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ABSTRACT: One challenge of teaching chemical analysis is the
proliferation of sophisticated, but often impenetrable, instrumenta-
tion in the modern laboratory. Complex instruments, and the
software that runs them, distance students from the physical and
chemical processes that generate the analytical signal. A solution to
this challenge is the introduction of a student-driven instrument-
building project. Visible absorbance spectroscopy is well-suited to
such a project due to its relative simplicity and the ubiquity of
absorbance measurements. This Article reviews simple instructor-
and student-built instruments for spectroscopy, providing an
overview of common designs, components, and applications. This
comprehensive summary includes options that are suitable for in-
person or remote learning with K−12 students and undergraduates
in general chemistry, analytical chemistry, instrumental analysis, and electronics courses.

KEYWORDS: High School/Introductory Chemistry, First-Year Undergraduate, Upper-Division Undergraduate, Analytical Chemistry,
Laboratory Instruction, Inquiry-Based/Discovery Learning, Spectroscopy, UV−Vis Spectroscopy, Atomic Spectroscopy

UV−vis absorbance spectroscopy is a workhorse measure-
ment in industrial and academic laboratories. As a

fundamental chemical measurement technique, it is often the
earliest instrumental method introduced to students. However,
even when students make their own measurements on modern
UV−vis instruments, the measurement itself remains obscured
inside the instrument case. One way to address this is to guide
students in building their own spectroscopic instruments.
Most student-built photometers perform single-wavelength

absorbance measurements, but others collect full absorbance
spectra, fluorescence, or IR data. The majority of these
instruments are constructed by undergraduates, but some
projects are designed specifically for K−12 students.1−10

Instructors who undertake these activities have a variety of
goals: to help students connect the abstraction of a block
diagram with the reality of commercial instrumentation; to
provide access to low-cost instrumentation when research-grade
instruments are unavailable, including in remote learning
situations; to develop students’ understanding of Beer’s law,
including the effects of stray light and polychromatic light; and/
or to promote active, authentic learning by allowing students to
design, build and troubleshoot their own instruments.
In this review, we examine the existing literature on various

low-cost, home-built spectroscopy devices (Box 1), including a
review of construction materials, light sources, wavelength
selectors, and detectors. While most activities have been tested
with students, the extent of student involvement varies. Some
instructors construct the instruments and provide them to
students. In other cases, students build instruments from a kit or

a set of components. In the most open-ended activities, students
design devices independently, requesting components or
selecting them from a variety of available items. We include
this entire range of papers, including those on instructor-built
instruments, since students are likely capable of building these
given sufficient time and guidance. To aid instructors in selecting
an appropriate project, Table 1 summarizes the main instrument
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Box 1. Device Definitions

Photometer: a device for measuring light intensity
Spectroscope: a device for viewing the spectrum of a
light source (see Figure 1a)
Colorimeter: a device for measuring absorbance of a
certain color of light with wavelength discrimination
achieved by filters or wavelength-selective detectors (e.g.,
RGB channels of a digital camera) (see Figures 2a and
3a)
Spectrophotometer: a device for measuring light
intensity across wavelength range with discrete measure-
ments for each wavelength (see Figure 4a)
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types and their approximate cost and time requirements,
suitability for various student groups, and compatibility with
remote learning.

■ SPECTROSCOPES FOR VIEWING EMISSION
SPECTRA

The earliest reports of home-built spectroscopes are simple
boxes equipped with a diffraction grating for viewing atomic
emission lines from lamps, flames, or the solar spectrum

(Fraunhofer lines). These devices do not require a separate light
source or sample holder since the “samples” are emission
sources; students simply point the device at the light and observe
the resulting spectral lines (Figure 1a). Most devices are
constructed using a cardboard box,2,11−14 but PVC pipe15 and
film canisters16,17 are sturdier options (Figure 1b). (Although 35
mm film is not commonly used today, empty canisters are
available online.) For whole class viewing, the design may be
modified to record spectra using a camera (Figure 1c)18−22 or to
project spectra onto a screen (Figure 1d).23,24 Using a digital

Table 1. Summary of Potential Spectroscopy Instrumentation Building Projects

instrument suitable student audiences
time required for instrument

construction
approximate

cost
readily adapted to remote

learning?

spectroscopes for viewing emission spectra K−12, general chemistry ≤1 h $1−10 yes
colorimetry with cell phones, digital cameras,
and scanners

K−12, general chemistry 3−6 h $1−20 yes

multicomponent colorimeters introductory analytical,
instrumental analysis

9−12 h $5−50 possibly

visible absorbance spectrophotometers instrumental analysis 12−20+ h $10−200 no
fluorimeters and atomic emission instruments instrumental analysis, graduate

education
12−20+ h $30−500+ no

Figure 1. (a) Basic design of spectroscopes for viewing emission lines. (b) Simple spectroscope consisting of a film canister and grating for viewing
emission lines by eye. Reproduced from ref 16, with the permission of the American Association of Physics Teachers. (c) Periscope-style spectroscope
that accommodates a camera and collection of sample absorbance spectra. Reproduced from ref 19. Copyright 2008 American Chemical Society. (d)
Setup for projecting emission lines onto a wall for class viewing. Reproduced from ref 24. Copyright 2005 American Chemical Society.
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camera, students can extract quantitative data using freely
available software, such as ImageJ.22 Emissions from a mercury
lamp may be used to calibrate the wavelength scale.12,20,21

Inexpensive gratings are available from online sources, including
vendors of optical components. Alternatively, small sections of a
CD13,22 or DVD14,19,21 may be used; DVDs generally produce
higher resolution spectra than CDs due to their finer grooves
(1350 versus 625 lines/mm).14 These devices can even be used
as simple spectrophotometers by viewing a sample backlit with
white light (e.g., Figure 1c).13,19 Because of their simplicity,
these spectroscopes have been constructed by high school or
college students in under an hour, making them an excellent
choice for a short classroom activity or a remote lab experience.

■ COLORIMETRY WITH CELL PHONES, DIGITAL
CAMERAS, AND SCANNERS

Several authors report methods that use ambient light,25,26 a
commercial or homemade light box,7,27−29 an LCD
screen,8,30−32 or other white LED illumination (Figure 2a,b)
to illuminate samples and a digital camera to record their
absorbances. Color digital cameras collect data in three color
channels [red, green, and blue (RGB)], corresponding to pixels
that are sensitive to light at wavelengths of approximately 620,
550, and 450 nm, respectively (Figure 2c).28 The ubiquity of cell
phone cameras makes them a popular tool for this form of
colorimetry (Figure 2d),7,8,26,28,29,31−37 and free apps provide
greater control over image acquisition and processing.36,38

Other image processing software, including freeware such as
ColorX,36 ImageJ,39 GIMP,40 and/or R,41 extracts pixel intensity
data from the most relevant color channel. Using a cell phone
camera and food dye samples, students could conduct these

experiments remotely without purchasing any additional
supplies, or more complex experiments are possible in-person.
Students may investigate how their choice of color channel
influences the sensitivity of the method, leading to the insight
that molecules absorb light complementary in color to the light
they transmit. Optimal results are obtained when the absorbance
maximum of the analyte is close to the maximum sensitivity
wavelength for one of the color channels, but even in these cases
the sensitivity is lower than that obtained using a commercial
spectrophotometer due to polychromatic light.28 Despite this
limitation, accurate quantitative data may be obtained, including
analyte concentrations,7,8,27,28,32,34−37 binding stoichiome-
tries,26 diffusion coefficients,31 and rate constants.29,30,33,38

Many analytes have been tested, including complexed and free
metal ions,7,26,32−34,36 organic dyes,7,27,30,37,38 gold nano-
particles,38 and biochemical samples such as proteins, enzymes,
and ELISA kits.8,28,29,36 In addition to their simplicity and low
cost, these methods are compatible with solid samples, such as
paper-based microfluidics42 or fluorimetry,43,44 and avoid
interference from scattering due to particulates.29,45

Color desktop scanners are used in a similar fashion for high-
throughput readouts of samples in microwell plates (Figure 2e).
This method is particularly useful for large sample sets for
calibration curves in quantitative analyses,46−49 photometric
titration curves,50 or kinetic analyses.45 Possible assays include
measurements of starch in potatoes,46 ionic species in water,47

acetylsalicylic acid in aspirin tablets,48 phenols in beer,49

titratable acidity in wine,50 and amylase activity in saliva.45

The best results are obtained when the scanner is in transmission
mode, rather than reflectance mode, since this mode maximizes
pixel uniformity.28 The ImageJ plug-in ReadPlate greatly

Figure 2. (a) Basic design of colorimetricmeasurements made using RGB channels of digital cameras or scanners. (b)Output spectrum of a white LED
on a flatbed scanner. (c) Sensitivity of the three RGB color channels on a digital camera. (b, c) Reproduced from ref 28. Copyright 2015 American
Chemical Society. (d) Example setup for a kinetics experiment using cellphone colorimetry. Reproduced from ref 38. Copyright 2015 American
Chemical Society. (e) Sample image for iodide determination using scanner colorimetry. Reproduced from ref 46. Copyright 2004 American Chemical
Society.
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expedites data analyses for scanner-based colorimetry in
microwell plates, allowing students to collect large data sets
efficiently.48−51

■ MULTICOMPONENT COLORIMETERS
More complex projects produce actual colorimeters from
individual components that include single-wavelength light
sources matched to sample absorbance, a sample holder, and a
separate detector (Figure 3a). These instruments vary widely in
complexity. Most instruments are single-beam and measure
absorbance for a single color (Figure 3b), but double-beam

designs37,52,53 and instruments with multiple LEDs or
filters1,54−57 to accommodate varying absorbance maxima
(Figure 3c) have been published. One device that included
seven LEDs could even approximate the absorbance spectra of
analytes.58 Single-wavelength designs are straightforward to
construct and potentially compatible with remote learning, but
they are limited to analytes that absorb at the selected
wavelength. Multiwavelength devices are more flexible in
application, but they require additional time and more direct
instructor input.

Figure 3. (a) Basic design of a single-wavelength colorimeter. (b, c) Examples of student-built colorimeters of this type. (b) Submersible colorimeter
for titrations. Labels: 1−3 and 13−14, electrical connections; 4, heat shrink tubing; 5, electrical tape; 6, LED light source; 7, glass vial lens; 8, 2 cm path
length; 9, plastic cotton swab; 10, LED detector; 11, plastic straw; 12, parafilm. Reproduced from ref 59. Copyright 2016 American Chemical Society.
(c) Colorimeter with choice of three wavelengths. Reproduced from ref 56. Copyright 2014 American Chemical Society.

Figure 4. (a) Basic design of student-built spectrophotometers. If a point detector is used instead of a camera, an optional slit may be added after the
grating. (b, c) Examples of student-built spectrophotometers. (b) LEGO spectrophotometer. Labels A−G indicate the LED light source, lens, cuvette
holder, grating, rotatable detector arm, photodiode, digital multimeter, hinge, and power supply, respectively. Reproduced from ref 6. Copyright 2012
American Chemical Society. (c) 3D-printed spectrophotometer with smartphone camera detection. Reproduced from ref 66. Copyright 2016
American Chemical Society.
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■ VISIBLE ABSORBANCE SPECTROPHOTOMETERS
Home-built spectrophotometers that include a wavelength
selection component are capable of collecting true absorbance
spectra (Figure 4a). These instruments are significantly more
complex than even multicomponent colorimeters, require
careful alignment and wavelength calibration, and are best
constructed in stages over several weeks by more advanced
students in analytical chemistry or instrumental analysis.60,61

These more sophisticated instruments allow students to explore
factors that affect instrument performance (e.g., slit width and
resolution) in addition to investigating Beer’s law. An early
example of a spectrophotometer constructed for pedagogical
purposes was published in 1953, but the instrument was quite
complex.62 More recently, modular, commercial spectroscopic
components have permitted students to build and compare
UV−vis absorbance, fluorescence, and Raman instrumentation,
but high quality components made this exercise expensive
($1800−8650).63 Lower-cost commercial kits are available for
$9−120,64,65 but materials for self-designed instruments are also
readily available. Most publications use off-the-shelf parts, and
the complete devices are usually relatively inexpensive ($10−
100). Below, we discuss options for individual components for
multicomponent colorimeters and spectrophotometers, includ-
ing housings, light sources, wavelength selectors, detectors,
electronics, software, and commonly used samples.
Construction Materials

Many low-cost devices are constructed from cardstock or
cardboard boxes,19−21,24,32,67−71 but other options include
plastic5,56,72−75 or aluminum housings,1,57,76 wood,77−80 PVC
pipe,81 or professional optical mounts.60,82 A unique device
using a graduated cylinder permitted careful investigation of the
effect of path length on absorbance.83 More recently, LEGO
blocks (Figure 4b)6,10,61,84−92 and 3D printing (Figure
4c)37,66,93−99 have become popular. While commercial optical
mounts are fairly expensive, designs for 3D-printed lens mounts,
posts, gratings, cuvette holders, and a breadboard are freely
available,98 and some common optical components may be
constructed from LEGOs.84 Because one purpose of the housing
is to minimize stray light, the addition of black felt, paint, or
fabric is helpful. Beyond this, the housing plays a minimal role in
performance, so students and instructors may choose materials
based on availability, cost, and convenience.
Light Sources

Although some photometers use lamps,54,60,62,63,66,69,75,76,85,98

or even a flashlight3 or laser pointer,70 LEDs are by far the most
popular light source due to their low cost and ease of use. LEDs
are readily powered by coin batteries or alkaline batteries (e.g.,
AA or 9 V) or, for more stable output, a wall outlet and a power
converter. (Students should avoid exceeding the rated voltage of
the LED and bias it correctly.) Single color LEDs have spectral
bandwidths of 10−70 nm, which may lead to deviation from
Beer’s law due to polychromatic light;100 however, their
performance is typically acceptable if their maximum emission
wavelength is well-matched to the maximum absorbance of the
analyte. White light LEDs have also improved over the past
decade, providing full coverage of the visible spectrum, albeit
with variable intensity (Figure 2b). For this reason, data
collection for an appropriate blank is critical. UV LEDs are also
available for 265−400 nm. LEDs with emission maxima of 355−
375 nm have been used for UV absorbance measurements,88−90

but availability decreases and cost increases for shorter
wavelengths.101

Wavelength Selection

Because most multicomponent colorimeters use a narrow band
source, such as a laser pointer or LED, no wavelength selection
mechanism is required (although some colorimeters may
include a white light source coupled with one or more filters).54

However, a diffraction grating is needed for true spectropho-
tometers. As noted above, CDs or DVDs make inexpensive
reflection gratings, or low-cost gratings are available online.
Once white light is dispersed, the entire spectrum can be
s imu l t aneou s l y c ap tu r ed u s i ng a d i g i t a l c am-
era.66,69,80,82,86,102,103 Alternatively, the grating may be coupled
with one or more lenses and/or slits to produce a
monochromator. The addition of lenses improves performance
but increases cost, but one or more slits can be added without
great expense. A pair of razor blades or a caliper mounted to the
housing provides a simple, effective slit with controllable
width.20,24,60,75,80,98 Alternatively, slits have been prepared by
3D-printing66 or from heavy paper.91 When slits are included,
students canmake a systematic study of the effect of slit width on
wavelength resolution.66 However, alignment of the grating
relative to other components is challenging, so these devices
require significantly more time than a colorimeter or a
spectrophotometer using a camera as an array detector. (If
time is limited, separate investigations of an isolated grating are
possible.23) Additionally, spectrophotometers typically require
wavelength calibration. Students at Doane College compared a
holmium oxide reference cell, solutions with varying absorbance
maxima, and various colors of LEDs or laser pointers. The best
results were obtained using sample solutions of different
colors.61 Alternatively, RSpec or ImageJ software may be used
for wavelength calibration.66,69,80,104

Detectors

Four main types of low-cost, solid state light detectors are
available: LEDs,59,87−90,92,94,105 photodiodes,5,6,61,91,98,106−111

light dependent resistors (LDRs, also known as photocells or
photoresistors),3,4,52,54,56,61,62,71,73,74,77,83,97,110,112−116 and pho-
totransistors.72,117 The first option, an LED, is commonly used
as a light source in the emission mode; however, forward biased
LEDs can be repurposed as detectors for light of slightly higher
energy than the light they emit (Figure 3b).118−120 When such
light strikes the LED, a photocurrent is generated.120 This effect
is useful to detect a narrow band of wavelengths since the LED
responds only to wavelengths just below its emission
maximum.118 The second option, photodiode detectors, may
be operated in photovoltaic or photoconductive mode. In
photovoltaic mode, no voltage is applied, and photons generate
a voltage difference across a resistor. In photoconductive mode,
a reverse bias is applied, and photocurrent is measured. In
general, photovoltaic mode is recommended because it simpler
and has better signal-to-noise ratios for low light; however,
response times are slower compared to photoconductive
mode.121 The third option, a LDR, decreases in resistance
when photons excite electrons into the conduction band (Figure
3c). One advantage of LDRs is that their resistance is directly
proportional to analyte concentration, which makes an intuitive
readout for novice users;74 however, the response to light
intensity is not linear over the entire working range, so
correction may be needed for quantitative applications.71

Finally, a phototransistor functions similarly to a photodiode
but generates intrinsic signal amplification. For even higher
sensitivity, a photodarlington, which consists of a pair of
transistors, may be used.121,122
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Instructors or students have several considerations when
choosing the best detector for their application. In general, LEDs
have lower cost than photodiodes do but are also less precise and
less sensitive.118,123 LDRs are generally even more sensitive in
the visible range than photodiodes,61 and phototransistors are
more sensitive still.96 Student comparisons of a photodiode,
LDR, and photodarlington suggest that the LDR produces the
most accurate results.67 If possible, students should evaluate
multiple detector options (experimentally or through reading
and research) and justify their choice based on the need for
sensitivity, precision, and accuracy.
Finally, for simultaneous multicolor detection, array detectors

are available, including photodiode arrays1,57 and digital
cameras, which detect the entire spectrum in a single image
(Figure 4c).66,69,80,82,86,102,103 This option is the simplest and
fastest for the collection of full absorbance spectra since cell
phone cameras are ubiquitous and the alignment requirements
are less stringent than those with point detectors. For higher
resolution, the larger sensor area of a SLR digital camera
improves the performance compared to a cell phone or
webcam,82 and in even more sophisticated instruments a linear
CCD may replace the digital camera.60,75

Electronics

Students may also explore the role of electronics in instrument
design. For example, a multiweek laboratory allows students to
build circuitry for high- and low-pass filters, an oscillator, a
current-to-voltage converter, and a microcontroller interfaced
with a photometer.110 Similarly, students can build a lock-in
amplifier from a published design for <$100.124 While most
home-built instrumentation uses a multimeter to record voltage
or resistance, fully integrated devices using the open-source
electronics platformArduino93,97,110 and a low cost Raspberry Pi
computer91 are possible. Alternatively, LabView programming
can run home-built instrumentation,59,60,98,111 or students can
develop their own apps.86 These tools give students program-
ming experience and lead to devices that report absorbance
values directly, like a commercial instrument, rather than
requiring further calculations to convert voltage or resistance to
absorbance value. For instructors and students who are still
mastering these tools, several references provide sample code
and instructions.91,97,110

Common Samples and Experiments

Absorbance spectroscopy is a widely used technique that is
applicable to many analytes, but popular samples for visible
absorbance measurements include brightly colored metal salts
(such as Co(II), Cu(II), and Ni(II), which form colored
complexes in aqueous solution) and strongly absorbing organic
indicators and dyes (Table 2), including common food colorings
(such as Red 40, Yellow 5, and Blue 1) that are compatible with
remote instruction. Simple experiments ask students to develop
the Beer’s law relationship showing the linear relationship
between absorbance and concentra t ion or path
length.7,31,32,83,87,96 More involved experiments may require
students to perform a kinetic analysis,10,38,56,79,97 complete a
photometric titration,59,108,117 detect analytes in eluent using a
flow cell,97 or compare their devices to commercial instrumen-
tation. Many student-built systems are suitable for quantitative
analysis and produce results that compare favorably with those
from more expensive instruments. For example, several studies
report relative errors ≤ 10% compared to a commercial
instrument8,34,67,70,88,109 and relative standard deviations ≤
2%.117,125 Limits of detection (LODs) vary widely depending on

instruments and analytes with student-designed instrumentation
yielding LODs that are 3−200× higher, or occasionally
comparable to, those of commercial instruments.28,60,105,129

■ FLUORESCENCE AND ATOMIC EMISSION
INSTRUMENTS

More complex instrumentation for other spectroscopic methods
provides excellent projects for instrumental analysis students, or
potentially graduate students. Because they are similar in design
to absorbance instruments, fluorimeters are a good option;
however, fluorescence measurements pose additional chal-
lenges. First, fluorescence is proportional to the intensity of
the excitation light.130 Consequently, the first instructor-built
example used a nitrogen laser, resulting in high cost (>$3000)
and safety considerations.126 Newer systems using a red diode
laser106 or UV lamp43,73 address these concerns. More recently,
higher intensity LEDs have become available, permitting
visible95,107,111 or UV5,89,90 LED excitation. For highly
fluorescent analytes, such as fluorescein or highlighter inks, it
is even possible to excite detectable signals using the blue output
from a LCD screen44 or a flashlight covered with a cellophane
filter.68 A second challenge to student-built fluorescence
instrumentation is the increased need for wavelength selection.
A traditional spectrofluorimeter includes two monochromators
to select excitation and emission wavelengths.130 Simpler and
lower cost wavelength selection is achieved by using narrow
band excitation sources (such as lasers or LEDs), fil-
ters,5,106,107,111 detectors with wavelength selectivity (including
LEDs),89,90,95 and/or RGB image analysis (Figure 5a).43,44 The
most common analytes are quinine,5,73,89,90,95,126 which requires
UV excitation, or fluorescein.43,44,107,111,126 Both are compatible
with real-world samples (tonic water5 or antifreeze,107

respectively) and are quenched by halide ions, allowing students
to construct Stern−Volmer plots.43,44,73,89,90,111 Other poten-
tially interesting analytes include riboflavin and salicylic acid,126

chlorophyll,107 whitening agents in paper, and vitamin B1 (after
oxidation by mercuric chloride).5 For a slightly higher cost, a
fluorescence microscope with 2× magnification may be used to
view Lawson-stained fingerprints (Figure 5b).81

At the next level of complexity, low-cost flame atomic
emission instruments can detect alkali metals,25,109,115,125,131,132

Table 2. Common Analytes for Student-Built Photometersa

name
absorbance

maximum (nm)
molar absorptivity

(cm−1 M−1) ref

folic acid 259 32,359 127
368 7413

cinnamaldehyde 281 127
quinine 332 127
Yellow 5 (tartrazine) 428 9
fluorescein 499 101,700 127
Red 40 (Allura Red AC) 502 9
methyl red 521 57,544 127
potassium permanganate
(KMnO4)

545 26,600 128

Methylene blue 605 50,119 127
660 50,119

bromothymol blue 616 35,000 129
Blue 1 (Brilliant Blue
FCF)

630 9

chlorophyll a 670 100,000 127
aNote that absorbance maxima and molar absorptivity values are
solvent dependent.
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since these elements are excited at relatively low temper-
atures.130 Home-built instruments have been used to quantify
potassium in beer,131 sodium in sports drinks,109 seawater and
coconut water,25 and standard salt solutions.115,125,132 A sample
nebulizer may be scavenged from a commercial instrument,
constructed from common laboratory glassware (Figure 5c)131

or plasticware,109 3D-printed,125 or replaced with a perfume
atomizer.25 Excitation occurs via a Bunsen burner,25,109,131 a
propane camp burner (Figure 5d),125 or a salvaged slot
burner.132 Because a hotter flame yields more intense emission,
a propane camp burner (2250 K) produces more signal than a
Bunsen burner (1400 K) does, and an acetylene flame (2700−
3300 K) should result in even higher emission.125 Wavelength
selection is required to reject stray light from the flame. To this
end, students can extract the most relevant RGB color channel
from cellphone videos,25 place a filter between the flame and a
point detector, such as a photoresistor or photodiode,109,115 or
include a monochromator or commercial spectrometer (cost-
permitting).125,131,132

Beyond fluorescence and atomic emission instrumentation,
several other student-built spectroscopic instruments have been
demonstrated, including scattering measurements,99,116 polar-
imetry,52 and UV88−90 and IR113,124,133 absorbance spectrosco-
py. Home-built IR instruments have been applied to greenhouse
gases,133 ammonia,124 and kerosene-adulterated gasoline
(Figure 4a),113 and important principles of FT-IR, such as
Fourier transformation and interferometry, have been demon-
strated using visible light and LEGO blocks.84 For advanced

students, instructors could imagine a broad range of
spectroscopic instrument building projects.

■ RECOMMENDATIONS AND CONCLUSIONS

Few papers on student-built spectrophotometers formally assess
student learning outcomes, and most of these focus on student
surveys, which generally show that students believe these
activities improve their understanding of spectroscopy and take
pride in their instruments. For example, surveys suggested that
digital imaging of fluorescence in well plates improved
understanding of fluorescence generally and quenching
specifically.43 Wang et al. reported that students were proud of
their photometers and valued the experience.59 Diawati et al.’s
student questionnaires and interviews showed that students
found photometer construction to be challenging but interesting
and were more confident in their understanding after the
project.70 Similarly, second-year students in analytical chemistry
reported that a photometer-building project enhanced their
understanding of solution preparation, spectrophotometry, and
Beer’s law.71 However, these studies are limited in that they
include only students’ self-reported outcomes. Wilson and
Wilson studied a multiweek, open-ended project in which
students built spectroscopic instruments from their own designs.
In addition to positive affective changes, these authors also
observed a 28% increase in post-test scores relative to pretest
scores, with particular improvement on questions related to
instrument design and troubleshooting,61 suggesting that
students’ self-evaluations of their learning may be accurate.
Depending on project design, students may develop their
understanding of Beer’s law, the relationships between trans-
mittance and absorbance, and/or the operating principles of
spectroscopic instrumentation, including electronics and data
processing. Nevertheless, future studies must examine how
learning outcomes vary with the duration, complexity, and
structure of these activities in order to guide practitioners
implementing instrument-building activities.
In the meantime, instructors have a wide range of instruments

and project structures from which to choose. This flexibility
means that instrument-building may be incorporated into the
curriculum at several points, from K−12 and general chemistry
to advanced instrumentation and electronics coursework.
Additionally, projects may be tailored to the time available,
from simple spectroscopes for viewing atomic emission during a
lecture period to open-ended, multiweek projects that include
optimization, characterization, and application. This review
points to useful resources for instructors interested in adopting
or adapting published examples to their own classrooms and
laboratories. More detailed information regarding individual
publications may be found in the annotated bibliography in the
Supporting Information.
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Annotated bibliography summarizing references cited in
this paper (PDF)

Figure 5. Home-built instrumentation for fluorescence and atomic
emission spectroscopy. (a) 3D-printed filter fluorimeter. Reproduced
from ref 95. Copyright 2017 American Chemical Society. (b) LED-
based fluorescence microscope with 2× magnification. Reproduced
from ref 81. Copyright 2010 American Chemical Society. (c) Bunsen
burner flame atomic emission setup with a homemade nebulizer.
Reproduced from ref 109. Copyright 2013 American Chemical Society.
(d) Camping burner flame atomic emission setup. Reproduced from ref
125. Copyright 2014 American Chemical Society. Labels 1−6
correspond to the sample, nebulizer, spray chamber, waste, burner,
and optical fiber, respectively.
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(36) Šafranko, S.; Živkovic,́ P.; Stankovic,́ A.; Medvidovic-́Kosanovic,́
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