the definition below.

Definition 1.1.5. Let w = s1 · · · sk, v = t1 · · · tj be words in S. Then we define
wu to be the concatenated word wu = s1 · · · skt1 · · · tj . Note that l(wu) =
l(w) + l(u).

Definition 1.1.6. Let S be a set of symbols and let w, v ∈ (S ∪ S−1)∗. Then
we define the following relations:

• wss−1v −→ wv and ws−1sv −→ wv for any s ∈ S.

• wv ←− wss−1v and wv ←− ws−1sv for any s ∈ S (the inverse of −→).

– Note that w ←− v implies v −→ w.

• w ←→ v if and only if either w ←− v or w −→ v (the symmetric closure about
←−).

– Note that w ←→ v implies v ←→ w.

• w ∗−→ v if and only if either w = v or ∃ w1, . . . , wk ∈ (S ∪ S−1)∗ with
w = w1 −→ · · · −→ wk = v (the reflexive, transitive closure about −→).

• w ∗←→ v if and only if either w = v or ∃w1, . . . , wk ∈ (S ∪ S−1)∗ with with
w = w1 ←→ · · · ←→ wk = v (the reflexive, symmetric, and transitive closure
about −→).

Claim 1.1.7.
∗←→ is an equivalence relation.

Proof. To show
∗←→ is an equivalence relation, we must show reflexivity, symme-

try, and transitivity.

Note that w
∗←→ w by the definition of

∗←→, giving reflexivity.

To show symmetry, let w, v ∈ (S ∪ S−1)∗ such that w
∗←→ v. We wish to

show v
∗←→ w. As w

∗←→ v, there exists a finite sequence w1, . . . , wk ∈ (S ∪S−1)∗

such that w = w1 ←→ · · · ←→ wk = v. However, by the definition of ←→, ∀i with
1 ≤ i ≤ k− 1, wi ←→ wi+1 implies wi+1 ←→ wi. Thus, v = wk ←→ · · · ←→ w1 = w,

giving v
∗←→ w as desired.

To show transitivity, let w, v, u ∈ (S ∪ S−1)∗ such that w
∗←→ v and v

∗←→ u.

We wish to show w
∗←→ u. As w

∗←→ v, there exists a sequence w1, . . . , wk ∈
(S∪S−1)∗ such that w = w1 ←→ · · · ←→ wk = v. Similarly, as v

∗←→ u, there exists
a finite sequence v = v1 ←→ · · · ←→ vj = u. Thus, since wk−1 ←→ wk = v = v1,
we may write

w = w1 ←→ wk−1 ←→ v1 ←→ · · · ←→ vj = u

giving w
∗←→ u as desired.
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If w
∗←→ v, then ∃w1, . . . , wk ∈ (S ∪ S−1)∗ with with w = w1 ←→ · · · ←→ wk =

v. This is to say that there exists a finite sequence of k − 1 modfications to
bring w to v. Each of these modifications is simply the insertion or deletion of
an inverse pair somewhere in the word. As

∗←→ is an equivalence relation, we may
consider the equivalence classes of

∗←→. We give notation to these equivalence
classes below.

Definition 1.1.8. Let S a set of symbols and w ∈ (S ∪S−1)∗. Then we denote

[w] as the equivalence class of w under
∗←→. That is, [w] = {v ∈ (S∪S−1)∗|w ∗←→

v}.

Having completed this series of preliminary definitions, we go on next to
define Fn, the free group of rank n. As with any group, we define for Fn both
an underlying set and an operation. We do so respectively in the following two
definitions.

Definition 1.1.9. Let S = {s1, . . . , sn} be a set. Then Fn, the free group of
rank n with basis S, is the set of equivalence classes of words in (S ∪ S−1)∗

under
∗←→. In other words,

Fn = { [w] |w ∈ (S ∪ S−1)∗}.

Definition 1.1.10. Let [w], [v] ∈ Fn. Then we define [w][v] = [wv].

We must show that the operation described above is well defined. Before we
do so, however, we must prove the following lemmas.

Lemma 1.1.11. Let S be a set. Then for all w, v, x, y ∈ (S ∪ S−1)∗, w
∗←→ v

implies xwy
∗←→ xvy.

Proof. Let w, v ∈ (S ∪S−1)∗ such that w
∗←→ v. Then ∃w1, . . . , wk ∈ (S ∪S−1)∗

such that w = w1 ←→ · · · ←→ wk = v. We will employ proof by induction,
inducting on the value of k.

For our base case of k = 1, note that w = w1 = v, giving w = v, and as
w ←→ w by the definition of ←→, w

∗←→ w, giving w
∗←→ v as desired.

For our inductive case, assume that the claim is true for k = n and let w
∗←→ v

such that ∃w1, . . . , wn+1 ∈ (S ∪ S−1)∗ with w = w1 ←→ · · · ←→ wn+1 = v. Note

that this gives us w
∗←→ wn, and by our inductive hypothesis, this implies xwy

∗←→
xwny. As wn ←→ wn+1, wn+1 results from inserting or deleting an inverse pair
in wn. As concatenating wn with x on the left and y on the right will have
no effect on this insertion or deletion, we may write xwny ←→ xwn+1y = xvy,

giving xwny
∗←→ xvy. Therefore, since

∗←→ is transitive and both xwy
∗←→ xwny

and xwny
∗←→ xvy, we have xwy

∗←→ xvy as desired.

Having proven this lemma, we are now able to prove the desired claim re-
garding operation in Fn.

5



Claim 1.1.12. Operation in Fn is well defined.

Proof. Let w1, w2, v1, v2 ∈ (S ∪ S−1)∗ such that [w1] = [w2] and [v1] = [v2]. We
wish to show [w1v1] = [w2v2].

Since [w1] = [w2], we have that w1
∗←→ w2. Thus, by Lemma 1.1.11, w1v1

∗←→
w2v1. Similarly, as [v1] = [v2], we have that v1

∗←→ v2. Again, by the same

lemma, this gives w2v1
∗←→ w2v2. Thus, since

∗←→ is an equivalence relation
and is therefore transitive, since w1v1

∗←→ w2v1 and w2v1
∗←→ w2v2, we have

w1v1
∗←→ w2v2, which gives [w1v1] = [w2v2] as desired.

Having proven that the specified operation in Fn is well defined, we now
prove that Fn is in fact a group.

Theorem 1.1.13. Let S = {s1, . . . , sn} be a set. Then Fn, the free group of
rank n with basis S is a group.

Proof. To show Fn is a group, we must show closure, associativity, the existence
of an identity element, and the existence of inverses.

To show closure, let [w], [v] ∈ Fn. We wish to show that [w][v] = [wv] ∈ Fn.
As [w], [v] ∈ Fn, w, v ∈ (S ∪ S−1)∗. Thus, the concatenation of these words
wv ∈ (S ∪ S−1)∗ as well, giving that [wv] ∈ Fn.

To show associativity, let [w], [v], [u] ∈ Fn. We must show ([w][v])[u]) =
[w]([v][u]). Note that word concatenation amongst words in (S ∪ S−1)∗ is asso-
ciative. Thus, we may write

([w][v])[u]) = [wv][u] = [(wv)u] = [w(vu)] = [w][vu] = [w]([v][u])

as desired.

To show the existence of an identity element, note that w∅ ∈ (S∪S−1)∗ and
consider [w∅] ∈ Fn. Let [w] ∈ Fn. We wish to show [w][w∅] = [w∅][w] = [w].
Note since w ∈ (S ∪ S−1)∗, ww∅ = w∅w = w. Thus, we may write

[w][w∅] = [ww∅] = [w] and[w∅][w] = [w∅w] = [w]

as desired.

To show the existence of inverses, let [w] ∈ Fn. We must show that there
exists [u] ∈ Fn such that [w][u] = [u][w] = [w∅]. As [w] ∈ Fn, we may write
w = a1 · · · aj where ∀i, ai ∈ S∪S−1. Consider u = a−1j · · · a

−1
1 . We will employ

proof by mathematical induction, inducting on the value of j.

For our base case, consider j = 1. Then w = a1 and u = a−11 , giving

wu = a1a
−1
1

∗←→ w∅. As wu
∗←→ w∅, [wu] = [w][u] = [w∅] as desired.
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For our inductive case, assume that the claim is true for j = n. That
is, if w′ = b1 · · · bn where ∀i, bi ∈ S ∪ S−1, then letting u′ = b−1n · · · b−11 ,
[w′u′] = [w′][u′] = [w∅], or in other words that w′u′ ←→ w∅. We must show that
the claim is also true for j = n+ 1.

Let w = a1 · · · an+1 where ∀i, ai ∈ S ∪ S−1 and let u = a−1n+1 · · · a
−1
1 . Let

w′ = a2 · · · an+1 and u′ = a−1n+1 · · · a
−1
2 . Then since w′ is a word of length n,

w′u′
∗←→ w∅ by our inductive hypothesis. However, w = a1w

′ and u = u′a−11 ,
giving

wu = a1w
′u′a−11

∗←→ a1a
−1
1

∗←→ w∅

Thus, [wu] = [w][u] = [w∅] as desired. A nearly identical argument can be made
to show [u][w] = [w∅] in both the base case and the inductive case, and as such,
our claim is proven for all j ∈ Z+.

Having shown that Fn is in fact a group, we will prove a theorem regarding
its relationship with a certain subset of (S ∪ S−1)∗ which we define below.

Definition 1.1.14. Let S = {s1, . . . , sn} be a set and w a word in
{
S ∪ S−1

}∗
.

Then w is said to be a freely reduced word if and only if it does not contain a
sub-word of the form ss−1 or s−1s for any element s ∈ S. Let W(S) denote the
set of all freely reduced words in (S ∪ S−1)∗.

Our goal is to show a 1 − 1 correspondence between Fn and W(S). Before
we do so, however, we must define several terms and present several related
theorems associated with the field of confluent string rewriting that will be used
in our proof.

Definition 1.1.15. Let B be a set and =⇒ a binary relation on B. Then the
structure R = (B,=⇒) is a reduction system.

For the following definitions and theorems (through Theorem 1.1.22), let
R = (B,=⇒) be a reduction system.

Definition 1.1.16. We define a relation
∗

=⇒ on B such that c
∗

=⇒ d if and only
if ∃c1, . . . , cn ∈ S such that c = c1 =⇒ · · · =⇒ cn = d. If c

∗
=⇒ d, then we say d is a

descendent of c. If ∀d, c 6 ∗=⇒ d, then we say c is irreducible.

Definition 1.1.17. We say R is terminating if and only if there exists no infinite
sequence b0, b1, . . . ∈ B such that b0 =⇒ b1 =⇒ · · · .

Definition 1.1.18. We say R is locally confluent if and only if for all b, c, d ∈ B,
b =⇒ c and b =⇒ d implies that there exists f ∈ B such that c

∗
=⇒ f and d

∗
=⇒ f .

Definition 1.1.19. We say R is confluent if and only if for all b, c, d ∈ B, b
∗

=⇒ c
and b

∗
=⇒ d implies that there exists f ∈ B such that c

∗
=⇒ f and d

∗
=⇒ f .

Theorem 1.1.20. [4, Proposition 1.1.19] R is confluent if and only if it is
terminating and locally confluent.
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Theorem 1.1.21. [1, Lemma 1.1.10] If R is terminating, ∀b ∈ B, ∃c ∈ [b] such
that c is irreducible.

Theorem 1.1.22. [1, Corollary 1.1.8] If R is confluent, for all b ∈ B, [b] has at
most element that is irreducible.

Consider the reduction system R = ((S ∪ S−1)∗,−→). We will prove several
lemmas regarding R. First, we will show that R is terminating. To do so, we
introduce the following lemmas.

Lemma 1.1.23. Let w, v ∈ (S ∪ S−1)∗ with w −→ v. Then l(v) = l(w)− 2.

Proof. Let w, v ∈ (S ∪ S−1)∗ as above. Then ∃x, y ∈ (S ∪ S−1)∗ such that
w = xαy with α ∈ {ss−1, s−1s} for some s ∈ S. Then w = xαy −→ xy = v,
giving l(w) = l(x) + l(α) + l(y) = l(x) + l(y) + 2 = l(v) + 2 and therefore
l(v) = l(w)− 2 as desired.

Lemma 1.1.24. Let w ∈ (S ∪ S−1)∗ such that ∃w0, . . . , wk ∈ (S ∪ S−1)∗ with
w = w0 −→ · · · −→ wk. Then ∀i, l(wi) = l(w)− 2i.

Proof. We will employ mathematical induction, inducting on the length of
k. For our base case k = 1, w = w0 → w1. Then by the lemma above,
l(w1) = l(w)− 2(1) as desired.

For our inductive case, assume that the claim is true for k = n. Let w ∈ (S∪
S−1)∗ for which ∃w0, . . . , wn+1 ∈ (S∪S−1)∗ such that w0 −→ · · · −→ wn −→ wn+1.
By our inductive hypothesis, l(wn) = l(w)−2n. Furthermore, since wn −→ wn+1,
l(wn+1) = l(wn) − 2 = l(w) − 2n − 2 = l(w) − 2(n + 1) as desired. Therefore,
by the principle of mathematical induction, our claim is true for all k ≥ 1.

Lemma 1.1.25. R is terminating.

Proof. Let w ∈ (S ∪ S−1)∗ with l(w) = k. We wish to show that there exists
no infinite sequence w0, w1, . . . ∈ (S ∪ S−1)∗ such that w = w0 −→ w1 −→ · · · .
Suppose to the contrary that such an infinite sequence exists. We will consider
cases in which k is even and k is odd.

If k is even, consider l(w k
2
). By the lemma above, l(w k

2
) = l(w) − 2(k2 ) =

k − k = 0, giving w k
2

= w∅, so w k
2

is irreducible, which contradicts the premise

that w k
2
−→ w k

2+1. If k is odd, consider l(w k
2
). By the lemma above, l(w k−1

2
) =

l(w) − 2(k−12 ) = k − k + 1 = 1 so w k
2

is irreducible, contradicting the premise

that w k−1
2
−→ w k−1

2 +1. Therefore, by contradiction, our claim is proven.

Lemma 1.1.26. R is confluent.
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Proof. By Theorem 1.1.20, since we have just shown above that R is terminat-
ing, it suffices to show that R is locally confluent. Let b, c, d ∈ (S ∪ S−1)∗ such

that b −→ c and b −→ d. We wish to show that ∃f ∈ (S ∪ S−1)∗ such that c
∗−→ f

and d
∗−→ f .

As b −→ c and b −→ d, both c and d are obtained by removing different inverse
pairs in b. We must consider two cases: (i) the case in which these inverse pairs
have no overlap and (ii) the case in which the inverse pairs have overlap.

In case (i), we may write b = wss−1utt−1v for some w, u, v ∈ (S∪S−1)∗ and
s, t ∈ S ∪ S−1. Without loss of generality, we may consider b −→ c and b −→ d
where c = wss−1uv and d = wutt−1v. Note that c = wss−1uv −→ wuv = f and
d = wutt−1v −→ wuv = f , giving c

∗−→ f and d
∗−→ f as desired.

In case (ii), we may write b = wss−1sv for some w, v ∈ (S ∪ S−1)∗ and
s ∈ S ∪S−1. Without loss of generality, we may consider c obtained by deleting
ss−1 from b, giving c = wsv, and d obtained by deleting s−1s from b, giving
wsv. As c = d, consider f = c = d. Then as

∗−→ is reflexive, c
∗−→ f and d

∗−→ f
as desired.

Thus, in all cases, such a word f ∈ (S ∪ S−1)∗ exists, so we may say that R
is confluent.

Lemma 1.1.27. Let w ∈ (S ∪ S−1)∗. Then w contains the sub-word ss−1 or
s−1s for some s ∈ S if and only if ∃v ∈ (S ∪S−1)∗ such that w −→ v and w 6= v.

Proof. Let w ∈ (S ∪ S−1)∗ and assume that w contains a sub-word α ∈
{ss−1, s−1s} for some s ∈ S. Then ∃x, y ∈ (S ∪ S−1)∗ such that w = xαy,
giving w = xαy −→ xy 6= w as desired.

Now, assume that ∃v ∈ (S∪S−1)∗ such that w −→ v. Then ∃x, y ∈ (S∪S−1)∗

such that w = xαy with α ∈ {ss−1, s−1s} for some s ∈ S. But this is to say
that w contains a sub-word ss−1 or s−1s as desired.

In the corollary below, we simply negate the conditions presented in the
lemma above.

Corollary 1.1.28. Let w ∈ (S ∪ S−1)∗. Then w does not contain a sub-word
ss−1 or s−1s for any s ∈ S if and only if ∀v ∈ (S ∪S−1)∗, w −→ v implies w = v.
In other words, w is a freely reduced word in (S ∪ S−1)∗ if and only if it is
irreducible.

We will use these results from the field of confluent string rewriting to prove
the following theorem about free groups.

Theorem 1.1.29. Let S = {s1, . . . , sn} be a set. Then there exists a 1-1
correspondence between Fn, the free group of rank n with basis S, and W(S).
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Proof. Let φ :W(S)→ Fn such that for w ∈ W(S), φ(w) = [w] ∈ Fn. We wish
to show that φ is both surjective and injective.

To show surjectivity, select [w] ∈ Fn. We must show that there exists
u ∈ W(S) such that φ(u) = [w]. Consider our reduction system R. As R is
terminating, by Lemma 1.1.21, ∃u ∈ [w] such that u is irreducible. By Corollary
1.1.28, u is a freely reduced word in (S∪S−1)∗, giving that u ∈ W(S) as desired.

To show that φ is injective. Let w1, w2 ∈ W(S) such that [w1] = [w2]. We
must show w1 = w2. As w1, w2 ∈ W(S), w1, w2 are freely reduced words in (S∪
S−1)∗, and therefore, by Corollary 1.1.28, w1, w2 are irreducible. However, by
Lemma 1.1.22, since R is confluent, [w1] = [w2] contains at most one irreducible
element. As w1, w2 ∈ [w1] = [w2], it must then be the case that w1 = w2 as
desired.

Having shown that there exists a 1-1 correspondence between Fn, the free
group of rank n with basis S and W(S), the set of freely reduced words in
(S ∪ S−1)∗, we may utilize this relationship by referring to an element in Fn as
its corresponding freely reduced word in W(S). This notation will be used in
the following section on group presentation.

10



1.2 Group Presentation

We begin with a definition of the generating set of a group.

Definition 1.2.1. Let G be a group. We say T ⊆ G is a generating set of G
if and only if ∀g ∈ G, there exists t1, t2, . . . , tj such that g = t1t2 · · · tj and ∀i,
ti ∈ T or t−1i ∈ T .

In other words, any element in G can be expressed as a product of elements of
a generating set T and their inverses.

We begin with this definition because one of the goals of group presentation
is to provide a notation with which to write the elements of a group’s generating
set. A group’s presentation also specifies which words in the generators and their
inverses reduce to the identity when considered as products in the group. We
consider the definition below.

Definition 1.2.2. Let G be a group. Then we say G has the following presen-
tation

G = 〈x1, . . . , xn | r1, . . . , rm〉

where S = {x1, . . . , xn} is a generating set for G and each element ri is a word
in (S ∪ S−1)∗, if and only if G ∼= Fn/N where

• Fn is a free group of rank n with basis S

• N is the smallest normal subgroup of Fn such that {r1, . . . , rm} ∈ N . In
other words, if M is a normal subgroup of Fn containing {r1, . . . , rm},
then N ⊆M .

The products of generators and their inverses that reduce to the identity
in the group, as discussed above, are r1, . . . , rm. We call these special words
defining relations.

To cite an example, consider the following proof regarding the presentation
of C2, the cyclic group of order 2.

Claim 1.2.3. C2 has the following presentation.

C2 = 〈a | a2〉

Proof. Let F1 be a free group of rank 1 with basis S = {a} and let N be the
smallest normal subgroup of F1 containing a2. We must show that C2

∼= F1/N .
It suffices, however, to show that F1/N is a cyclic group of order two, since any
two cyclic groups of the same order are isomorphic.

Let A = {a2k|k ∈ Z}. We first claim that A = N , or in other words that
A is the smallest normal subgroup of F1 containing a2. By definition, A ⊆ F1.
Furthermore, because a2ka2j = a2(j+k) ∈ F1, A is closed under the operation in
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F1 and because a2ka−2k = a2k−2k = a0 = w∅, so A is also closed under inverses.
Thus, A is a subgroup of F1. Furthermore, when k = 1, we have a2k = a2 ∈ A.
To show that A C F1, let f = az ∈ F1. We must show that f−1Af ⊆ A. In
other words, ∀w ∈ A, f−1wf ∈ A. Let w = a2k ∈ A. Then

f−1wf = a−za2kaz = a−z+2k+z = a2k

And as a2k ∈ A, we have f−1wf ∈ A as desired. Thus, A C F1 with a2 ∈ A,
and it remains to show that A is the smallest such normal subgroup of F1.

Let M be a normal subgroup of F1 containing a2. We must show that
A ⊆ M . Let w = a2k ∈ A. Then w = a2k = (a2)k, and as M is a group
containing a2, all powers of a2 must be in M . Thus, (a2)k = a2k = w ∈ M ,
giving A ⊆M as desired.

We have shown that A = {a2k|k ∈ Z} is the smallest normal subgroup of F1

containing a2, and as such, A = N . Next, we claim that F1/N is a cyclic group
of order 2.

Consider F1/N = {wN |w ∈ F1} = {ajN |j ∈ Z}. For any j, j is either
odd or even. If j is odd, then ajN = a2i+1N = aa2iN = aN for some i since
a2i ∈ N . Otherwise, if j is even, then ajN = a2iN = N for some i. Thus,
F1/N = {aN,N}. Note that a ∈ aN and a /∈ N , so aN 6= N , and thus
N = {aN,N} is a group of order 2.

To show that this group is cyclic, note that ∀g ∈ F1/N , g can be written as
a power of aN . Specifically, (aN)1 = aN and (aN)2 = a2N = N . Thus, F1/N
is a cyclic group of order 2 and is therefore isomorphic to any other cyclic group
of order 2, including C2.

Although this proof is sufficient to prove our claim, the proof strategy utilized
can only be employed in the special case where the group in question is cyclic.
Below, we will provide an alternate proof of Claim 1.2.3 that will employ a more
general proof strategy that is more generally applicable beyond this special case.
This strategy utilizes a lemma and a theorem that are standard results in group
theory. They are presented below.

Lemma 1.2.4. [3, Theorem 2.5.5.] Given G,G′ groups and a homomorphism
φ : G → G′, recall Ker(φ) = {g ∈ G|φ(g) = e} where e is the identity in G′.
Then Ker(φ) CG.

Theorem 1.2.5. (First Homomorphism Theorem). [3, Theorem 2.7.1.]
Given groups G,G′ and a surjective homomorphism φ : G → G′, then G′ ∼=
G/Ker(φ).

We now present an alternate proof of Claim 1.2.3 regarding the presentation
of C2. Note once more that C2 is the cyclic group of order 2. We will write
C2 = {x, e} and define the operation in this group as in the following operation
table.
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e x

e e x
x x e

Claim 1.2.3 (Alternate Proof). C2 = 〈a | a2〉.

Proof. Let F1 be a free group of rank 1 with basis {a} and let N be the smallest
normal subgroup of N containing a2. We wish to show C2

∼= F1/N .

We will consider the following map ψ : F1 → C2. For w = ak ∈ F1, we
define ψ(ak) = xk, where by xk, we mean the product of k copies of x if k is
positive and k copies of x−1 if k is negative. To show C2

∼= F1/N , by the First
Homomorphism Theorem, it suffices to show the following.

(1) ψ is a homomorphism.

(2) ψ is surjective.

(3) Ker(ψ) = N .

To show that ψ is a homomorphism, let w = ak, u = aj ∈ F1. We wish to
show that ψ(wu) = ψ(w)ψ(u). Note that wu = akaj = ak+j . By our definition
of ψ above and the definition of exponent notation, we have

ψ(wu) = xk+j = xkxj = ψ(w)ψ(u)

Therefore, ψ is a homomorphism as desired.

To show that ψ is surjective, we simply note that there exist elements in F1

that ψ maps to each of the two elements in C2. Namely, ψ(a1) = x1 = x and
ψ(a2) = x2 = e. Therefore, ψ is surjective.

To show that Ker(ψ) = N , we must show that Ker(ψ) is the smallest normal
subgroup of F1 containing a2. As ψ(a2) = x2 = e, a2 ∈ Ker(ψ). Furthermore,
because ψ is a homomorphism, Ker(ψ) C F1 by Lemma 1.2.4. As such, it re-
mains to show that Ker(ψ) is the smallest normal subgroup of F1 containing a2.

Let M be a normal subgroup containing a2. We wish to show that Ker(ψ) ⊆
M . Let w = az ∈ Ker(ψ). We must show w ∈ M . As w ∈ Ker(ψ), ψ(w) =
ψ(az) = xz = e. If z is odd, xz = x 6= e, so z must be even. As such, ∃l ∈ Z
with z = 2l. So az = a2l = (a2)l. But as M is a group containing a2, all
powers of a2 must be in M . Thus, (a2)l = a2l = az = w ∈ M as desired. This
gives Ker(ψ) ⊆M , and therefore Ker(ψ) is the smallest normal subgroup of F1

containing a2, or in other words that Ker(ψ) = N as desired.

This concludes our section on group presentation, a topic that will be revis-
ited after having defined the Lamplighter Group.
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1.3 The Infinite Direct Sum

The goal of this section is to define the infinite direct sum and provide examples
of groups such a structure defines. As the direct sum forms a group, we must
define for it an underlying set and a corresponding operation. We specify these
in the following two definitions.

Definition 1.3.1. Let G a group with identity element e. Then the infinite
direct sum of copies of G, denoted ⊕∞i=−∞(G)i, is the group of infinite tuples
(xi), written

(xi) = (. . . , x−2, x−1, x0, x1, x2, . . .)

where ∀i, xi ∈ G, and such that there exists a finite subset I = {i|xi 6= e} ⊆ G.

Definition 1.3.2. Let (xi), (yi) ∈ ⊕∞i=−∞(G)i. Then we define (xi)(yi) = (zi)
where, ∀i, zi = xiyi.

Having thoroughly defined the infinite direct sum, we prove that it is, in
fact, a group.

Claim 1.3.3. Let G be a group with identity element e. Then ⊕∞i=−∞(G)i is a
group.

Proof. Of ⊕∞i=−∞(G)i, we must show closure, associativity, the existence of an
identity element, and the existence of inverses.

To show closure, we let (xi), (yi) ∈ ⊕∞i=−∞(G)i. We must show that (zi) =
(xi)(yi) ∈ ⊕∞i=−∞(G)i. We know ∀i, zi = xiyi. As xi, yi ∈ G and G a group,
xiyi ∈ G. It remains to show that there are at most finitely many i for which
zi 6= e.

Let A = {i|xi 6= e} and B = {i|yi 6= e}. As there are at most finitely many i
for which xi 6= e and at most finitely many i for which yi 6= e, both A and B are
finite. Consider zk. If zk 6= e, then either xk 6= e or yk 6= e, giving k ∈ A ∪ B.
As both A and B are finite, A ∪B finite. Thus, there are at most |A ∪B| i for
which zi 6= e, and therefore (zi) ∈ ⊕∞i=−∞(G)i as desired.

To show associativity, let (xi), (yi), (wi) ∈ ⊕∞i=−∞(G)i. We must show
[(xi)(yi)](zi) = (xi)[(yi)(zi)].

[(xi)(yi)](zi) = (xiyi)(zi)

=
(
(xiyi)zi

)
=
(
xi(yizi)

)
= (xi)(yizi)

= (xi)[(yi)(zi)]
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Note that (x0y0)z0 = x0(y0z0) due to associativity in G, giving associativity in
⊕∞i=−∞(G)i as desired.

To show the existence of an identity element, consider (ei) ∈ ⊕∞i=−∞(G)i
where ∀i, (ei) = e, the identity in G. If we let (xi) ∈ ⊕∞i=−∞(G)i, then

(ei)(xi) = (eixi) = (exi) = (xi)

(xi)(ei) = (xiei) = (xie) = (xi)

giving the existence of an identity element as desired.

To show the existence of inverses, let (xi) ∈ ⊕∞i=−∞(G)i and let (x′i) ∈
⊕∞i=−∞(G)i such that ∀i, x′i = x−1i . Then

(xi)(x
′
i) = (xix

′
i) = (xix

−1
i ) = (ei)

(x′i)(xi) = (x′ixi) = (xi ∈ xi) = (ei)

giving the existence of inverses as desired.

Thus, ⊕∞i=−∞(G)i is a group.

Having proven the above claim in its entirety, we continue to demonstrate
the operation amongst elements of an infinite direct sum with an example. Con-
sider C3 = {x, x2, e}, the cyclic group of order 3 with identity element e. Note
that operation in this group may be defined as in the following operation table.

x x2 e

x x2 e x
x2 e x x2

e x x2 e

We may consider the following elements (ai), (bi) ∈ ⊕∞i=−∞(C3)i where ∀i,

ai =

{ x if i = 0
x2 if i = 1
e otherwise

bi =

{ x if i = −1
x2 if i = 0
e otherwise

We may write

−3 −2 −1 0 1 2 3

(ai) = ( · · · e e e x x2 e e · · · )

(bi) = ( · · · e e x x2 e e e · · · )
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We obtain the element at the ith index of (zi) = (ai)(bi) by simply operating
across the ith elements of (ai) and (bi) sequentially. For example, we see that
a0 = x and b0 = x2 as highlighted above. Then z0 = a0y0 = xx2 = x3 = e. We
compute the rest of this element here.

−3 −2 −1 0 1 2 3

(ai) = ( · · · e e e x x2 e e · · · )

(bi) = ( · · · e e x x2 e e e · · · )

(ai)(bi) = ( · · · e e x e x2 e e · · · )

In upcoming discussions of the Lamplighter Group, we will utilize the di-
rect sum of copies of Z2 to define a group to which the Lamplighter Group is
isomorphic.
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1.4 Properties of The Cayley Graph

The goal of this section is to thoroughly define the Cayley Graph and provide
examples of its inner workings as well as further observations one can make
regarding such a graph. We begin with the definition of the Cayley Graph
below.

Definition 1.4.1. Let G be a group generated by S = {s1, . . . , sc}. Then the
Cayley Graph of G with respect to S, denoted ΓG,S , is the graph with vertex
set V (ΓG,S) and edge set E(ΓG,S) such that

• V (ΓG,S) = G

• E(ΓG,S) = { (g, h) | ∃s ∈ S such that gs = h }.

Consider the most basic, non-trivial Cayley Graph, ΓC2,{x}, the Cayley
Graph of the cyclic group of order 2 with generating set S = {x} below.

x (( eii

Figure 1.1: ΓC2,{x}

In accordance with our definition, there is one vertex in the graph for each
element of the group. Furthermore, as xx = x2 = e, there is an edge from
vertex x to e and, as ex = x, there is an edge from vertex e to x. Below, we
show several more Cayley Graphs of cyclic groups.

x

��
e

<<

x2hh

x
))
x2

		
e

HH

x3hh

x

��
e

33

x2

��
x4

MM

x3jj

Figure 1.2: Cayley Graphs of several cyclic groups

We continue our discussion below, straying from Cayley Graphs of cyclic
groups and focusing on those of groups with multiple generators. For example,
consider Figure 1.3, the Cayley Graph of Z×Z under addition with generating
set S = {(1, 0), (0, 1)}. Again, every element of the group is given a vertex,
and each vertex is given two outgoing edges to vertices that can be obtained by
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operating on the initial vertex with a generator (1, 0) or (0, 1). For example,
as (1, 1)(1, 0) = (2, 1), there is an edge from (1, 1) to (2, 1) and similarly, as
(1, 1)(0, 1) = (1, 2), there is an edge from (1, 1) to (1, 2).

// (−2, 3)

OO

// (−1, 3)

OO

// (0, 3)

OO

// (1, 3)

OO

// (2, 3) //

OO

// (−2, 2)

OO

// (−1, 2)

OO

// (0, 2)

OO

// (1, 2)

OO

// (2, 2) //

OO

// (−2, 1)

OO

// (−1, 1)

OO

// (0, 1)

OO

// (1, 1)

OO

// (2, 1) //

OO

// (−2, 0)

OO

// (−1, 0)

OO

// (0, 0)

OO

// (1, 0)

OO

// (2, 0) //

OO

// (−2,−1)

OO

// (−1,−1)

OO

// (0,−1)

OO

// (1,−1)

OO

// (2,−1) //

OO

// (−2,−2)

OO

// (−1,−2)

OO

// (0,−2)

OO

// (1,−2)

OO

// (2,−2) //

OO

// (−2,−3)

OO

// (−1,−3)

OO

// (0,−3)

OO

// (1,−3)

OO

// (2,−3) //

OO

OO OO OO OO OO

Figure 1.3: ΓZ×Z,S

With this graph in mind, we consider the following definition.

Definition 1.4.2. Let G a group with generating set S and let g1, gk ∈ G. Then
a path p from g1 to gk in ΓG,S is a sequence of vertices p = g1, . . . , gk ∈ V (ΓG,S)
such that ∀i with 1 ≤ i ≤ k − 1, ∃s ∈ S such that gis = gi+1 or gis

−1 = gi+1.

For example, the following sequences of vertices are paths from (−1,−2) to
(0, 3) in ΓS(Z× Z).

p1 = (−1, 2), (−1, 3), (0, 3)

p2 = (−1, 2), (0, 2), (0, 3)

p3 = (−1, 2), (0, 2), (1, 2), (1, 3), (0, 3)

To traverse one of the paths above as an example, consider p3. We know that
(−1, 2)(1, 0) = (0, 2), (0, 2)(1, 0) = (1, 2), (1, 2)(0, 1) = (1, 3) and (1, 3)(1, 0)−1 =
(0, 3), and thus, p1 is a path in ΓS(Z× Z).
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Definitionally, each successive vertex in a path is obtained by operating on
that vertex with either a generator or its inverse. Thus, we may associate
these generators (and their inverses) with the path itself, which motivates the
following definition.

Definition 1.4.3. Let G a group with generating set S and let p = g1, . . . , gk a
path in ΓG,S . Then the word associated with path p is the word w = s1 · · · sk−1
in (S ∪ S−1)∗ where ∀i with 1 ≤ i ≤ k − 1

si =

{
s if gis = gi+1

s−1 if gis
−1 = gi+1

Furthermore, we define the length of the path p, denoted l(p), to be the length
of its associated word.

Continuing with our example above, if we let a = (1, 0) and b = (0, 1), then
we may write the words corresponding to p1, p2, p3 as follows:

p1 = ((−1, 2), (−1, 3), (0, 3))

Corresponding word: w1 = ba

p2 = ((−1, 2), (0, 2), (0, 3))

Corresponding word: w2 = ab

p3 = ((−1, 2), (0, 2), (1, 2), (1, 3), (0, 3)

Corresponding word: w3 = aaba−1

Note that if we consider any of these words wi as products, then (−1, 2)wi =
(0, 3).

Certainly, some words associated with paths from (−1, 2) to (0, 3) in ΓZ×Z,S
are longer than others, and as such, so are the paths themselves. We take this
into account in the following definition.

Definition 1.4.4. Let g, h ∈ G, a group with generating set S. Then the dis-
tance from g to h in G, denoted d(g, h) is the length of the shortest word w in
(S ∪ S−1)∗ such that gw = h ∈ G. In other words, d(g, h) is the length of the
shortest path from g to h in ΓG,S .

Of the three words recorded above, certainly w1 and w2, both of length
2, are the shortest. It is in fact true that, the shortest word wi such that
(−1, 2)wi = (0, 3) is of length 2, giving d((−1, 2), (0, 3)) = 2, though we will not
prove this result here. Next, we define a special distance.

Definition 1.4.5. Let g ∈ G, a group with generating set S. Then the word
length of g, denoted l(g) = d(e, g).
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Having thoroughly defined the notion of distance and word length, we next
consider the following definition.

Definition 1.4.6. Let g ∈ G, a group with generating set S. Then g is a
dead-end element of G if and only if ∀s ∈ S, l(gs) ≤ l(g) and l(gs−1) ≤ l(g).

To illustrate an example of a dead-end element, we first consider the Cayley
Graph of Z under addition, which models the standard number line.

""
−2

""
−1

!!
0

!!
1

!!
2

��

Figure 1.4: ΓZ,{1}

Note that 1, when operated on by the generator 1, gives us 2, and as l(1) = 1
and l(2) = 2, l(1) < l(2). Thus, 1 is not a dead-end element in Z if we consider
this generating set. However, complexities may arise when considering Z with a
different generating set. For example, we select {2, 3} to be our generating set,
appealing to the discussion above and thus resulting in a more complex Cayley
Graph, as shown below.

��
::
��

;;−2
��

;;−1
��

;;0
��

<<1
�� <<2

��

Figure 1.5: ΓZ,{2,3}

Again, we consider 1, which we claim to be a dead-end element in Z (as
generated by {2, 3}). There exists a path p of length 2 from the identity to 1
(namely p = 0, 3, 1, since 0 + 3 = 3 and 3 − 2 = 1). However, since 1,−1 /∈ S,
l(1) > 1, this path of length 2 must be the shortest path, giving l(1) = 2.

To show 1 is a dead-end element, we must consider the length of elements
obtained when operating 1 by the generators and their inverses. The lengths of
these elements are listed below.

l(1 + 2) = l(3) l(1 + 3) = l(4) l(1− 2) = l(−1) l(1− 3) = l(−2)

As 3 ∈ S and −2 ∈ S−1, l(3) = l(2) = 1, giving l(3) = l(2) ≤ l(1). Furthermore,
there exists a path of length 2 from 0 to 4 (since 2 + 2 = 4) and there exists a
path of length 2 from 0 to −1 (since 2− 3 = −1), giving l(4), l(−1) ≤ 2 = l(1).
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Thus, ∀s ∈ {2, 3}, l(1+s) ≤ l(1) and l(1+s−1) ≤ l(1), so 1 is a dead-end element.

When traversing the Cayley Graph out from the identity, it might seem in-
tuitive to expect length of each element to increase with each edge traversed. In
the case of dead-end elements, however, continuing does not result in increased
length. This is to say that any element of distance 1 from a dead-end element
is contained in the set defined below.

Definition 1.4.7. Let G be a group with generating set S. Then the ball of
radius k, denoted BS(k), is the following set.

BS(k) = {g ∈ G|l(g) ≤ k}

As 1 is a dead-end element in G with length 2, any element of distance 1
from 1 has length less than or equal to that of 1 and therefore is a member of
BS(2). In fact, BS(2) = {−6, . . . , 6}, as each of these elements has length less
than or equal to 2.

Given a dead-end element, if we are to find a path to an element with length
greater than it, we must exit its ball entirely. The length of the shortest path
from a dead-end element to an element outside its ball might be greater or
less than similar paths from other dead-end elements of equal length. Such a
distinction motivates the following definition.

Definition 1.4.8. Let g be a dead-end element in G, a group with generating
set S. Then the depth of g is equal to min{d(g, h)|h ∈ G, h /∈ BS(l(g))}.

Note that if g is a dead-end element in G as generated by S, then the depth
of g is at least 2, since the elements reachable via paths of length 1 from g are
all of the form gs or gs−1 for some s ∈ S, giving gs, gs−1 ∈ BS(l(g)).

As an example, we may compute the depth of 1 in ΓZ,{2,3}. As l(1) = 2,
we must find the shortest path from 1 to an element not contained in BS(2) =
{−6, . . . , 6}. Consider 7. As 7 = 0 + 3 + 2 + 2, l(7) = 3, giving l(7) /∈ BS(2).
Furthermore, as 1+3+3 = 7, d(1, 7) = 2, giving that 1 is of depth 2 in ΓZ,{2,3}.

Later discussions will identify within the Lamplighter Group dead-end el-
ements of arbitrary depth. That is, for all n there exists an element in the
Lamplighter Group with depth at least n. Having concluded our Chapter of
Preliminaries, we begin by defining the Lamplighter Group in the opening sec-
tion of our next chapter.
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Chapter 2

The Lamplighter Group

2.1 Motivation

We begin our discussion by defining a dynamical system. For our purposes, we
consider a system with a static object and several types of modifications that
can be dynamically performed upon this object.

For our static object, consider a road of infinite length lined with street-
lamps in either direction, indexed by the integers (a structure we will call the
“lampstand”). A finite number of lamps along the lampstand are illuminated
while all others remain off, and a lamplighter stands at one lamp. We may
dynamically modify this object by allowing the lamplighter to walk in either
direction and change the state of the lamp at which is standing.

This system serves as a visual model for several groups, each of which are
the same up to isomorphism. This group, to which we refer as the Lamplighter
Group, will be defined later on. First, we will give rigor to our system as
expressed above with the following definitions.

Definition 2.1.1. Let L denote the set of all possible configurations as de-
scribed above.

An arbitrary configuration in L could easily be represented pictorially. For
example, let c0 ∈ L be the configuration with lamps at indices −2 and 1 illumi-
nated and the lamplighter positioned at lamp at index −1. We show c0 below,
where a closed circle (•) represents an illuminated bulb, an open circle (◦) rep-
resents an unilluminated one, and the position of the lamplighter is indicated
by an arrow pointing at the index corresponding to the lamp.

Definition 2.1.2. Let ε ∈ L be the configuration in which all lamps are unil-
luminated and the lamplighter stands at index 0. We will refer to this configu-
ration as the “empty lampstand”.
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−3 −2 −1 0 1 2 3

◦oo • ◦ ◦| • ◦ ◦ //
OO

The dynamics of the system are meant to mimic the movements of the
lamplighter about the lampstand and the changes he makes to the state of
individual lamps. Atomically, we may consider these dynamics as the following
three tasks that the lamplighter may perform on any arbitrary configuration in
L.

(1) Switch on/off the lamp at which the he currently stands.

(2) Move one lamp to his right.

(3) Move one lamp to his left.

Note that by performing tasks (2) or (3) k ∈ Z times, the lamplighter achieves
the task of having moved k lamps to either the right or left respectively. These
dynamics are defined below.

Definition 2.1.3. Let T = {α, τ, τ ′} where every element in T is a function
from L to itself such that, given l ∈ L, we define

• α(l) is the configuration resulting from having performed task (1) on l.

• τ(l) is the configuration resulting from having performed task (2) on l.

• τ ′(l) is the configuration resulting from having performed task (3) on l.

As applying a function in T to a configuration in L is equivalent to performing
its corresponding task on this configuration, we will use these terms interchange-
ably.

Revisiting our example configuration c0, we show α(c0), τ(c0), and τ ′(c0)
below:

Note that we may obtain any configuration in L by applying a finite sequence
of tasks to ε, the empty lampstand. Again, we revisit our example configura-
tion c0, the configuration with lamps at indices −2 and 1 illuminated and the
lamplighter positioned at lamp at index −1. We attain this configuration using
the following sequence of tasks:

• Move the lamplighter two lamps to his left (to index -2).

• Switch on/off the lamp at which the lamplighter stands (index -2 on).
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−2 −1 0 1 2

α(c0) •oo • ◦| • ◦ //
OO

τ(c0) •oo ◦ ◦| • ◦ //
OO

τ ′(c0) •oo ◦ ◦| • ◦ //
OO

• Move the lamplighter three lamps to his right (to index 1).

• Switch on/off the lamp at which the lamplighter stands (index 1 on).

• Move the lamplighter two lamps to his left (to index -1).

Such a sequence is not unique. We could just as easily use this sequence of tasks
to achieve the same end.

• Move the lamplighter one lamp to his right (to index 1).

• Switch on/off the lamp at which the lamplighter stands (index 1 on).

• Move the lamplighter three lamps to his left (to index -2).

• Switch on/off the lamp at which the lamplighter stands (index -2 on).

• Move the lamplighter one lamps to his right (to index -1).

This motivates the following theorem.

Theorem 2.1.4. For all l ∈ L, there exists a finite sequence γ1, γ2, . . . , γk such
that ∀i, γi ∈ T and γk(γk−1(· · · (γ1(ε)))) = l.

Proof. Let c ∈ L where lamps at indices b1, . . . , bn are illuminated and the
lamplighter is positioned at index z. Then

c = γz(αbn(αbn−1
(· · · (αb1(ε)))))

where for l∗ ∈ L

αj(l∗) =

{
τ ′j(α(τ j(l∗))) if j ≥ 0
τ−j(α(τ ′−j(l∗))) if j < 0

and

γz =

{
τz if z ≥ 0
τ ′−z if z < 0
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We may use the language of traditional group theory to illustrate this dy-
namic system as a series of groups, each of which are the same up to isomor-
phism. The first of these groups is presented below.

2.1.1 Integer Subset Definition

We wish to define a group L2, to which we will refer as the Lamplighter Group.
We define the underlying set and operation in this group in the following two
definitions.

Definition 2.1.5. L2 = {(S, z) | S ⊆ Z (finite) and z ∈ Z}.

Definition 2.1.6. Let l1, l2 ∈ L2 with l1 = (S, x) and l2 = (T, y). Then

l2l1 =
(
(S ∪ T ′)− (S ∩ T ′), x+ y

)
where T ′ = {t+ x | t ∈ T}.

Having defined this set and its corresponding operation, we go on to show
that it is, in fact, a group.

Claim 2.1.7. L2 is a group.

Proof. To prove that L2 is a group, we must show closure, associativity, the
existence of an identity element, and the existence of inverses.

To show closure, let l1, l2 ∈ L2 as above. We wish to show l1l2 ∈ L2. By
the definition of operation in L2, l2l1 =

(
(S ∪ T ′)− (S ∩ T ′), x+ y

)
. Note that

(S ∪ T ′) − (S ∩ T ′) ⊆ Z and finite since S and T ′ are both subsets of Z and
finite. Furthermore, x+ y ∈ Z, and so l2l1 ∈ L2.

To show associativity, let l1, l2, l3 ∈ L2 with l1 = (S, x), l2 = (T, y), l3 =
(R, z). Then

l2l1 = (S ∪ T ′ − S ∩ T ′, x+ y) where T ′ = {t+ x|t ∈ T}
l3l2 = (T ∪R′ − T ∩R′, y + z) where R′ = {r + y|r ∈ R}

and furthermore

l3(l2l1) =
(
(S ∪ T ′ − S ∩ T ′) ∪R′′ − (S ∪ T ′ − S ∩ T ′) ∩R′′, x+ y + z

)
where R′′ = {r + x+ y|r ∈ R} = {r + x|r ∈ R′}

(l3l2)l1 = (S ∪A− S ∩A, x+ y + z)

where A = {x+ α|α ∈ T ∪R′ − T ∩R′}

We wish to show l3(l2l1) = (l3l2)l1. As the second entry in each ordered pair
above is x+y+ z, it suffices to show equality amongst the first entries. In other
words, we must show

(S ∪ T ′ − S ∩ T ′) ∪R′′ − (S ∪ T ′ − S ∩ T ′) ∩R′′ = S ∪A− S ∩A
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We will denote the set referenced on the left-hand-side of this equality by LHS
and the set on the right-hand-side by RHS.

First, we will show that LHS ⊆ RHS. Let k ∈ LHS. We must show that
k ∈ RHS. As k ∈ LHS, we will examine each of the following cases:

(i) k ∈ S, k /∈ T ′, k /∈ R′′

(ii) k ∈ T ′, k /∈ S, k /∈ R′′

(iii) k ∈ R′′, k /∈ S, k /∈ T ′

Consider case (i), where k ∈ S, k /∈ T ′, k /∈ R′′. As k ∈ S, to show
k ∈ RHS, it suffices to show k /∈ A.

• Because k /∈ T ′, ∀t ∈ T , t+ x 6= k.

• Because k /∈ R′′, ∀r ∈ R′, r + x 6= k.

• Thus, ∀β ∈ T ∪R′, β + x 6= k.

• Furthermore, ∀α ∈ T ∪R′ − T ∩R′, α+ x 6= k, giving k /∈ A.

Consider case (ii), where k ∈ T ′, k /∈ S, k /∈ R′′. As k /∈ S, to show
k ∈ RHS, it suffices to show k ∈ A.

• Because k ∈ T ′, ∃t ∈ T with t+ x = k, giving t = k − x.

• Because k /∈ R′′, ∀r ∈ R, r + x+ y 6= k, giving r + y 6= k − x.

• As r + y 6= k − x ∀r ∈ R, k − x /∈ R′, giving t /∈ R′.

• Because t ∈ T and t /∈ R′, we have t ∈ T ∪R′ − T ∩R′.

• Thus, t+ x = k ∈ A.

Consider case (iii), where k ∈ R′′, k /∈ S, k /∈ T ′. Again, since k /∈ S, it
suffices to show k ∈ A.

• Because k ∈ R′′, ∃r ∈ R with r + x+ y = k, giving r + y = k − x.

• Because r ∈ R, r + y = k − x ∈ R′.

• Because k /∈ T ′, ∀t ∈ T , t+ x 6= k, giving t 6= k − x, so k − x /∈ T .

• Since k − x ∈ T and k − x ∈ R′, we have k − x ∈ T ∪R′ − T ∩R′.

• Thus (k − x) + x = k ∈ A.

As all three cases result in k ∈ RHS, we have shown LHS ⊆ RHS as desired.

Next, we will show RHS ⊆ LHS. Now, let k ∈ RHS. We must show that
k ∈ LHS. As k ∈ RHS, we will examine two cases
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(i) k ∈ S, k /∈ A

(ii) k /∈ S, k ∈ A

Consider case (i), where k ∈ S, k /∈ A. As k /∈ A, we have k − x /∈
T ∪R′ − T ∩R′. Thus, we examine two sub-cases:

(a) k − x ∈ T, k − x ∈ R′

(b) k − x /∈ T, k − x /∈ R′

In sub-case (a), we have k − x ∈ T, k − x ∈ R′.

• Because k − x ∈ T, (k − x) + x = k ∈ T ′.

• Because k − x ∈ R′, (k − x) + x = k ∈ R′′.

• Because k ∈ S, k ∈ T ′, k /∈ S ∪ T ′ − S ∩ T ′.

• Because k ∈ R′′, k /∈ S ∪ T ′ − S ∩ T ′, k ∈ LHS.

In sub-case (b), we have k − x /∈ T, k − x /∈ R′.

• Because k − x /∈ T, (k − x) + x = k /∈ T ′.

• Because k − x /∈ R′, (k − x) + x = k /∈ R′′.

• Because k ∈ S, k /∈ T ′, k ∈ S ∪ T ′ − S ∩ T ′.

• Because k /∈ R′′, k ∈ S ∪ T ′ − S ∩ T ′, k ∈ LHS.

Thus, for case (i), we have k ∈ LHS.

Consider case (ii), where k /∈ S, k ∈ A. As k ∈ A, we have k = x ∈
T ∪R′ − T ∩R′. Again, we examine two sub-cases:

(a) k − x ∈ T, k − x /∈ R′

(b) k − x ∈ R′, k − x /∈ T

In sub-case (a), we have k − x ∈ T, k − x /∈ R′.

• Because k − x ∈ T, (k − x) + x = k ∈ T ′.

• Because k − x /∈ R′, (k − x) + x = k /∈ R′′.

• Because k /∈ S, k ∈ T ′, k ∈ S ∪ T ′ − S ∩ T ′.

• Because k /∈ R′′, k ∈ S ∪ T ′ − S ∩ T ′, k ∈ LHS.

In sub-case (b), we have k − x ∈ R′, k − x /∈ T .

• Because k − x /∈ T, (k − x) + x = k /∈ T ′.

• Because k − x ∈ R′, (k − x) + x = k ∈ R′′.
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• Because k /∈ S, k /∈ T ′, k /∈ S ∪ T ′ − S ∩ T ′.

• Because k ∈ R′′, k /∈ S ∪ T ′ − S ∩ T ′, k ∈ LHS.

Thus, for case (ii), we have k ∈ LHS as well, giving RHS ⊆ LHS as desired.

To show the existence of an identity element, let l1 = (S, z) and l0 = (∅, 0).
We must show l0l1 = l1l0 = l1. Observe the following:

l0l1 = (∅ ∪ S′ − ∅ ∩ S′, x+ 0) where S′ = {0 + s | s ∈ S} = S

= (∅ ∪ S − ∅ ∩ S, x)

= (S, x) = l1.

l1l0 = (S ∪ E′ − S ∩ E′, x+ 0) where E′ = {x+ ε | ε ∈ ∅} = ∅
= (S ∪ ∅ − S ∩ ∅, x)

= (S, x) = l1.

Thus, l0 is an identity in L2, and as such, we will refer to l0 = (∅, 0) as e.

To show the existence of inverses in L2, let l = (S, z) and let l′ = (S′,−z)
where S′ = {s − z | s ∈ S}. We must show ll′ = l′l = (∅, 0). Observe the
following.

ll′ = (S′ ∪ S0 − S′ ∩ S0,−z + z) where S0 = {s− z | s ∈ S}
Note thatS0 = S′.

= (S′ ∪ S′ − S′ ∩ S′, 0)

= (∅, 0) = e

l′l = (S ∪ S′′ − S ∩ S′′, z − z) where S′′ = {s+ z | s ∈ S′}
Note thatS′′ = {(s− z) + z|s ∈ S} = {s|s ∈ S} = S

= (S ∪ S − S ∩ S, 0)

= (∅, 0) = e

Thus, for any element l ∈ L2, l′ is proven to be the inverse of l in L2, and as
such, we will refer to l′ as l−1.

Thus, we have proven that L2 is a group. We now identify specific elements
in L2 to which we will refer later on.

Definition 2.1.8. Let T2 = {a, t, a−1, t−1} where a = ({0}, 0) and t = (∅, 1).

Claim 2.1.9. a−1 = a.
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Proof. We must show that a2 = e.

a2 = ({1} ∪ {1} − {1} ∩ {1}, 0 + 0) = ({1} − {1}, 0) = (∅, 0) = e.

Claim 2.1.10. t−1 = (∅,−1).

Proof. Let t′ = (∅,−1). We wish to show tt′ = t′t = e.

tt′ = (∅ ∪ ∅ − ∅ ∩ ∅,−1 + 1) = (∅, 0) = e

t′t = (∅ ∪ ∅ − ∅ ∩ ∅, 1− 1) = (∅, 0) = e

Thus, T2 = {a, t, t−1}.

2.1.2 Connection

As mentioned, the Lamplighter Group L2 models the dynamics presented in the
system we defined earlier. In this section, we examine the connection between
the dynamic system and the group L2, our goal being to prove the following
theorem.

Theorem 2.1.11. For all l ∈ L2, l can be expressed as a product of a, t, t−1.

We begin by showing a 1-1 correspondence between L2, our traditionally
defined group, and L, the set of configurations in our dynamic system.

Definition 2.1.12. Let l ∈ L be the configuration in which the bulbs at indices
in S = {s1, . . . , sk} are illuminated and the lamplighter is positioned at x. Then
we define a function f : L → L2 such that f(l) = (S, x).

Note that to every element in L2, f maps some configuration in L, and
furthermore that every configuration in L can be mapped to only one unique el-
ement in L2. Thus, f establishes a 1-1 correspondence between L and L2. Next,
we show another 1-1 correspondence, this one between T2 = {a, t, t−1}, a subset
of L2, and T = {α, τ, τ ′}, our set of tasks. We record this 1-1 correspondence
below.

Definition 2.1.13. Let g : T → T2 such that

g(α) = a g(τ) = t g(τ ′) = t−1

Note that g is a 1-1 correspondence by its construction.

Keeping in mind that our final goal is to prove Theorem 2.1.11, this proof
will require use of the technical lemma proven below.
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Lemma 2.1.14. Let c ∈ L, γ ∈ T . Then

g(γ) · f(c) = f(γ(c))

Proof. Let c ∈ L be the configuration in which the bulbs at indices s1, . . . , sk
are illuminated and the lamplighter is standing at position x. Note that f(c) =
(S, x) where S = {s1, . . . , sk}. We must consider three possible cases:

(i) γ = α.
We compute g(α) · f(c) as follows:

g(α) · f(c) = a · f(c) = ({0}, 0)(S, x) = (S ∪ {x} − S ∩ {x}, x) = f(c′)

where c′ is the configuration where the bulb at index x is turned on if the
bulb at index x is turned off in configuration c, and the bulb at x is off if
the bulb at x is on in configuration c. Such a configuration can be acquired
by performing task (1) on configuration c, and as such, c′ = α(c), giving
f(c′) = f(α(c), and furthermore that, as desired,

g(α) · f(c) = f(α(c)).

(ii) γ = τ .
We compute g(τ) · f(c) as follows:

g(τ) · f(c) = t · f(c) = (∅, 1)(S, x) = (S, x+ 1) = f(c′)

where c′ is the configuration where the lamplighter stands one index to
the right from the index at which he stands in configuration c. Such a
configuration can be acquired by performing task (2) on configuration c,
and as such, c′ = τ(c), giving f(c′) = f(τ(c)), and furthermore that, as
desired,

g(τ) · f(c) = f(τ(c)).

(iii) γ = τ ′.
We compute g(τ ′) · f(c) as follows:

g(τ ′) · f(c) = t−1 · f(c) = (∅,−1)(S, x) = (S, x− 1) = f(c′)

where c′ is the configuration where the lamplighter stands one index to
the left from the index at which he stands in configuration c. Such a
configuration can be acquired by performing task (3) on configuration c,
and as such, c′ = τ ′(c), giving f(c′) = f(τ ′(c)), and furthermore that, as
desired,

g(τ ′) · f(c) = f(τ ′(c)).
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Having proven the claim above, note the special case when c = ε, the empty
lampstand. In such a case, for γ ∈ T , we have g(γ) · f(ε) = f(γ(ε)). We know,
however, that f(ε) = e, the identity in L2. Thus, this gives us

g(γ) = f(γ(ε)).

With these remarks in mind, we prove the following theorem, which is the
goal of this section.

Theorem 2.1.11. For all l ∈ L2, l can be expressed as a product of a, t, t−1.

Proof. Let l ∈ L2. Then as f is onto L2, there exists some configuration c ∈ L
such that f(c) = l. By Claim 2.1.4, we know that there exists γ1 . . . , γk such
that c = γk(· · · (γ1(ε))). We will employ the principle of mathematical induc-
tion, inducting on the value of k.

For our base case, let k = 1. Then c = γ1(ε). This gives f(c) = f(γ1(ε)).
However, by Lemma 2.1.14,

f(γ1(ε)) = g(γ1) · f(ε) = g(γ1) · e = g(γ1)

By the definition of g, g(γ1) ∈ T2 = {a, t, t−1}, proving our base case.

For our inductive case, assume that the claim is true for k = n. We wish
to show that it is also true for k = n + 1. Let c = γn+1(· · · (γ1(ε))). Then
c = γn+1(b) where b = γn(· · · (γ1(ε))). However, by Lemma 2.1.14,

f(c) = f(γn+1(b)) = g(γn+1) · f(b)

By our inductive hypothesis, as f(b) = g(γn) · · · g(γ1). Thus

f(c) = g(γn+1) · g(γn) · · · g(γ1)

Again, by the definition of g, ∀i, g(γi) ∈ T2, proving our inductive case.

Therefore, by mathematical induction, our claim is proven.

Thus, using the language of geometric group theory, we have shown that L2

is generated by T2 by exploiting L2’s connection to the dynamic system whose
discussion opened this chapter. However, we may also prove the same claim
using traditional group theory.

Theorem 2.1.11. (Alternate Proof) For all l ∈ L2, l can be expressed as a
product of a, t, t−1.

Proof. Let l = (S, x) ∈ L2 where S = {s1, . . . , sk} and let l′ = tx
(∏

s∈S t
−sats

)
.

We claim that l = l′.

To show this result, we first note the following
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• For k ∈ Z, t−katk = ({k}, 0).
This is true because tk = (∅, k) and t−k = (∅,−k), and therefore

t−katk = (∅,−k)({0}, 0)(∅, k) = ({k},−k)(∅, k) = ({k}, 0).

• For j, k ∈ Z, ({j}, 0)({k}, 0) = ({j, k}, 0).

• Finally, tz = (∅, z).

With this in mind, we consider the following.

l′ = tx

(∏
s∈S

t−sats

)
= tx

[
(t−skatsk)(t−sk−1atsk−1) · · · (t−s1ats1)

]
= (∅, x)

[
({sk}, 0)({sk−1}, 0) · · · ({s1}, 0)

]
= (∅, x)({s1, . . . , sk}, 0)

= ({s1, . . . , sk}, x) = (S, x) = l

Thus, {a, t} is a generating set of L2. Here, we claim that it is, in fact, the
smallest such generating set.

Theorem 2.1.15. {a, t} is the smallest generating set of L2.

Proof. Suppose to the contrary that there exists a generating set R of L2 with
|R| ≤ 2. Then |R| = 1 and we may write R = {r} for some r ∈ L2.

As {r} is a generating set of L2, ∀l ∈ L2, l = rz or l = (r−1)z = r−z for
some z ∈ Z+ ∪ {0}. Thus, ∃p, q ∈ Z such that a = rp, t = rq. Then

at = rprq = rp+q = rq+p = rqrp = ta

But we know at = ({1}, 1) and ta = ({0}, 1), giving at 6= ta, a contradiction.
Thus, no such generating set of cardinality 1 may exist, proving our claim.

In this opening sub-section, we have discussed how L2 models the dynamics
of the system of configurations in L. We will specify two more groups that also
model the dynamics of this system, the first of which appears below.

2.1.3 Infinite Sum Definition

Here, we define another group L2
′ that models our dynamic system, eventually

proving that L2
′ ∼= L2. We begin by defining the underlying set and operation

of this group in the following two definitions below.
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Definition 2.1.16. Let L2
′ be the following set:

L2
′ = {

(
(xi), z

)
| x ∈ ⊕∞i=−∞(Z2)i, z ∈ Z}.

where ⊕∞i=−∞(Z2)i is the infinite direct sum of copies of Z2. As such, (xi) is an
infinite tuple in which each integer index is assigned a binary value of 0 or 1.
Note that only finitely many entries in (xi) may hold a value of 1.

Definition 2.1.17. Let l1, l2 ∈ L2
′ with l1 =

(
(xi), n

)
and l2 =

(
(yi),m

)
. Then

l2l1 =
(
(zi), n+m

)
where ∀i, zi = xi + yi−n.

Having defined L2
′, we show that it is a group below.

Claim 2.1.18. L2
′ is a group.

Proof. To show that L2
′ is a group, we must show closure, associativity, the

existence of an identity element, and the existence of inverses.

To show closure, let l1 =
(
(xi), n

)
, l2 =

(
(yi),m

)
∈ L2

′. We must show

l2l1 ∈ L2
′. By the definition of operation in L2

′, l2l1 =
(
(zi), n + m

)
where

∀i, zi = xi + yi−n. Note, however, that as ⊕∞i=−∞(Z2)i is closed, (zi) ∈
⊕∞i=−∞(Z2)i, and furthermore, as Z is closed, n+m ∈ Z. As such, ((zi), n+m) ∈
L2
′ as desired.

To show associativity, we note that both ⊕∞i=−∞(Z2)i and Z under addition
are associative.

To show the existence of an identity element, let l0, l1 ∈ L2
′ with l0 =(

(0i), 0
)
, l1 =

(
(xi), n

)
. We claim that l0 is an identity element and therefore

must show that l1l0 = l0l1 = l1. Observe the following.

l1l0 =
(
(0i), 0

)(
(xi), n

)
=
(
(wi), 0 + n

)
where ∀i, wi = 0i + xi−0 = xi

=
(
(xi), n

)
= l1

l0l1 =
(
(xi), n

)(
(0i), 0

)
=
(
(zi), n+ 0

)
where ∀i, zi = xi + 0i−n = xi

=
(
(xi), n

)
= l1

Thus, l0 serves as an identity element in L2
′, and as such, we shall refer to l0 as

e.
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To show the existence of inverses, let l, l′ ∈ L2
′ with l =

(
(xi), n), l′ =(

(xi+n,−n)
)
. We claim that l, l′ are inverses and therefore must show that

ll′ = l′l = e. Observe the following.

ll′ =
(
(xi+n),−n

)(
(xi), n

)
=
(
(wi),−n+ n

)
where ∀i, wi = xi+n + xi−(−n) = xi+n + xi+n = 0i

=
(
(0i), 0

)
= e

l′l =
(
(xi), n

)(
(xi+n),−n

)
=
(
(zi), n− n

)
where ∀i, zi = xi + x(i+n)−n = xi + xi = 0i

=
(
(0i), 0

)
= e

Thus, l′ serves as an inverse for l ∈ L2
′, and as such, we shall refer to l′ as

l−1.

That this group L2
′ is in some way linked to L2 should be immediately

apparent, as any finite subset of the integers (as in L2) can be represented as
an infinite binary string in which finitely many entries are valued 1 (as in L2

′).
We prove below that these two groups are, in fact, the same up to isomorphism.

Theorem 2.1.19. L2
′ ∼= L2

Proof. Define φ, a function from L2 to L′2 such that, for (S, z) ∈ L2,

φ
(
(S, z)

)
=
((

(xi), z
))

where vi =

{
1 if i ∈ S
0 else

We claim that φ is an isomorphism. We must show that φ is a homomorphism,
surjective, and injective.

To show that φ is a homomorphism, let (S, y), (T, z) ∈ L2. We wish to show
φ
(
(S, y)

)
φ
(
(T, z)

)
= φ

(
(S, y)(T, z)

)
.

φ
(
(S, y)(T, z)

)
= φ(S ∪ T ′ − S ∩ T ′, y + z)

where T ′ = {t+ y|t ∈ T}
=
(
(vi), y + z

)
where vi = 1 if i ∈ S ∪ T ′ − S ∩ T ′, 0 otherwise.

φ
(
(S, y)

)
φ
(
(T, z)

)
=
((

(si), y
))((

(ti), z
))

where si = 1 if i ∈ S, 0 otherwise

ti = 1 if i ∈ T , 0 otherwise.

=
(
(ui), y + z

)
where ui = si + ti−y

We claim that ui = vi.
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• Note that ui = si + ti−y.

• Then ui = 1 if one of the following cases are true:

(a) si = 1 and ti−y = 0

– Assuming this case, we have i ∈ S, i− y /∈ T , giving i /∈ T ′.
– Thus, i ∈ S ∪ T ′ − S ∩ T ′.

(b) ti−y = 1 and si = 0.

– Assuming this case, we have i /∈ S, i− y ∈ T , giving i ∈ T ′.
– Thus, i ∈ S ∪ T ′ − S ∩ T ′.

• Thus, u1 = 1 if i ∈ S ∪ T ′ − S ∩ T ′, giving that ui = vi.

As ui = vi, clearly φ
(
(S, y)

)
φ
(
(T, z)

)
= φ

(
(S, y)(T, z)

)
, giving that φ is a ho-

momorphism.

To show surjectivity, let l ∈ L2
′. We must show that ∃ (S, x) ∈ L2 such

that φ((S, z)) = l. We know l =
(
(xi), z

)
for some z ∈ Z and some (xi) ∈

⊕∞i=−∞(Z2)i such that only finitely many values xi = 1. As such a finite set of
values exists, we let S contain these values. Then φ

(
(S, z)

)
= l as desired.

To show injectivity, let l1 = (S, x), l2 = (T, y) ∈ L2
′, l1 6= l2. Then φ(l1) =(

(si), x
)

where si = 1 if i ∈ S and 0 otherwise and φ(l2) =
(
(ti), y

)
where ti = 1

if i ∈ T and 0 otherwise. We wish to show φ(l1) 6= φ(l2).

• As l1 6= l2, either S 6= T or x 6= y.

• If x 6= y, then this claim is clearly true.

• If S 6= T , there must exist some j ∈ Z such that j ∈ S ∪ T − S ∩ T . Then
sj 6= tj , giving φ(l1) 6= φ(l2).

In this section, we have discussed the dynamical system that exists around
the lampstand and introduced two groups whose inner workings model the dy-
namics of this system. These two groups are not alone in this regard, as we will
see that there are other groups with similar qualities later in this Chapter.
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2.2 Presentation

The goal of this section is to prove the following theorem regarding the presen-
tation of L2.

Theorem 2.2.1. [6] L2 = 〈a, t | a2, [tjat−j , tkat−k] ∀j, k ∈ Z〉.

Before we begin our discussion of the proof of this theorem, we consider the
following preliminary definitions.

Definition 2.2.2. Let F2 be a free group of rank 2 with basis {a, t}.

Note that, as F2 is a free group, we may write w ∈ F2 as a freely reduced word
in {a, t}. As such, we know w may not contain sub-words aa−1, a−1a, tt−1, t−1t,
so we may write w = tlnakn · · · tl2ak2tl1ak1 for all w ∈ F2 where li, kj ∈ Z where
1 ≤ i ≤ n, 1 ≤ j ≤ n− 1.

Definition 2.2.3. Let N be the smallest normal subgroup of F2 containing a2

and [t−jatj , t−katk] ∀j, k ∈ Z.

This is to say that if M is a normal subgroup of F2 containing a2 and
[t−jatj , t−katk] ∀j, k ∈ Z, then N ⊆ M , as N is the smallest such normal
subgroup of F2. Lastly, we define ψ, a map from F2 to L2.

Definition 2.2.4. Let ψ : F2 → L2 be a map such that, for w = tlnakn · · · t1a1 ∈
F2, ψ(w) = tlnakn · · · tl1ak1 , the corresponding product in L2 where by tli , we
mean |li| copies of t if li is positive and |li| copies of t−1 if li is negative and by
aki , we mean |ki| copies of a. Recall that t = (∅, 1) and a = ({0}, 0).

Having completed these preliminary definitions, we begin our proof of The-
orem 2.2.1 by providing an equivalent Theorem below which makes use of the
three definitions above.

Theorem 2.2.5. L2
∼= F2/N .

To prove this Theorem, we will employ the first of the Homomorphism The-
orems. That is, if ψ is a homomorphism from F2 onto L2, then L2

∼= F2/Ker(ψ).
Thus, the following is equivalent to Theorem 2.2.5:

(1) ψ is a homomorphism.

(2) ψ is onto L2.

(3) Ker(ψ) = N .

We will prove each of these statements below.

Theorem 2.2.5, Statement (1). ψ is a homomorphism.
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Proof. Let w, u ∈ F2. We must show that ψ(wu) = ψ(w)ψ(u).

As w, u ∈ F2, we may may write

w = tlnakn · · · tl1ak1 u = timajm · · · ti1aj1

Then ψ(w) = tlnakn · · · tl1ak1 when considered as a product in L2 and ψ(u) =
timajm · · · ti1aj1 when considered as a product in L2, giving that

ψ(w)ψ(u) = (tlnakn · · · tl1ak1)(timajm · · · ti1aj1)

when considered as a product in L2. However, about wu, we may write

wu = tlnakn · · · tl1ak1timajm · · · ti1aj1

and this gives

ψ(wu) = tlnakn · · · tl1ak1timajm · · · ti1aj1

= (tlnakn · · · tl1ak1)(timajm · · · ti1aj1) = ψ(w)ψ(u)

when considered as a product in L2. Thus, ψ(wu) = ψ(w)ψ(u) as desired.

Having shown that ψ is a homomorphism, we continue on to the second
statement regarding ψ, that it is in fact onto its range L2.

Theorem 2.2.5, Statement (2). ψ is onto L2.

Proof. Let g ∈ L2. We must show that there exists w ∈ F2 with ψ(w) = g.

Recall that all elements of L2 may be written as a product of a, t, t−1. Thus,
we may write g = xn . . . x1 where ∀i, xi ∈ {a, t, t−1}. Consider xn . . . x1 as a
word and let w = yn . . . y1 be the reduced form of this word. Then w is a freely
reduced word in {a, t, t−1} such that, when considered as a product, w = g.
Then, by the definition of ψ, ψ(w) = g as desired.

Thus, as required by the the First Homomorphism Theorem, ψ is a surjec-
tive homomorphism, and as such, L2

∼= F2/Ker(ψ). As such, to prove Theorem
2.2.5, it remains to show Statement (3) below.

Theorem 2.2.5, Statement (3). Ker(ψ) = N .

Proof. We must show that N ⊆ Ker(ψ) and Ker(ψ) ⊆ N .

First, we will show thatN ⊆ Ker(ψ). Note that by Lemma 1.2.4, NCKer(ψ).
In addition, ψ(a2) = e ∈ L2 and ∀j, k ∈ Z, ψ([t−jatj , t−katk]) = e ∈ L2. Thus,
a2, [t−jatj , t−katk] ∈ Ker(ψ) ∀j, k. Thus, we have that Ker(ψ) is a normal sub-
group of F2 containing a2, [t−jatj , t−katk]. But as previously noted, N is the
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smallest such subgroup of F2, and therefore, N ⊆ Ker(ψ) as desired.

To show Ker(ψ) ⊆ N , we claim that ∀w ∈ Ker(ψ), w may be expressed
as αi . . . α1 where for all i, αi = y−cβyk where c ∈ {a, a−1, t, t−1} and β is a
product of a2 and [t−jatj , t−katk] for some j, k ∈ Z. We will not prove this
result here, but rather provide several statements that motivate this claim.

Given a word w ∈ Ker(ψ), the element corresponding to w in L2 has the
lamplighter standing at index 0. This is to say that for every move the lamp-
lighter makes away from index 0, he must make a subsequent move back toward
index 0. Such an observation motivates the following claim.

Claim 2.2.6. Let w ∈ Ker(ψ). Then the exponent sum of t in w is 0.

Proof. As w ∈ Ker(ψ) and Ker(ψ) ⊆ F2, we may write w = tlnakn · · · tl1ak1 .
This gives ψ(w) = tlnakn · · · tl1ak1 = (S, z) for some S ⊆ Z, z ∈ Z. But as
w ∈ Ker(ψ), z = 0.

We know, by the definition of operation in L2, that every occurrence of t in
w will increment z and every instance of t−1 in w will decrement z, so there
must be an equal number of these instances. As such, if there are k occurrences
of t and t−1, then the exponent sum of t in w is k − k = 0 as desired.

Furthermore, given w ∈ Ker(ψ), the element corresponding to w in L2 has
no lamps illuminated. This is to say that if in w the lamplighter were to turn
some lamp on, it must at some point subsequently turn it off. This observation
motivates the following claim.

Claim 2.2.7. Let w = yα · · · y1 ∈ Ker(ψ) where yi ∈ {a, a−1, t, t−1} ∀i. Then
∀p such that ψ(yp · · · y1) = ({l}, z) for some l, z ∈ Z, there exists q > p such
that yq+1 ∈ {a, a−1} and ψ(yq · · · y1) = (T, l) for some T ⊆ Z.

Proof. Suppose to the contrary that, given some w = yα · · · y1 ∈ Ker(ψ), there
exists p such that ψ(yp · · · y1) = ({l}, z) without the existence of such a q as
described above. Then for all r with p ≤ r ≤ α, ψ(yr · · · y1) = (U, z′) with
l ∈ U . Thus, if ψ(w) = ψ(yα · · · y1) = (S, z′′), then l ∈ S. But as w ∈ Ker(ψ),
ψ(w) = {∅, 0}, a contradiction.

To show the injectivity of this map is a massively complicated undertaking
that we will not discuss here. Rather, we will discuss a more graphically intuitive
topic, namely the word length of elements in the Lamplighter Group. This
discussion begins in the following section.
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2.3 Word Length in L2

In this section, we present a formula for the word length of any element in L2.
That is, for l ∈ L2, this formula will find the length of the shortest word w in
{a, t, t−1} such that l = w when w is considered as a product. Furthermore, in
addition to specifying the length of such a word, discussion in this section will
yield the word itself.

We begin with an example. Let g0 = ({−2,−1, 1, 3},−1) ∈ L2, shown below.

−3 −2 −1 0 1 2 3

◦oo • • ◦| • ◦ • //
OO

By the alternate proof of Theorem 2.1.11, we have seen that we may express
this element as a word in {a, t, t−1} by multiplying our generators by the identity
as follows. For each index at which a bulb is illuminated in g0

• move the lamplighter to that index,

• change the state of the bulb at that index,

• return the lamplighter to the origin,

and then finally move the lamplighter to the index of his final destination. We
may express this process as the following word.

t−1
(
t1at−1

) (
t−3at3

) (
t2at−2

) (
t−1at1

)
While this word has length 19, we may reduce it by combining the exponents
of adjacent generators and obtain the following word, in which the lamplighter
does not return to the origin in between stops at other indices.

a t−4 a t5 a t−3 a t

This word corresponds to stopping the Lamplighter at indices 1, -2, 3, and -1
(in that order) to illuminate each bulb, and then finally stopping him at his
final destination -1. Summing the exponents of the reduced form of this word,
we see that this word has a length of 17.

We have seen, however, that there are many ways to construct a word to
obtain any individual element of L2. In the following discussion, we present, for
any l ∈ L2, two words in {a, t, t−1} that when considered as a product, equal
l. We will prove that one of these words has minimal length. Before we do so,
however, we provide a more intricate description of the elements in L2 that we
will use to construct words with minimal lengths.
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Definition 2.3.1. Let g = (S, z) ∈ L2. Then we define S+, S− ⊆ S as follows:

S+ = {s ∈ S|s ≥ 0} S− = {s ∈ S|s < 0}

Letting k = |S+| and j = |S−|, we will label the indices in these subsets as

S+ = {i1, . . . , ik} where i1 ≤ · · · ≤ ik
S− = {−j1, . . . ,−jl} where − j1 ≥ · · · ≥ −jl

Note that if k = 0, then S+ = ∅, meaning that there will be no bulbs of non-
negative index in g, and thus that ik does not exist, since ik is the illuminated
bulb with the greatest non-negative index. Similarly, if j = 0, then S− = ∅,
giving no illuminated bulbs of negative index in g, and thus jl does not exist.
Returning to our example, g0 = ({−2,−1, 1, 3},−1), we note that S+ = {1, 3},
S− = {−1,−2}, giving i1 = 1, i2 = 3, j1 = 1, j2 = 2.

Next, we present the first of our two candidates for the minimal length word
by continuing with our example g0. Note the following word.

t−1
(
t2at−2

) (
t1at−1

) (
t−3at3

) (
t−1at1

)
This word, when considered as a product, is equivalent to g0. Reducing this
word, we obtain

t a t a t−4 a t2 a t

This word corresponds to first stopping the Lamplighter at each desired non-
negative index (in increasing order) to turn its bulb on, then doing the same
at each desired negative index (in decreasing order), and then finally stopping
the Lamplighter at his final destination. Summing the exponents of the reduced
form of this word above, we see that this word has a length of 13. However, such
a process can be described in general for any element of the Lamplighter Group.

Given an element g = (S, z) ∈ L2 where S+ = {i1, . . . , ik}, S− = {−j1, . . . ,−jl},
we may describe the process above in general as follows:

• Stop at bulbs at indices i1 . . . , ik, turning on each.

• Stop at bulbs at indices −j1, . . . , jl, turning on each.

• Stop at the final destination bulb at index z.

This process corresponds to a word whose construction is outlined in following
definition.

Definition 2.3.2. Let g = (S, z) ∈ L2 where S+ = {i1, . . . , ik}, S− = {−j1, . . . ,−jl}.
Then the right-left word of g, denoted p+(g), is the reduced form of the following
word:

tz
[
(tjlat−jl) · · · (tj1at−j1)

] [
(t−ikatik) · · · (t−i1ati1)

]
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Reduced, this gives us

p+(g) = tjl+zat−jl+jl−1a · · · at−j2+j1at−ik−j1atik−ik−1a · · · ati2−i1ati1

Note that for our example, we have already computed l(p+(g0)) = 13. We
next go on to compute the length of p+(g) for any g ∈ L2.

Claim 2.3.3. Let g ∈ L2. Then l(p+(g)) = k + l + 2ik + jl + |z + jl|.

Proof. To find the length of p+(g), we simply count the generators separately.
There are k+ l occurrences of a. Furthermore, note that the sum of the absolute
values of the exponents of t can be written as follows:

i1+

k∑
x=2

(ix − ix−1) + ik + j1 +

l∑
x=2

(jx − jx−1) + |jl + z|

= i1 + (ik − i1) + ik + j1 + (jl − j1) + |jl + z|
= 2ik + jl + |jl + z|.

Thus, we have
l(p+(g)) = k + l + 2ik + jl + |z + jl|.

The right-left word corresponds to sending the lamplighter to illuminate pos-
itive bulbs in ascending order before illuminating negative bulbs in descending
order. We could, however, construct a word that directs the lamplighter in the
reverse direction, first illuminating negative bulbs in descending order and then
illuminating positive bulbs in ascending order. Implementing such a strategy
with our example element g0 would yield the following word.

t−1
(
t−3at3

) (
t−1at1

) (
t2at−2

) (
t1at−1

)
Reducing this word, we obtain

t−4 a t2 a t3 a t−1 a t−1

We may count the generators of this reduced word to attain its word length
of 15. Again, we may use this process to construct a corresponding word for
any element of the Lamplighter Group. That word, which is in fact our second
candidate for the minimal length word, is outlined in the following definition.

Definition 2.3.4. Let g = (S, z) ∈ L2 where S+ = {i1, . . . , ik}, S− = {−j1, . . . ,−jl}.
Then the left-right word of g, denoted p−(g), is the reduced form of the following
word:

tz
[
(t−ikatik) · · · (t−i1ati1)

] [
(tjlat−jl) · · · (tj1at−j1)

]
Reducing this word, we obtain the left-right word.

p−(g) = t−ik+zatik−ik−1a · · · ati2−i1ti1+jlat−jl+jl−1a · · · at−j2+j1at−j1
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Again, we have already computed l(p−(g0)) = 15, and through a proof
identical to that of Claim 2.3.3 regarding length of the right-left word, we may
obtain the following formula for length of the left-right word.

Claim 2.3.5. l(p−(g)) = k + l + 2jl + ik + |z − ik|.

We have l(p+(g0)) = 13 ≥ 15 = l(p−(g0)). Given some element in L2,
however, it will not necessarily be the case that the length of its right-left
word will be greater than the length of its left-right word. Consider g1 =
({−2,−1, 1, 3}, 1) ∈ L2. Given S, the vertex set of g1, S+ = {1, 3}, S− =
{−1,−2}, giving k = l = 2, ik = 3, jl = 2, and z = 1. We compute the lengths
of the right-left word and the left right word of g1 as follows:

l(p+(g1)) = k + l + 2ik + jl + |z + jl|
= 2 + 2 + 2(3) + 2 + |1 + 2|
= 15

l(p−(g1)) = k + l + 2jl + ik + |z − ik|
= 2 + 2 + 2(2) + 3 + |1− 3|
= 13

Thus, we have l(p+(g1)) = 15 ≤ 13 = l(p−(g1)), and as such, there exist
elements for which either word may be of lesser length. However, we note that
the only difference between these two example elements is that the lamplighter
stands at a negative index in g0 and at a positive index in g1. This observation
motivates the following claim.

Theorem 2.3.6. Let g = (S, z) ∈ L2 where S+ = {i1, . . . , ik}, S− = {−j1, . . . ,−jl}.
Then

(i) if z ≥ 0, l(p−(g)) ≤ l(p+(g))

(ii) if z ≤ 0, l(p+(g)) ≤ l(p−(g))

Proof. Let g ∈ L2 as above. We will consider the cases (i) and (ii) as above.

Case (i). Assume z ≥ 0. Then

l(p+(g)) = k + l + 2ik + jl + |z + jl|
= k + 1 + 2ik + 2jl + z

We wish to show that l(p−(g)) ≤ l(p+(g)). We consider three sub cases:

(a) z = jl
Then

l(p−(g)) = k + l + 2jl + ik + |z − ik|
= k + l + ik + 2jl

≤ k + l + 2ik + 2jl + z = l(p+(g)).
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(b) z < ik
Then

l(p−(g)) = k + l + 2jl + ik + |z − ik|
= k + l + 2jl + 2ik − z
≤ k + l + 2ik + 2jl + z = l(p+(g)).

(c) z > ik
Then

l(p−(g)) = k + l + 2jl + ik + |z − ik|
= k + l + 2jl + z

≤ k + l + 2ik + 2jl + z = l(p+(g)).

Therefore, for z ≥ 0, l(p+(g)) ≥ l(p−(g)), as desired.

Case (ii).

Assume z ≤ 0. Then ∃z′ ≥ 0 such that −z = z′. Thus

l(p−(g)) = k + l + 2jl + ik + | − z′ − ik|
= k + l + 2ik + 2jl + z′

We wish to show that l(p+(g)) ≤ l(p−(g)). Again, we consider three sub-cases:

(a) z′ = jl.
Then

l(p+ (g)) = k + l + 2ik + jl + |jl − z′|
= k + l + 2ik + jl

≤ k + l + 2ik + 2jl + z′ = l(p−(g)).

(b) z′ < jl
Then

l(p+ (g)) = k + l + 2ik + jl + |jl − z′|
= k + l + 2ik + 2jl − z′

≤ k + l + 2ik + 2jl + z′ = l(p−(g)).

(c) z′ > jl
Then

l(p+ (g)) = k + l + 2ik + jl + |jl − z′|
= k + l + 2ik + z′

≤ k + l + 2ik + 2jl + z′ = l(p−(g)).
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Therefore, when z ≤ 0, l(p−(g)) ≥ l(p+ (g)), which proves our claim.

As a corollary, note that if z = 0, then l(p+(g)) = l(p−(g)).

Thus, for any g = (S, z) ∈ L2, we have presented two candidates for the
minimal length word w such that w = g, namely the right-left word and the
left-right word. We have also shown that if z > 0, then the left-right word of g
is shorter than its right-left word and that if z < 0, then the right-left word of
g is shorter than its left-right word. Consider the following definition.

Definition 2.3.7. Let D be a function from the Lamplighter group to Z+ such
that for all g ∈ L2, D(g) = min{l(p+(g)), l(p−(g))}.

As a result of Theorem 2.3.6 we have that if z ≥ 0, then l(p+(g)) ≤ l(p−(g))
and therefore D(g) = l(p−(g)). Similarly, we have that if z ≤ 0, then l(p−(g)) ≤
l(p+(g)) and therefore D(g) = l(p+(g)). We conclude this section with a proof
that D(g) is in fact a formula for word length in the Lamplighter Group.

Theorem 2.3.8. (Word Length Formula) Let g ∈ L2. Then D(g) = l(g).

Proof. Let g ∈ L2 where S+ = {i1, . . . , ik}, S− = {−j1, . . . ,−jl}. We know
that D(g) is the length of a word of a, t (specifically, either p+(g) or p−(g)).
But by definition, l(g) is the length of the shortest word of a, t, and therefore
l(g) ≤ D(g). Thus, it remains to show l(g) ≥ D(g).

Let w = xy · · ·x1 be be the shortest word in {a, t, t−1} such that, when
considered as a product, w = g. We may compute l(g) = l(w) by counting the
generators in w, and we do so in each of the four following cases:

(a) S+ = ∅, S− = ∅.
This case represents that of an element g in which no bulbs are illuminated.
As such, for the lamplighter to reach his final destination index z, there
must be at least |z| occurrences of t in w, giving l(g) = l(w) ≥ |z|. However
p+(g) = p−(g) = tz, and therefore, D(g) = |z|, giving l(g) ≥ |z| = D(g) as
desired.

(b) S+ 6= ∅, S− = ∅.
This case represents that of an element g in which only bulbs at non-negative
indices are illuminated. There must be at least k occurrences of a in w, one
for each of the illuminated bulbs, one of which being the bulb at index ik.
For the lamplighter to illuminate this bulb, there must exist some suffix wn
of w with wn = xn · · ·x1 = (S′, ik) where xn = a. When considered as
a product, wn is an element of L2 in which the lamplighter is standing at
index ik. For the lamplighter to reach such an index, there must be at least
ik occurrences of t in wn.

We now consider two sub-cases:
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(i) z ≥ 0.
As z ≥ 0, D(g) = l(p−(g)) = k+ l+ 2jl + ik + |z− ik|, but since l = 0
and jl does not exist, we have D(g) = k+ ik+ |z− ik|. But in order for
the lamplighter to reach his final destination at index z, there must be
at least |z − ik| occurrences of t in the prefix wn

′ = xk · · ·xn+1. This
gives l(g) ≥ k + ik + |z − ik| = D(g) as desired.

(ii) z < 0.
As z < 0, D(g) = l(p+(g)) = k+l+2ik+jl+|z+jl| = k+2ik+|z| since,
again l = 0 and jl does not exist. But in order for the lamplighter to
reach his final destination at index z, there must be at least ik + |z|
occurrences of t in the prefix wn

′, giving l(g) ≥ k + 2ik + |z| = D(g)
as desired again.

(c) S+ = ∅, S− 6= ∅.
This case will require an argument similar to that of the previous case and
represents that of an element g in which only bulbs at negative indices are
illuminated. There must be at least l occurrences of a in w, one for each
illuminated bulb, including the bulb at index −jl. In order to illuminate
this bulb, there must exist some suffix wm = xm · · ·x1 = (S′′,−jl) where
xm = a. For the lamplighter to reach index −jl, there must be at least jl
occurrences of t in wm.

Again, we consider two sub-cases:

(i) z ≥ 0
As z ≥ 0, D(g) = l(p−(g)) = k+ l+ 2jl + ik + |z− ik|, but since k = 0
and ik does not exist, we have D(g) = l + 2jl + |z|. But in order for
the lamplighter to reach his final destination at index z, there must
be at least ik + |z| occurrences of t in the prefix wm

′ = x1 · · ·xm+1,
giving l(g) ≥ l + 2jl + |z| as desired.

(ii) z < 0
As z < 0, D(g) = l(p+(g)) = k+ l+ 2ik + jl+ |z+ jl| = l+ jl+ |z+ jl|.
But in order for the lamplighter to reach his final destination index z,
there must be at least |z+jl| occurrences of t in the prefix wm

′, giving
l(g) ≥ l + jl + |z + jl| = D(g) as desired once more.

(d) S+ 6= ∅, S− 6= ∅.
This case represents an element in which both negative and non-negative
bulbs are illuminated. Here, there must be at least k + l occurrences of a
in w, again one for each bulb, including the bulbs at indices ik and −jl.
To illuminate these specific bulbs, there must exist n,m such that, when
considered as a product

xn · · ·x1 = (S′, ik) and xm · · ·x1 = (S′′,−jl)
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where xn = xm = a. Let n,m be the smallest such values for which this is
true and denote wn = xn · · ·x1 and wm = xm · · ·x1.

Note that ik 6= jl since S+ ∩ S− = ∅, and as such, either n > m or n < m.
We explore these two sub-cases here:

(i) n < m.
In this case, w = w0wn

′wn where wn
′wn = wm and w0 is a prefix of w.

In order for the lamplighter to reach index ik, there must be at least ik
occurrences of t in wn. From there, for the lamplighter to reach index
−jl, there must be at least ik + jl occurrences of t in wn

′. Again, we
consider the following cases regarding the index of lamplighter’s final
destination.

i. z ≥ 0.
As z ≥ 0, D(g) = l(p−(g)) = k+l+2jl+ik+|z−ik| = k+l+2jl+z
since z, ik ≥ 0. For the lamplighter to reach index z, there must
be at least an additional jl + |z| = jl + z occurrences of t in w0,
giving l(g) ≥ k + l + 2ik + 2jl + z ≥ k + l + 2jl + z = D(g) as
desired.

ii. z < 0.
As z < 0, D(g) = l(p+(g)) = k+ l+ 2ik + jl + |z+ jl|. But for the
lamplighter to reach index z, there must be an additional |z + jl|
occurrences of t in w0, giving l(g) ≥ k+l+2ik+jl+|z+jl| = D(g)
as desired.

(ii) n > m.
In this case w = w0wm

′wm where wm
′wm = wn and w0 is again a

prefix of w. We count at least jl occurrences of t in wm in order for
the lamplighter to reach index −jl and an additional jl+ik occurrences
of t in wm’ in order for the lamplighter to then reach index ik. Once,
we consider cases regarding z:

i. z ≥ 0.
As z ≥ 0, D(g) = l(p−(g)) = k + l + 2jl + ik + |z − ik|, and
for the lamplighter to reach index z from index ik, there must
be an additional |z − ik| occurrences of t in w0, giving l(g) ≥
k + l + 2jl + ik + |z − ik| = D(g) as desired.

ii. z < 0.
As z < 0, D(g) = l(p+(g)) = k + l + 2ik + jl + |z + jl| ≥ k +
l + 2ik + 2jl + |z|. For the lamplighter to reach index z from ik,
there must be an additional ik + |z| occurrences of t in w0, giving
l(g) ≥ k + l + 2jl + 2ik + |z| ≥ D(g) as desired once more.

Thus, we have shown the word length formula for elements of the Lamp-
lighter Group. We will use this formula later in showing both the existence
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of dead-end elements in L2 and the depth of these elements. This discussion
begins in the following section.
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2.4 Dead-End Elements of Arbitrary Depth

In this section, we explore dead-end elements in the Lamplighter Group. That
is, when multiplying these elements by a single generator, the length of the
product is less than that of the original element.

Theorem 2.4.1. [6, Theorem 0.1] The Lamplighter Group contains dead-end
elements of arbitrary depth. That is, for every n ≥ 1, there exists some element
dn ∈ L2 satisfying the following statements:

(1) dn is a dead-end element

(2) dn has depth at least n

We begin with the definition of an element dn ∈ L2.

Definition 2.4.2. Let dn = (Nn, 0) where Nn = {−n, . . . , n} for n ∈ Z.

This element dn corresponds to an element in which all bulbs between in-
dices −n and n (inclusive) are illuminated and the lamplighter standing at the
origin. We compute its length below.

Note that Nn
+ = {0, . . . , n} and Nn

− = {−1, . . . ,−n}, giving k = n +
1, l = ik = jl = n. Since z = 0, we know that l(p+(dn)) = l(p−(dn)),
and therefore we need only compute one of these values to compute l(dn) =
min{l(p+(dn)), l(p−(dn))}.

l(dn) = l(p+(dn)) = k + l + 2ik + jl + |z + jl|
= (n+ 1) + n+ 2n+ n+ |0 + n|
= 6n+ 1

Theorem 2.4.1, Statement (1). dn is a dead-end element.

Proof. Let g ∈ L2 such that d(dn, g) = 1. We must show that l(dn) ≥ l(g).
There exist three such possible elements g in L2 since to find an element whose
distance from dn is 1, we need only multiply g by one of our three generators in
{a, t, t−1}. We examine each element as a separate case:

(i) g = adn = (S, 0) where S = {−n, . . . ,−1, 1, . . . , n}.
Note that S+ = {1, . . . , n} and S− = {−1, . . . ,−n}, giving k = l = ik =
jl = n. Again, z = 0, so l(g) = l(p+(g)), which we compute below.

l(g) = l(p+(g)) = k + l + 2ik + jl + |z + jl|
= n+ n+ 2n+ n+ |0 + n|
= 6n

Thus, for such a g
l(dn) = 6n+ 1 ≥ 6n = l(g)
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(ii) g = tdn = (Nn, 1).
Again, we have Nn

+ = {0, . . . , n} and Nn
− = {−1, . . . ,−n}, giving k =

n+1, l = ik = jl = n. Since z = 1 ≥ 0, l(g) = l(p−(g)), which we compute
below.

l(g) = l(p−(g)) = k + l + 2jl + ik + |z − ik|
= n+ n+ 2n+ n+ |1− n|
≤ 5n+ (n− 1) = 6n− 1

Thus, for such a g

l(dn) = 6n+ 1 ≥ 6n− 1 ≥ l(g)

(iii) g = t−1dn = (Nn,−1).
This case differs from the previous case only in that z = −1 ≤ 0, giving
l(g) = l(p+(g)), which we compute below.

l(g) = l(p+(g)) = k + l + 2ik + jl + |z + jl|
= n+ n+ 2n+ n+ | − 1 + n|
≤ 5n+ (−1 + n) = 6n− 1

And so, for such a g

l(dn) = 6n+ 1 ≥ 6n− 1 ≥ l(g)

Thus, for all g ∈ L2 with d(dn, g) = 1, l(dn) = l(g), and therefore, dn is a
dead-end element in L2.

We have clearly proven that dn is a dead-end element in L2 for any n. Thus,
it remains to show that dn is of depth of at least n. To prove this result, we
consider dn as a member of the following set:

Definition 2.4.3. For n ∈ Z, we define Hn = {(S, z)|S ⊆ Nn, z ∈ Nn}.

Clearly, dn ∈ Hn. We will show that dn has maximal length in Hn.

Lemma 2.4.4. For all h ∈ Hn, l(dn) ≥ l(h).

Proof. Let h = (S, z) ∈ Hn. Then S+ ⊆ Nn
+ = {0, . . . , n} and S− ⊆ Nn

− =
{−1, . . . ,−n}. As such, we may note the following about the values required to
compute the length of the right-left word and left-right word of h.

k ≤ n+ 1 l, ik, jl ≤ n − n ≤ z ≤ n

We consider the following cases for different values of z.
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(i) 0 ≤ z ≤ n.
Then l(h) = l(p−(h)), which we compute below:

l(h) = l(p−(h)) = k + l + 2jl + ik + |z − ik|
≤ n+ n+ 2n+ n+ |n| = 6n

(ii) 0 ≥ z ≥ −n.
Then l(h) = l(p+(h)), which we compute below:

l(h) = l(p+(h)) = k + l + 2ik + jl + |z + jl|
≤ n+ n+ 2n+ n+ |n| = 6n

Thus, for such an element h in either case,

l(dn) = 6n+ 1 ≥ 6n ≥ l(h)

as desired.

Thus, dn has maximal length in Hn. To prove our Theorem, however, it
remains to show that dn has depth at least n, or in other words that for all
g ∈ L2 such that l(g) ≥ l(n), d(dn, g) ≥ n. However, according to the Lemma
above, we know that g /∈ Hn. This motivates our proof below.

Theorem 2.4.1, Statement (2). dn has depth at least n

Proof. Let g = (S, z) ∈ L2 such that l(g) ≥ l(dn) and let w = xk . . . x1 be a
word in {a, t, t−1} such that, when considered as a product, wdn = g. We wish
to show that l(w) ≥ n.

As l(g) ≥ l(dn), by Lemma 2.4.4, g = (S, z) /∈ Hn, and therefore it must be
the case that either

(i) z ≥ n+ 1 or z ≤ −n− 1

(ii) ∃s ∈ S such that s ≥ n+ 1 or s ≤ −n− 1.

We consider these cases below.

(i) Assume z ≥ n+ 1.
Then there must exist some i ≤ k such that xi . . . x1dn = (S′, n + 1) for
some S′ ⊆ Z. But as dn = (Nn, 0) with the lamplighter at the origin, there
must be at least n+ 1 occurrences of t in xi . . . x1, giving l(w) ≥ n+ 1 ≥ n
as desired. Note that a similar argument can be made if z ≤ −n− 1.

(ii) Assume ∃s ∈ S such that s ≥ n+ 1.
Then there must exist some i ≤ k such that xi . . . x1dn = (S′, s) and xi = a
for some S′ ⊆ Z. But as s ≥ n+1, there must be at least n+1 occurrences
of t in xi . . . x1 as above, giving l(w) ≥ n+ 1 ≥ n as desired again. Again,
a similar argument can be made if s ≤ −n− 1.
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Thus, for n ∈ Z, we have shown that dn has depth at least n. While this
proves that the Lamplighter Group contains dead-end elements of arbitrary
depth, a stronger statement can be made regarding the depth of dn.

Theorem 2.4.5. For n ∈ Z+, dn has depth 2n+ 1. In other words, regarding
dn, we may state the following:

(1) There exists a word w = x2n+1 · · ·x1 where ∀i, xi ∈ {a, t, t−1} such that
l(wdn) > l(dn).

(2) For all words w = xα · · ·x1 where α ≤ 2n and ∀i, xi ∈ {a, t, t−1}, l(wdn) ≤
l(dn).

We will prove the first of these two statements now.

Theorem 2.4.5., Statement (1). There exists a word w = x2n+1 · · ·x1 where
∀i, xi ∈ {a, t, t−1} such that l(wdn) > l(dn).

Proof. Consider w = t2n+1. We claim that l(wdn) > l(dn) = 6n + 1. We may
compute wdn = (Nn, 2n+ 1), which gives:

N+
n = {0, . . . , n} N−n = {−n, . . . ,−1}

and therefore k + l = 2n + 1, ik = jl = n, z = 2n + 1. As z ≥ 0, l(wdn) =
l(p−(wdn)), which we compute as follows.

l(wdn) = l(p−(wdn)) = k + l + 2jl + ik + |z − ik|
= 2n+ 1 + 2n+ n+ |2n+ 1− n|
= 5n+ 1 + |n+ 1|
= 6n+ 2

Therefore, as desired, we have

l(wdn) = 6n+ 2 > 6n+ 1 = l(dn).

To prove the second statement in Theorem 2.4.5, we will make use of two
functions I and O as defined below.

Definition 2.4.6. Let w = α1 · · ·αn be a word in some set S. Then for s ∈ S,
Os(w) = |{i|αi = s or αi = s−1}|. In other words, Os(w) is the number of
occurrences of the generator s and its inverse in w.

For example, let w = at−4at5at−3at, the first word mentioned in the previous
section. Then Oa(w) = 4 and Ot(w) = 13. Furthermore, Oa +Ot = 17 = l(w),
a result which motivates the following Lemma.
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Lemma 2.4.7. Let G be a group with generating set S = {s1, . . . , sk}. Then

for all w = α1 · · ·αn where w is a word in S, n =
∑k
i=1Osi(w).

Proof. Let G be a group with generating set S as above and let w = α1 · · ·αn
be a word in S. Then we may partition the integers 1, . . . , n, into sets Sj =
{i|αi = sj or αi = sj

−1}. Certainly, the sum of the cardinalities of these sets
will be n. Furthermore, by definition of O, |Sj | = Osj (w), and therefore, as
desired, we have

n = |S1|+ · · ·+ |Sk|
= Os1(w) + · · ·+Osk(w)

=

k∑
i=1

Osi(w).

This result is not surprising, but will assist in the proof of Theorem 2.4.5.
We continue with the definition of I below.

Definition 2.4.8. Let I be a function from L2 to L2 such that, for g = (S, z) ∈
L2 with S+ = {i1, . . . , ik} and S− = {−j1, . . . ,−jl}, we define I(g) = (S′, z′)
where S′ = {−s|s ∈ S} and z′ = −z.

Given the lampstand configuration corresponding to some element g, we may
flip this configuration about its origin to produce the configuration correspond-
ing to I(g). That g and I(g) are of equal length is not surprising, and such a
result is proven below.

Lemma 2.4.9. l(g) = l(I(g)).

Proof. Let g ∈ L2. Then I(g) = (S′, z′) where S′ = {−s|s ∈ S}, giving
(S′)+ = {i1′ , . . . , ik′}, (S′)− = {−j1′ , . . . ,−jl′}. Note that

k′ = l, l′ = k, ik′ = jl, jl′ = ik, z
′ = −z

We have l(I(g)) = min{l(p+(I(g))), l(p−(I(g)))}. We compute the length of
these words below.

l(p+(I(g))) = k′ + l′ + 2ik′ + jl′ + |z + jl′ |
= l + k + 2jl + ik + | − z + ik|
= k + l + 2jl + ik + |z − ik|
= l(p−(g))

l(p−(I(g))) = k′ + l′ + 2jl′ + ik′ + |z − ik′ |
= l + k + 2ik + jl + | − z − jl|
= k + l + 2ik + jl + |z + jl|
= l(p+(g))
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Therefore, we may say the following regarding l(I(g)).

l(I(g)) = min{l(p+(I(g))), l(p−(I(g)))}
= min{l(p−(g)), l(p+(g))}
= l(g)

Having defined both O and I, we continue our proof of Theorem 2.4.5 in
which we will use both of these newly defined functions and the Lemmas that
they motivated.

Theorem 2.4.5., Statement (2). For all words w = xα · · ·x1 where α ≤ 2n
and ∀i, xi ∈ {a, t, t−1}, l(wdn) ≤ l(dn).

Proof. Let w = xα · · ·x1 with α ≤ 2n and such that ∀i, xi ∈ {a, t, t−1}. If,
when considered as a product, wdn = (S, z) ∈ Hn, then as dn has maximal
length in Hn, l(wdn) ≤ l(dn). Thus, we will assume wdn /∈ Hn.

Furthermore, we will assume without loss of generality that z ≥ 0, since if
z < 0, we may consider I(wdn), an element whose length is equal to that of
wdn and in which the lamplighter stands at index −z > 0, reducing the case to
that of our assumption above. As z ≥ 0, l(wdn) = l(p−(wdn)). Thus, we must
show the following:

l(wdn) = l(p−(wdn)) = k + l + 2jl + ik + |z − ik| ≤ l(dn) = 6n+ 1

To show this result, we will first prove the following claims:

(i) z ≤ 2n

(ii) jl = n

(iii) ik + |z − ik| ≤ 2n

Claim 2.4.10. z ≤ 2n.

Proof. Suppose to the contrary that z ≥ 2n + 1. Then there must be at least
2n+1 occurrences of t, t−1 in w to reach index z, which contradicts the premise
that w is of length 2n. Therefore, z ≤ 2n.

A similar argument can be made considering the value of jl.

Claim 2.4.11. jl = n.

Proof. w Suppose to the contrary that jl < n or jl > n.
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• If jl < n, then in w there must be at least n occurrences of t, t−1 to reach
index −n, one occurrence of a to turn off the bulb at this index, and then
at least 2n more occurrences of t, t−1 to reach index z ≥ 0. This gives at
least 2n + 1 generators in w, which contradicts the premise that w is of
length ≤ 2n. Therefore, jl 6< n.

• If jl > n, then in w there must be at least n + 1 occurrences of t, t−1 to
reach index −jl < −n, one occurrence of a to turn on the bulb at this
index, and then at least n + 1 more occurrences of t, t−1 to reach index
z ≥ 0. This gives at least 2n+ 3 generators in w, again contradicting the
premise about the length of w. Therefore, jl 6> n.

Therefore, by contradiction, jl = n. We will use both of these claims to prove
our third claim below.

Claim 2.4.12. ik + |z − ik| ≤ 2n.

Proof. We must consider if ik > n or ik ≤ n.

• If ik > n, then in w there must be at least ik occurrences of t, t−1 to
reach index ik so as to illuminate the bulb at that index. Furthermore,
there must be least |z − ik| occurrences of t, t−1 to reach index z from
ik. Therefore, ik + |z − ik| ≤ Ot(w). Note that as w = xα · · ·x1, where
α ≤ 2n, by Lemma 2.4.7, Ot(w) +Oa(w) ≤ 2n, giving that Ot(w) ≤ 2n,
and thus, we have ik + |z − ik| ≤ 2n as desired.

• If ik ≤ n, then since wdn /∈ Hn and jl = n, it must be the case that z > n,
giving z > ik. Therefore ik + |z − ik| = ik + z − ik = z, and since z ≤ 2n
from our previous claim, we have ik + |z − ik| ≤ 2n as desired.

Thus, we have ik + |z − ik| ≤ 2n, which we will use to prove the desired
result. Recall that we wish to show:

k + l + 2jl + ik + |z − ik| ≤ 6n+ 1.

As jl = n, it suffices to show

k + l + ik + |z − ik| ≤ 4n+ 1.

Suppose to the contrary that k+l+ik+|z−ik| ≥ 4n+2. Then since ik+|z−ik| ≤
2n, we have k+ l ≥ 2n+2. In other words, k+ l = 2n+1+p for some p ≥ 1. As
there are 2n + 1 bulbs illuminated in dn, this gives at least p additional bulbs
being illuminated by w, and therefore Oa(w) ≥ p. This gives the following:

2n ≥ Ot(w) +Oa(w) =⇒ 2n−Ot(w) ≥ Oa(w)

=⇒ 2n−Ot(w) ≥ p
=⇒ 2n− p ≥ Ot(w)
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We have shown that ik + |z− ik| ≤ Ot(w), and therefore, ik + |z− ik| ≤ 2n− p.
Furthermore, since k + l = 2n+ 1 + p, we have

(k + l) + (ik + |z − ik|) ≤ (2n+ 1 + p) + 2n− p ≤ 4n+ 1

This contradicts our supposition above that k + l + ik + |z − ik| ≥ 4n + 2.
Therefore, such a supposition must be false and by contradiction our claim is
proven.

As such, we may not only say that The Lamplighter Group contains dead-
end elements of at least n, but that these elements have depth 2n+ 1.
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2.5 Another Perspective through Matrix Groups

In this section, we define yet another group that models the dynamics of the
Lamplighter Group. We define its underlying set in the following definition.

Definition 2.5.1. L2
M =

{(
tk P
0 1

)
|k ∈ Z, P a polynomial of t, t−1

}
For operation amongst elements of this set, we employ standard matrix multi-
plication.

Having defined L2
M , we next show that it is in fact a group.

Claim 2.5.2. L2
M is a group.

Proof. Of L2
M , we must show closure, associativity, the existence of an identity

element, and the existence of inverses.

To show L2
M is closed, let l1 =

(
tk1 P1
0 1

)
, l2 =

(
tk2 P2
0 1

)
∈ L2

M . We wish to

show l1l2 ∈ L2
M . By the definition of matrix multiplication, we know

l1l2 =

(
tk1tk2 tk1P2 + P1

0 1

)
=

(
tk1+k2 tk1P2 + P1

0 1

)
.

As k1+k2 ∈ Z and tk1P2+P1 is a polynomial of t, t−1, we have that l1l2 ∈ L2
M .

To show associativity in L2
M , let l1 =

(
tk1 P1
0 1

)
, l2 =

(
tk2 P2
0 1

)
, l3 =(

tk3 P3
0 1

)
∈ L2

M . We wish to show (l1l2)l3 = l1(l2l3).

Note that

l1l2 =

(
tk1+k2 tk1P2 + P1

0 1

)
and l2l3 =

(
tk2+k3 tk2P3 + P2

0 1

)
.

Thus, we observe the following.

(l1l2)l3 =

(
tk1+k2 tk1P2 + P1

0 1

)(
tk3 P3

0 1

)
=

(
tk1+k2+k3 P1 + tk1P2 + tk1+k2P3

0 1

)
=

(
tk1 P1

0 1

)(
tk2+k3 tk2P3 + P2

0 1

)
= l1(l2l3)

giving associativity as desired.

To show the existence of identity elements in L2
M , note that t0 = 1 and that

the polynomial of t, t−1 in which all coefficients are 0 is 0, and thus,
(
1 0
0 1

)
∈ L2

M .
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We know that such an element acts as an identity for any 2 × 2 matrix as in
L2

M , and thus that, for
(
tk P
0 1

)
∈ L2

M ,(
tk P
0 1

)(
1 0
0 1

)
=

(
1 0
0 1

)(
tk P
0 1

)
=

(
tk P
0 1

)
.

Lastly, to show the existence of inverses in L2
M , let l =

(
tk P
0 1

)
, l′ =(

t−k −t−kP
0 1

)
∈ L2

M . We wish to show ll′ = l′l =
(
1 0
0 1

)
.

ll′ =

(
tk P
0 1

)(
t−k −t−kP
0 1

)
=

(
tkt−k −tkt−kP + P

0 1

)
=

(
tk P
0 1

)
l′l =

(
t−k −t−kP
0 1

)(
tk P
0 1

)
=

(
t−ktk t−kP − t−kP

0 1

)
=

(
tk P
0 1

)
Thus, we have shown that L2

M is a group.

Recall L2
′ = {

(
(xi), k

)
| x ∈ ⊕∞i=−∞(Z2)i, k ∈ Z}.

Theorem 2.5.3. [6, Lemma 0.2] L2
′ ∼= L2

M .

Proof. Let φ be a function from L2
′ to L2

M such that, for
(
(xi), k

)
∈ L2

M ,

φ
((

(xi), k
))

=

(
tk P
0 1

)
where P =

∑
i∈Z xi · ti. We claim that φ is an isomorphism.

We must show that φ is a homomorphism, surjective, and injective.

To show that φ is a homomorphism, let l1 =
(
(xi), k

)
, l2 =

(
(yi), j

)
∈ L2

′.
We wish to show φ(l1l2) = φ(l1)φ(l2).

We note that l1l2 =
(
(zi), k + j

)
where ∀i, zi = xi + yi−k. With this in

mind, we first compute φ(l1l2).

φ(l1l2) = φ
((

(zi), k + j
))

=

(
tk+j R

0 1

)
where R =

∑
i∈Z

(xi + yi−k) · ti

We continue by computing φ(l1)φ(l2).

φ(l1) = φ
((

(xi), k
))

=

(
tk P
0 1

)
where P =

∑
i∈Z

xi · ti

φ(l2) = φ
((

(yi), j
))

=

(
tj Q
0 1

)
where Q =

∑
i∈Z

yi · ti

φ(l1)φ(l2) =

(
tk P
0 1

)(
tj Q
0 1

)
=

(
tk+j P + tkQ

0 1

)
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Thus, to show φ(l1l2) = φ(l1)φ(l2), we must show that R = P + tkQ. We do
so below.

P + tkQ =
∑
i∈Z

xi · ti + tk ·
∑
h∈Z

yh · th

=
∑
i∈Z

xi · ti +
∑
h∈Z

yh · th+k

Let h = i− k

=
∑
i∈Z

xi · ti +
∑
i−k∈Z

yi−k · ti

=
∑
i∈Z

xi · ti +
∑
i∈Z

yi−k · ti

=
∑
i∈Z

(xi + yi−k) · ti

= R

As P + tkQ = R, we have shown that φ(l1l2) = φ(l1)φ(l2) and therefore that
φ is a homomorphism.

To show that φ is surjective, let m =
(
tk P
0 1

)
∈ L2

M . We wish to show that
∃l ∈ L2

′ such that φ(l) = m.

As P is a polynomial of t, t−1, we let S be the set of integers i such that the
coefficient of ti in P is non-zero, giving P =

∑
s∈S t

s. We let l as follows

l =
(
(xi), k) where xi =

{ 1 if i ∈ S
0 else

Such an l is certainly in our domain L2
′, and furthermore

φ(l) =

(
tk R
0 1

)
where R =

∑
i∈Z

xi · ti

But since ∀i, xi 6= 0 when i ∈ S, and therefore, R =
∑
s∈S ·ts, giving P = R

and therefore φ(l) = m as desired.

To show that φ is injective, note that as φ is a homomorphism, we may show
that φ cannot map a non-identity element in its domain to an identity element
in its range.

Let l =
(
(xi), k

)
∈ L2 such that φ(l) =

(
1 0
0 1

)
, the identity in L2

M . We wish

to show that l =
(
(0i), 0

)
, the identity in L2

′.
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We know that

φ(l) = φ
((

(xi), k
))

=

(
tk P
0 1

)
where P is a polynomial of t, t−1.

Furthermore as φ(l) =
(
1 0
0 1

)
=
(
tk P
0 1

)
we have that tk = 1, which gives

k = 0, and P = 0, which gives that ∀i, xi = 0, or in other words, that
(xi) = (0i). Thus, we have l =

(
(xi), k

)
=
(
(0i), 0

)
as desired.

We have shown that φ is an isomorphism and therefore that L2
M ∼= L2

′.

As L2
M ∼= L2

′ ∼= L2, all of these groups successfully model the dynamics of
the Lamplighter Group.
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