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Abstract 

A composite random variable is a product (or sum of products) of statistically 
distributed quantities. Such a variable can represent the solution to a mul-
ti-factor quantitative problem submitted to a large, diverse, independent, 
anonymous group of non-expert respondents (the “crowd”). The objective of 
this research is to examine the statistical distribution of solutions from a large 
crowd to a quantitative problem involving image analysis and object count-
ing. Theoretical analysis by the author, covering a range of conditions and 
types of factor variables, predicts that composite random variables are distri-
buted log-normally to an excellent approximation. If the factors in a problem 
are themselves distributed log-normally, then their product is rigorously 
log-normal. A crowdsourcing experiment devised by the author and imple-
mented with the assistance of a BBC (British Broadcasting Corporation) tele-
vision show, yielded a sample of approximately 2000 responses consistent 
with a log-normal distribution. The sample mean was within ~12% of the 
true count. However, a Monte Carlo simulation (MCS) of the experiment, 
employing either normal or log-normal random variables as factors to model 
the processes by which a crowd of 1 million might arrive at their estimates, 
resulted in a visually perfect log-normal distribution with a mean response 
within ~5% of the true count. The results of this research suggest that a 
well-modeled MCS, by simulating a sample of responses from a large, ration-
al, and incentivized crowd, can provide a more accurate solution to a quantit-
ative problem than might be attainable by direct sampling of a smaller crowd 
or an uninformed crowd, irrespective of size, that guesses randomly. 
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1. Introduction: Estimation of an Unknown Composite  
Quantity by Large-Scale Sampling 

The global reach of telecommunications media, including radio, television, and 
in particular the social media sites of the internet, make possible an ease and 
scale of statistical sampling hitherto inconceivable. Through use of these media, 
almost any question can, at least in principle, be posed to a large, anonymous, 
diverse, independent population of respondents, referred to in both technical 
and non-technical literature as the “crowd” [1]. This paper reports a compre-
hensive 1) analytical investigation, 2) Monte-Carlo simulation, and 3) experi-
mental test of the distribution of a composite random variable (RV) representing 
a crowdsourced response to a question calling for a numerical answer. A com-
posite RV is a product of two or more factor RVs. In the following sections it is 
shown that: 

1) the most useful characteristic of a crowdsourced sample is its distribution 
function and not just a single statistic,  

2) under conditions to be specified, a product of RVs is distributed 
log-normally to an excellent approximation, irrespective of the type or number 
or correlation of factor RVs,  

3) computer simulation methods can model the response of a hypothetical ra-
tional crowd orders of magnitude larger than what actually might be practically 
attainable. 

1.1. Background 

To the author’s knowledge, the first quantitative experiment in what today 
would be considered crowdsourcing was published by the English polymath and 
statistical innovator Sir Francis Galton in 1907 [2] [3]. Galton collected all the 
estimates of the weight of a dressed ox (i.e. the carcass weight) submitted by 
contestants at the annual West of England Fat Stock and Poultry Exhibition. To 
his surprise, he found that the sample median of 1207 pounds differed from the 
measured weight of 1198 pounds by a mere +0.8% and that the sample mean of 
1197 pounds differed by an even smaller fractional error of −0.08%. The sample 
size was reported to be about 800. There was no mention of the sample distribu-
tion. 

The idea underlying crowdsourcing—a term introduced in 2006—is that a 
large group of non-experts can collectively arrive at a more accurate estimate of 
some physical quantity or at a better decision regarding some policy, strategy, or 
treatment than a small group of experts [4]. This idea is a hypothesis to be ex-
amined experimentally, not a mathematical theorem, like Condorcet’s jury 
theorem [5], subject to rigorous proof. Central among crowdsourcing issues in-
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vestigated recently are questions regarding methods of sampling, quality control, 
bias elimination, and effectiveness [6] [7] [8] [9].  

This paper addresses a different aspect of crowdsourcing closer in nature to 
the kind of experiment first performed by Galton. Questions whose responses 
can be represented numerically are especially suitable for statistical analysis. In 
this regard, the most useful statistical information to obtain from a crowd-
sourced sample is its distribution—i.e. the probability function for a discrete 
random variable (RV), or probability density function (PDF) for a continuous 
RV, or cumulative distribution function (CDF) for either kind of RV. For sim-
plicity of discussion, the designation PDF will apply here to both discrete and 
continuous RVs. The importance of knowing the PDF or CDF of a distribution 
is that one can calculate from it, either theoretically or numerically, the exact 
population moments, which, depending on the size of an actual sample, can be 
significantly different from the sample moments. The population moments are 
estimates of the statistics that would result from a hypothetical infinitely large 
population of independent respondents. A virtually infinite sample size is what 
the internet and mass media have the potential to provide; it is also what com-
puter-based Monte Carlo simulation (MCS) methods are already able to provide. 

Throughout the past two decades, the author has conducted an array of expe-
riments with students in his physics courses to investigate the validity of the 
crowdsourcing hypothesis [10]. In particular, tests were designed to examine 
whether groups of non-experts excelled over specialists in exercises relating to 
estimation, prediction, and deduction. Because sample sizes were relatively small 
(below 100), histograms of responses showed significant fluctuations, and the 
results did not appear to be accounted for by a universally applicable distribu-
tion. However, a larger-scale experiment (discussed in Section 4) to test crowd-
sourced sampling, implemented with the collaboration of a BBC One television 
show, yielded preliminary results that strongly suggested a log-normal distribu-
tion of estimates [10]. The present paper is the outcome of a more general and 
thorough analysis to extract information contained in a crowdsourced sample. 

This paper reports a comprehensive study of the distribution of responses to a 
class of questions that calls for estimation of a composite random variable. A 
composite RV is formed by the product of two or more basis RVs. (The term 
“composite” is adopted from the designation of a “composite number” [11] as an 
integer expressible as the product of two or more integers, in contrast to a prime 
number.) This type of question is widely applicable to problems involving ma-
thematics, statistics, physical sciences, engineering, bio-medical sciences, foren-
sics, business and finance, military science, political science, archaeology, and 
other fields dependent upon quantitative reasoning.  

An archetypical example of this class might be a question like the following: 
How many objects are contained within some partially disclosed geometric re-
gion? There are countless contexts in which such a question might arise and for 
which turning to a crowd for the answer may be good strategy. For example, 
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high-energy physicists may enlist a crowd to count events recorded in a complex 
bubble-chamber image; astronomers may enlist a crowd to search a deep-space 
image for some extraordinary astrophysical event or object; intelligence services 
may enlist a crowd to search reconnaissance images for locations or objects of 
military interest, archaeologists may enlist a crowd to search satellite images for 
structures associated with some cultural sites, and so on [12] [13] [14] [15] [16].  

The specific problem examined in this paper is mathematically simple, but 
statistically informative: How many identical opaque objects are contained 
within a certain 3-dimensional volume of space seen only as a 2-dimensional 
image? The problem involves image analysis and object counting. A reasonable 
procedure to answer that question might entail the following: 1) Depending on 
the shape of the region, multiply together the appropriate geometric factors to 
obtain the volume, and then 2) multiply that volume by the numerical density, 
i.e. the number of objects in a unit volume. However, none of the needed num-
bers is known; all are representable by random variables whose realizations (i.e. 
estimates) by respondents in the crowd would be different. The sought-for RV 
would, in general, be a product (or sum of products) of 3 RVs relating to geome-
try and 1 RV characterizing the numerical density—or in all a product (or sum 
of products) of 4 RVs. The analyst is then faced with three general questions: 

1) How are the basis RVs distributed?  
2) What will be the distribution of the composite RV?  
3) Which statistic of the composite RV should be taken to represent the phys-

ical value of the sought-for quantity? 
By examining this archetypical question a) theoretically, b) computationally 

by Monte Carlo simulation, and c) experimentally, this paper addresses the pre-
ceding three questions.  

1.2. Organization 

The remainder of this paper is organized in the following way:  
Section 2 investigates analytically the distribution of a composite random va-

riable comprising independent basis RVs. Of particular interest are the cases in 
which the basis is either normally or log-normally distributed. 

Section 3 investigates numerically by MCS the distributions of a composite 
variable comprising basis RVs whose distributions differ widely in shape para-
meters (skewness, kurtosis) for fixed location and scale parameters (mean, va-
riance).  

Section 4 reports 1) an experiment, implemented with the collaboration of a 
British national television show, to employ crowdsourcing as a means to esti-
mate the number of opaque objects in a transparent receptacle, and 2) the use of 
MCS to predict the statistical results for a hypothetical much larger crowd in-
centivized to estimate rationally rather than guess randomly.  

Section 5 concludes the paper with a summary of principal findings.  
For the reader’s convenience, the statistical abbreviations used in the paper 
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are listed below in alphabetical order. 
BBC = British Broadcasting Corporation 
CDF = cumulative distribution function 
CF = characteristic function 
CLT = central limit theorem 
MCS = Monte Carlo simulation(s) 
MGF = moment generating function 
PDF = probability density function 
RNG = random number generator 
RV = random variable 

2. Distribution of a Composite Random Variable  

2.1. General Case 

Consider a random variable Z defined by the product 

( )
1

,
N

i i i
i

Z X µ σ
=

=∏                       (1) 

where each basis variable ( ),i i iX µ σ  in Equation (1) is characterized by its 
mean iµ  and standard deviation iσ . At this point, the symbol X represents an 
arbitrary RV, and the parameters ( ),i iµ σ  for defining iX  were chosen to 
simplify the notation and analysis in sections to follow. Conventional statistical 
labeling of specific RVs that are relevant to this paper may include parameters 
different from the mean and standard deviation, as summarized in Table 1. The 
symbol ( )H x  employed in Table 1 is the Heaviside function, also known as 
the step function, which we define here as  

( )
1 0
0 0

x
H x

x
≥

=  <
                      (2) 

(There are different definitions of ( )H x  depending on the value assigned to 
( )0H  [17].) A statistical convention followed in this paper is to represent a 

random variable by an upper case letter, e.g. X, and a variate (i.e. sample or rea-
lization of the random variable) by a corresponding lower case letter, e.g. x.  

 
Table 1. Representation of relevant random variables. 

Distribution of 
RV X 

Symbolic 
Representation 

Significance  
of Parameters 

PDF 

normal or  
Gaussian ( )2,N µ σ  mean of 

standard deviation of 
X

X
µ
σ
=
=

 ( )2

2

1 exp
22π

x µ
σσ

 −
−  
 

 

log-normal ( )2,m sΛ  ( )mean of ln
standard deviation of 

m Y X
s Y
= =

=
 

( )( )2

2

ln1 exp
22π
x

x
µ

σσ

 −
 −
 
 

 

uniform ( ),U a b  
lower boundary
upper boundary

a
b
=
=

 ( ) ( )1 H x a H x b
b a

− − −  −
 

Laplace ( ),La µ β  
location parameter
scale parameter

µ
β
=
=

 1 exp
2

x µ
β β

 − 
− 
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The natural logarithm of Z, which is a more convenient RV to work with, 
takes the form 

( ) ( )
1

ln ln
N

i
i

Y Z X
=

= = ∑ .                   (3) 

Reciprocally, one can write 

( )expZ Y= .                        (4) 

The strategy of the analysis in this section is to calculate the mo-
ment-generating function (MGF) of Y defined by the expectation operation 

( ) ( ) ( )exp e dyt
Y Yg t Yt p y y≡ = ∫                  (5) 

in which ( )Yp y  is the PDF of Y, and t is a dummy variable the differentiation 
of which generates the statistical moments 0,1,2,k =   in the following way: 

( )
0

d dk k k
Y t

Y g t t
=

 =   .                 (6) 

If the MGF of a random variable does not exist, one can always use the cha-
racteristic function (CF) defined by 

( ) ( ) ( )exp e diyt
Y Yh t iYt p y y≡ = ∫                 (7) 

where Equation (7) is recognized as the Fourier transform of ( )Yp y  [18]. Each 
random variable is uniquely characterized by its MGF (if it exists) and CF [19]. 
By identifying the MGF or CF of Y, it may then be possible to determine the dis-
tribution of the sought-for composite variable Z. 

Substitution of Equation (3) into Equation (5) leads to 

( ) ( )
1 1 1

exp ln
N NN

t t
Y i i i

i i i
g t t X X X

= = =

 = = = 
 
∑ ∏ ∏            (8) 

in which the last step—expectation of product equals product of expecta-
tions—is justified if the basis RVs are independent, as assumed to be the case in 
this section. This point will be revisited in Section 4. 

From the form of Equation (1), a further condition of the analysis is that the 
basis RVs have well-defined means and variances. This is the same requirement 
as for the Central Limit Theorem (CLT) (see [19], 193-195). Re-express each 

 by the identity 

( )1 1i i
i i i i

i

X
X

µ
µ µ β

µ
 −

= + ≡ + 
 

,               (9) 

which defines the variable iβ , and substitute Equation (9) into Equation (8) to 
obtain 

( ) ( )
1

1
N tt

Y i i
i

g t µ β
=

= +∏ .                  (10) 

If the basis variables iX  are to describe reasoned estimates rather than un-
restricted random guesses, then it can be assumed that representative values of  

iβ  are less than 1—i.e. that the expectations ( )k
i iX µ−  are small compared 
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to k
iµ  for integer 1k ≥ .  

Expansion of the binomial factor in Equation (10) to order ( )3
iO β , followed 

by insertion of the expectation values 

( ) ( )

( ) ( )

2 22 2

3 33 3

0

where 

where 

i

i i i i i

i i i i i

X

X

β

β σ µ σ µ

β λ µ λ µ

=

= = −

= = −

             (11) 

leads to the approximate MGF 

( ) 2 2 3 31 1exp
2 6Y Y Y Yg t t t tµ σ λ ≈ + + 

 
               (12) 

where 

( ) ( ) ( )2 3

1

1 1ln
2 3

N

Y i i i i i
i

µ µ σ µ λ µ
=

 = − + 
 

∑             (13) 

( ) ( )( )2 32

1

N

Y i i i i
i

σ σ µ λ µ
=

= −∑                    (14) 

( )33

1

N

Y i i
i

λ λ µ
=

= ∑                         (15) 

respectively define the mean, variance, and skewness parameter Yλ  of Y. Un-
der the conditions assumed in the foregoing analysis, MGF (12) shows that the 
distributions of Y, and therefore also Z, are not symmetric about the mean.  

The author has been unable to find any source that identifies MGF (12) with a 
named distribution. However, upon neglect of skewness, Equation (12) takes the 
form  

( ) 2 21exp
2Y Y Yg t t tµ σ ≈ + 

 
                  (16) 

of the MGF of a normal RV [20]. By definition, if Y, as defined by Equation (3), 
is a normal RV denoted by ( )2,Y YN µ σ , then Z is a log-normal RV denoted by 
( )2,Y Yµ σΛ ; see Table 1. Note that the parameters defining the log-normal RV 

are the mean and variance of the associated normal RV and not the mean and 
variance of the log-normal RV itself. 

For comparison, Figure 1 shows plots of the PDF of a normal and log-normal 
distribution, as well as the PDFs of a uniform and Laplace distribution (which 
will be used in Section 3), all of the same mean ( )5Xµ =  and standard devia-
tion ( )1Xσ = . The figure illustrates that the significance of the standard devia-
tion as a measure of statistical uncertainty (i.e. the width of the PDF) can vary 
markedly for different distributions, as summarized quantitatively in Table 2, 
which records the cumulative probability  

 ( )dX X

X X
X Xp x x

µ σ

µ σ

+

−
∆ ≡ ∫                   (17) 

of a variable X.  
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Figure 1. Graphical comparison of selected distributions of fixed mean 

5xµ = =  and fixed standard deviation 2 2 1xσ µ= − = : (a) Gaussian 

(red), (b) log-normal (black), (c) uniform (blue), (d) Laplace (green).  
 
Table 2. Comparative significance of 1 standard deviation uncertainty. 

Distribution 

( ),X a b  
Mean 

5Xµ =  
Variance 

2 1Xσ =  

Probability X∆  

( )X XP x µ σ− ≤  

Normal ( )2,X XN µ σ  Xµ  2
Xσ  

1
2 0.6827erf 2

− 
 
 


 

Log-Normal ( )2,m sΛ  

1.5898
0.1980

m
s
=
=

 
21exp

2
m s + 
 

 
2 22 2e e em s s −   0.6940 

Uniform ( ),U a b  
3.2679
6.7321

a
b
=
=

 
( )1

2
a b+  ( )21

12
b a−  1 0.5774

3
  

Laplace ( ),La µ β  

1
2

5

2 0.7071

µ

β
−

=

= 

 
µ  22β  21 e 0.7569−−   

 
Note that for variables N, U, and La the probability X∆  that a sample falls 

within 1±  standard deviation of the mean is a constant dependent on the type 
of distribution, but independent of the parameters of the distribution. For the 
log-normal variable, however, Λ∆  has a complicated dependence on µΛ  and 
σΛ   

( ) ( ) ( )

( ) ( )

2 2

2

1ln ln ln
1 4erf
2 2ln 4ln

µ σ µ σ µ

µ σ µ

Λ Λ Λ Λ Λ

Λ

Λ Λ Λ

   + + + −      ∆ =
  + −   
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( ) ( ) ( )

( ) ( )

2 2

2

1ln ln ln
4erf

2 ln 4ln

µ σ µ σ µ

µ σ µ

Λ Λ Λ Λ Λ

Λ Λ Λ

  − + + −      −
 + −  

       

 

(18) 

where the error function is defined by 

( ) 2

0

2erf e d
π

x tx t−≡ ∫ .                  (19)  

The first column of Table 2 shows the values of the distribution parameters 
that lead to the fixed mean ( 5Xµ = ) and variance ( 1Xσ = ) specified in the first 
row. The second and third columns of the table provide the theoretical relations 
connecting the parameters of each distribution to the mean and variance of the 
associated RVs. 

In the analyses and experiments of this paper, it will be adequate to neglect the 
skewness of Y and adopt MGF (16), which identifies Y as a normal RV. In that 
case, it follows that Z takes the form 

e e Y YWYZ µ σ+= =                      (20) 

in which ( )0,1W N≡  is a standard normal RV. The justification of Equation 
(20) is that an arbitrary normal RV ( )2,N µ σ  can be written in the form [21] 

( )2,N Wµ σ µ σ= + .                   (21) 

Equation (20) leads directly by integration to the expectation values of Z  

( )
2

2

2 2

1e exp e d
2π

1exp
2

Y Y

w
k k Wk

Y Y

Y Y

Z k k w w

k k

µ σ µ σ

µ σ

−∞+

−∞
= = +

 = + 
 

∫
       (22) 

where the PDF of W is given in Table 1 by setting 0µ =  and 1σ =  in the 
PDF of ( )2,N µ σ .  

From Equation (22), the mean and variance of the log-normal RV are then 

( ) ( ) ( )( )

2

2 2 2

1exp
2

exp 2 exp 2 exp

Z Y Y

Z Y Y Y

µ µ σ

σ µ σ σ

 = + 
 

= −
              (23) 

and the inverse relations, which will be needed later, can be shown to be 

( )
( )( )

2 2 2

2 2 2 2

ln

ln

Y Z Z Z

Y Z Z Z

µ µ µ σ

σ µ σ µ

= +

= +
                      (24) 

Although the RV Y is distributed symmetrically about its mean, the distribu-
tion of Z itself is skewed. From Equation (22) the third moment about the mean, 
to which skewness is proportional, can be shown to be 

( )
2 2 29 5 3

3 33 2 3 2 2 23 2 e e e eY Y YY
Z Z ZZ Z Z

σ σ σµµ µ µ
 

− = − + = − +  
 

     (25) 
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It is useful to note that Equation (20) provides an even more direct way than 
integration of the PDF at arriving at Equation (22) for the moments of Z since 

ek YkZ =  takes the form of the MGF (16) of a normal RV, upon replacing 
the dummy variable t with the moment order k.  

The seminal findings of this section may be summarized as follows: 
1) A random variable Z composed of the product of 2 or more factor RVs for 

which the ratio of standard deviation to mean is <1 is distributed log-normally 
to the extent that the skewness (and higher order moments) of ( )ln Z  can be 
neglected.  

2) To find the parameters of the distribution of a log-normal RV Z, one first 
transforms the data (e.g. sample or simulation) by ( )lni iy z=  to obtain the 
distribution of the associated normal RV Y which is symmetric about its mean.  

In concluding this section, a point of comparison is in order regarding the 
CLT for the sum of independent RVs and relation (20) for the product of inde-
pendent RVs. In brief, the CLT holds that the sum (e.g. mean) of a sufficiently 
large number N of identically distributed, independent RVs  

( ), , 1, ,i X XX i Nµ σ = 
 converges to a normal RV irrespective of the distribu-

tion of X, provided that the iX  have a well-defined mean and variance [22] 
[23]. In theory, the number N is infinitely large, but in practice it can be well be-
low 10; see Ref [10], pp. 36-38. In contrast, the foregoing demonstration that a 
product of RVs is distributed approximately log-normally 

( ) ( ) ( )2

1 11
, ln ,

N N N

i i i i i i
i ii

Z X µ σ µ σ µ
= ==

 = → Λ 
 
∑ ∑∏            (26) 

holds for any number of factors 2N ≥  under the previously specified condi-
tions. Moreover, the individual independent factors ( ),i i iX µ σ  need not have 
identical distribution parameters, nor even all be the same type of variable X. 
The parameters of Λ  shown in Equation (26) are from Equations (13), (14), 
(15) with neglect of the skewness parameter and terms of order ( )2

i iσ µ  in the 
mean. This reduction has been found satisfactory in accounting for the Monte 
Carlo simulations and experimental results discussed in later sections. 

2.2. Special Case: Product of Normal RVs ( )i i i iX N 2,µ σ=   

The log-normal distribution of a composite RV derived in the previous section is 
an approximate relation valid to the extent that certain conditions are fulfilled. 
In the special case where the factors iX  of the product (26) defining Z are 
normal RVs, an alternative expression for the PDF of ( )lnY Z=  can be derived 
by means of the CF. This is an important case because the normal distribution 
satisfactorily describes measurements or estimates of many biomedical variables, 
physical variables, and variables relating to business management and finance, 
among others [24] [25] [26].  

From Equation (8) for the MGF of Y and the definition (7) for the CF, one can 
write  
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( ) ( ) ( )
1 1

d e d
j

N N
it it iyt

Y j j X j j Y
j j

h t X x p x x p y y
= =

= = ≡∏ ∏∫ ∫          (27) 

for the CF of Y, where the summation index has been changed from i to j so as 
not to be confounded with the unit imaginary 1i = − . The inverse Fourier 
transform of Equation (27) then yields the PDF of Y 

( ) ( ) ( )

( ) ( )

1

1

1

2π e d

2π e d d
j

iyt
Y Y

N
iyt it

j X j j
j

p y h t t

x p x x t

∞− −

−∞

∞− −

−∞
=

=

 
=  

 

∫

∏∫ ∫
           (28) 

in which the second equality of Equation (27) was substituted for ( )Yh t  in the 
first line of Equation (28). The PDF of Z is calculable from the PDF of Y by the 
following transformation (see Appendix 1): 

( ) ( )( )1 lnZ Yp z z p z−= .                  (29)  

Substitution of relation (21) for each normal factor jX  into (27) leads to 

( ) ( ) ( ) 21
22

1
2π e d

j j

N it x
Y j j

j
h t x x

µ σ
µ σ

∞− −

−
=

= +∏ ∫ ,            (30) 

which can be re-expressed in the form 

( ) ( ) ( ) ( )( )1

1 ln 22

1
2π e exp ln 1 2 dj

j

N it
Y j

j
h t it x x xµ

α
α−

∞−

−
=

= + −∏ ∫       (31) 

where  

j j jα σ µ= .                         (32) 

Equation (31) is an exact expression for the CF of Y, but, to the author’s 
knowledge, cannot be integrated in closed form. However, for 1jα < , expan-
sion of the logarithm in a Taylor series to order 2

jα  results in the closed form 
expression 

( )
( )2 2 2

21

1exp 1
2
1

it
j j jN

Y
j j

t i t
h t

i t

µ α α

α=

  − +    =
 +
  

∏ .           (33) 

Substitution of CF (33) into Equations (28) and (29) provides a more accurate 
PDF of Y and Z than the PDF of log-normal (26).  

If 2 1jα <  for each factor  in Equation (27), then one can approximate 

( )Yh t  in Equation (33) by 

( ) 2 2

1

1exp
2

N
it

Y j j
j

h t tµ α
=

 − 
 

∏                   (34) 

which, substituted into the integral in Equation (28), leads to the Gaussian dis-
tribution  

( ) ( ) ( )22

1 11
ln , ln ,

N N N

i i i i i i
i ii

Y N Nµ σ µ σ µ
= ==

   = →   
  
∑ ∑∏        (35) 
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for Y and the log-normal distribution (26) for Z.  
As an example to illustrate the stages of the analysis, consider the composite 

RV 

( )

( )( ) ( )( ) ( )( ) ( )( )

4

1

2 2 2 2
1 2 3 4

,

1.0, 0.2 4.0, 0.5 6.0, 1.0 10.0, 1.5

i i i
i

Z X

N N N N

µ σ
=

=

=

∏
    (36) 

and associated log-product ( )lnY Z= . In Figure 2 are plotted the real part 
( )Re F  (red), imaginary part ( )Im F  (blue), and magnitude F  (dashed 

black) of the Fourier transform ( ) ( )YF t h t=  given by Equation (33) as a func-
tion of t. Although t serves in the MGF as a dummy variable for computation of 
statistical moments by differentiation, in the CF t is equivalent to a spatial or 
temporal frequency [27] [28]. F  and ( )Re F  are seen to be symmetric, and 

( )Im F  antisymmetric, about t = 0, extending over a range 20t∆ ≈  from −10 
to +10. Figure 3 shows plots of ( )Yp y , Equation (28), as calculated by (1) nu-
merical integration of the Fourier transform of the exact CF (31) (solid red), (2) 
the analytical approximation (33) to the CF (dashed blue), and (3) the PDF of 
the normal RV (35) (solid green). Profiles (1) and (2) are seen to be nearly indis-
tinguishable, and both are well approximated by the Gaussian profile (3). Figure 
4 shows plots of ( )Zp z  as calculated by (1) numerical integration of the 
transformation (29) of the exact PDF of Y (solid red), and (2) the PDF of the 
approximate log-normal RV (26) (dashed blue). The exact and log-normal PDFs 
of Z closely match, apart from a slight forward shift of the peak of the 
log-normal profile.  

2.3. Special Case: Product of Log-Normal RVs ( )i i i iX m s2,= Λ   

The ubiquity of the normal distribution is primarily a consequence of the CLT, 
which is a limiting theorem for the sum of a large (in theory, infinite) number of 
random variables. Moreover, the distributed variable can take—or, as a matter of 
practicality, be thought to take—both positive and negative values, since the 
Gaussian PDF is normalized to unity only when integrated over the entire real 
axis. The log-normal distribution also occurs widely, particularly in reference to 
activities that involve counting, measuring, or observing the attributes of real 
physical things. Such activities underlie many kinds of problems for which 
crowdsourced solutions can be sought. The distributed variable then takes on 
only non-negative real values and is expected to be intrinsically skewed, since its 
least value cannot be below zero, whereas its upper limit is open.  

Consider, therefore, a composite variable Z comprised of log-normal factors 

( )2

1
,

N

i i i
i

Z m s
=

= Λ∏                      (37) 

with PDF of the form (see [21], pp. 131-134) 

( ) ( )( )( )2 21, exp ln 2
2πZp z m s z m s

sz
= − − .          (38) 
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Figure 2. Fourier transform ( )F t  of the characteristic function of 

( )lnY Z= , Equation (33), where ( )
4

2

1

,i i i
i

Z N µ σ
=

=∏  is defined by para-

meters { }1.0,4.0,6.0,10.0iµ =  and { }0.2,0.5,1.0,1.5iσ = : (a) real part 

(solid red), (b) imaginary part (solid blue), (c) magnitude (dashed black). 
 

 

Figure 3. PDF of lnY Z=  defined in Figure 2, as calculated from the 
Fourier transform of the exact CF Equation (31) (solid red), the Fourier 
transform of the analytical approximation Equation (33) (dashed blue), and 
the Gaussian Equation (35) (solid green). 

 

 

Figure 4. PDF Z defined in Figure 2, as calculated from the exact transfor-
mation relation (29) (solid red) and from the PDF of log-normal variable 
(26) (dashed blue). 
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It then readily follows from the inverse of Equation (29) (see Appendix 1) that 
the PDF of the variable ( )lnY Z=  has the form 

( ) ( )( )2 21, exp 2
2πYp y m s y m s

s
= − −            (39) 

which shows that Y is a Gaussian RV of mean m and variance 2s , i.e. 
( )2,Y N m s= . 

Thus, taking the log of Equation (37) leads to the chain of relations 

( ) ( )( ) ( )2 2 2

1 1 1 1
ln ln , , ,

N N N N

i i i i i i i i
i i i i

Y Z m s N m s N m s
= = = =

 = = Λ = =  
 

∑ ∑ ∑ ∑     (40) 

from which it follows that Z, itself, is a log-normal RV 

( )2,Z m s= Λ                          (41) 

with 

1

2 2

1

N

i
i

N

i
i

m m

s s

=

=

=

=

∑

∑
                          (42) 

Stated formally: The product of log-normal RVs is a log-normal RV with pa-
rameters given by Equation (42). Note that the preceding result, Equation (41), 
is exact; no approximations regarding either the number of factor RVs or the 
relative magnitudes of parameters im  and is  have been made.  

From Equation (23) the mean and variance of Z, defined by Equation (37), is 
then 

2

1 1

2 2 2

1 1 1

1exp
2

exp 2 exp 2 exp

N N

Z i i
i i

N N N

Z i i i
i i i

m s

m s s

µ

σ

= =

= = =

 = + 
 

      = −      
      

∑ ∑

∑ ∑ ∑
            (43) 

3. Monte-Carlo Simulations of a Composite Random Variable 

In this section the distribution of responses to the kind of archetypical problem 
posed at the end of Section 1.1 is examined numerically by means of 
Monte-Carlo simulations (MCS) employing four basic types of two-parameter 
RVs ( ),i i iX µ σ : 1) normal, 2) uniform, 3) Laplace, and 4) log-normal. The 
means iµ  and standard deviations iσ  of the factor RVs are respectively those 
of the arguments of the four RVs in Equation (36):  

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 1

2 2

3 3

4 4

, 1.0,0.2

, 4.0,0.5

, 6.0,1.0

, 10.0,1.5

µ σ

µ σ

µ σ

µ σ

=

=

=

=

                         (44) 

The four types of RVs differ markedly, however, in skewness and kurtosis, 
which characterize the shape of the PDF, as shown in Figure 1. Consider 1X  to 
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represent the numerical density of objects in a receptacle, and the variables 

2 3 4, ,X X X  to characterize the 3-dimensional receptacle geometry. The physical 
quantity for which an estimate is sought is then represented by the variable

1 2 3 4Z X X X X= . If Z is satisfactorily described by a log-normal RV, then 

( )1 2 3 4lnY X X X X=  should be well-approximated by a Gaussian RV.  
Each of the four simulations of the composite variable Z reported in the sub-

sections to follow comprises  independent samples from a random 
number generator (RNG) corresponding to one of the four basis RVs listed 
above. The simulated variates { },i jx  ( )1,2,3,4; 1, ,i j n= = 

 are partitioned 
into uniform bins of width 0.1x∆ = ; the resulting variates { }jy , { }jz  are 
partitioned into uniform bins of width 0.1y∆ = , 10.0z∆ =  (if , ,X N U La= ) 
or 15.0 (if X = Λ ). To get a sense of scale, note that the product of the four 
means in Equation (44) is 240 and that ( )ln 240 5.48≈ . It is to be expected, 
therefore, that, neglecting skewness, the histogram of Z should be centered at a 
point near 240, whereas the symmetric histogram of Y should be centered at 
close to 5.48, which lies between the centers of histograms 2X  and 3X .  

Superposed on each of the generated histograms in the figures to follow will 
be the relevant theoretical PDF (solid red): 1) PDF of the corresponding RNG 
for the basis variables { }iX , 2) log-normal PDF (26) (if , ,X N La U= ) or (41) 
(if X = Λ ) for Z, and 3) normal PDF (35) (if , ,X N La U= ) or (40) (if X = Λ ) 
for Y. The analysis of Section 2.1 leads to an important prediction concerning 
the four Monte Carlo simulations:  
• Each simulation, although generated with a different type of basis variable X, 

should lead within statistical uncertainties to identical histograms for Z and 
Y. 

The preceding prediction follows from the fact that the means and variances 
of Z and Y depend only on the means and variances (44) of the basis variables 

iX , and not on the type of RV symbolized by X.  
From the ungrouped variates of each MCS 

1, 2, 3, 4,j j j j jz x x x x=                       (45) 

( )1, 2, 3, 4,lnj j j j jy x x x x= ,                   (46) 

one can calculate the sample mean and sample variance of Z by two different 
approaches, both employing relations deduced from the method of maximum 
likelihood (ML) [29]. The first approach is to calculate the sample mean ( )Zm  
and sample variance ( )2

Zs  directly from the set of variates (45) 

SAMPLE: Z                 
( )
1

22

1

1

1

n

Z j
j

n

Z j Z
j

m z
n

s z m
n

=

=

=

= −

∑

∑
                 (47) 

The second approach is to calculate the sample mean ( )Ym  and sample va-
riance ( )2

Ys  from the set of Gaussian variates (46) 
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SAMPLE: Y                  
( )
1

22

1

1

1

n

Y j
j

n

Y j Y
j

m y
n

s y m
n

=

=

=

= −

∑

∑
                (48) 

and use relations (48) to deduce the sample mean ( )ZM  and sample variance 

( )2
ZS  as follows from Equation (23) 

SAMPLE: Z(Y)    
( ) ( ) ( )( )

2

2 2 2

1exp
2

exp 2 exp 2 exp

Z Y Y

Z Y Y Y

M m s

S m s s

 = + 
 

= −
             (49) 

Agreement of statistics (47) and (49) would be indicative that the variates of Z 
were distributed log-normally. 

Comparison of sample statistics with theory for each of the simulations to 
follow are summarized in Table 3.  

3.1. Normal Basis X = N 

The normal distribution is defined by its mean and variance (see Table 1). The 
basis variables of the simulation are therefore ( )2,i i iN µ σ , 1,2,3,4i = , as 
shown in Equation (36) with parameters as defined in list (44). For purposes of 
comparing histogram shapes, it is noted that the skewness and kurtosis of a 
normally distributed RV are respectively 

( ) ( )( )3
0N

X X XSk X µ σ≡ − =              (50) 

( ) ( )( )4
3N

X X XK X µ σ≡ − = .             (51) 

Skewness (50) is a measure of symmetry of the PDF with respect to the mean. 
Kurtosis (51) is a measure of the shape of the tails of the PDF. A distribution  
 
Table 3. Statistics of Monte Carlo simulations of 1 2 3 4Z X X X X= . 

Basis Parameters 

( ) ( ), 1, 2,3, 4i i iX iµ σ =  ( ) ( ) ( ) ( ) ( ), 1,0.2 , 4,0.5 , 6,1.0 , 10,1.5i iµ σ =  

 
Sample 

(n = 1,000,000) 

Theory 

( )2,Y YZ µ σ= Λ  

Basis Variables iX  Sample Z Sample Y Sample Z(Y) Y Z 

Normal 
240.01

79.54
Z

Z

m
s

=
=

 
5.43

0.34
Y

Y

m
s

=
=

 
240.48

83.91
Z

Z

M
S

=
=

 
5.48
0.33

Y

Y

µ
σ

=
=

 
253.05

84.58
Z

Z

Μ =
Σ =

 

Uniform 
240.02

79.53
Z

Z

m
s

=
=

 
5.43

0.33
Y

Y

m
s

=
=

 
240.23

82.11
Z

Z

M
S

=
=

 — — 

Laplace 
240.01

79.48
Z

Z

m
s

=
=

 
5.42

0.38
Y

Y

m
s

=
=

 
243.01

96.58
Z

Z

M
S

=
=

 — — 

Log-Normal 
239.97

79.50
Z

Z

m
s

=
=

 
5.43

0.32
Y

Y

m
s

=
=

 
239.97

79.49
Z

Z

M
S

=
=

 
5.43
0.32

Y

Y

µ
σ

=
=

 
240.00

79.60
Z

Z

Μ =
Σ =
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with “fat tails” (leptokurtic) has a higher probability than normal of extreme 
events, in contrast to a distribution with “thin tails” (platykurtic) for which the 
probability of extreme events is lower than normal. 

Figure 5 shows a panoramic plot of the histograms of 1X  (green), 2X , 3X , 

4X  (gray), and ( )1 2 3 4lnY X X X X=  (blue), where 1 2 3 4Z X X X X= . As ex-
pected, all the histograms in the figure appear to be Gaussian, and the histogram 
of Y lies between the histograms of 2X  and 3X . 

Panels A and B of Figure 6 respectively show in greater detail the histograms 
of Z and Y, bordered by the profiles of the corresponding log-normal and nor-
mal PDFs. In panel A, the right tail of the histogram is marginally less skewed 
than predicted by the log-normal model. In panel B, the left tail of the histogram 
is marginally more skewed than the symmetric profile of the Gaussian PDF. 
Nevertheless, in both panels, the theoretical profiles satisfactorily match the peak 
and overall shape of the histograms.  

3.2. Uniform Basis X = U 

A uniform RV ( ) ( ), ,X U a bµ σ =  is symbolized by its upper and lower boun-
daries ( )b a> . From Table 2 it follows that the mean and standard deviation of 
X are related to the boundary parameters by 

3

3

a

b

µ σ

µ σ

= −

= +
                         (52) 

The basis RVs ( ), , 1, 2,3, 4i i iX iµ σ =  of the simulation, which have the same 
means and variances as the basis RVs of Section 3.1, are then respectively 

 

 

Figure 5. Monte-Carlo simulated histograms of normal variables 
( ) ( )2, ,i i i i i iX Nµ σ µ σ=  with means iµ  and standard deviations iσ  listed in 

(44), and 
4

1

ln i
i

Y X
=

 =  
 
∏  (blue). 1X  (green) represents number density; 2X , 

3X , 4X  (gray) represent geometric dimensions. The sample size is 610n = . 
Each histogram is enveloped by its associated Gaussian PDF (red).  
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Figure 6. Panel A: Histogram of Gaussian product Z of Figure 5 enveloped by PDF of 
log-normal variable (26) with values (44). Panel B: Histogram of ( )lnY Z=  of Figure 5 

enveloped by PDF of Gaussian variable (35). 
 

( )
( )
( )
( )

1 1

2 2

3 3

4 4

0.6536,1.3464

3.1340,4.8660

4.2679,7.7321

7.4019,12.5981

X U

X U

X U

X U

=

=

=

=

                   (53) 

The skewness and kurtosis of a uniformly distributed RV are  
( ) 0U
XSk =                          (54) 

( ) 9 5 1.8U
XK = = .                      (55) 

Figure 7 shows a panoramic plot of the histograms iX , which have tails that 
drop vertically in comparison to the Gaussian histograms of Figure 5. Equation 
(55) establishes that a uniform RV is platykurtic, as is apparent from Figure 1. 
Nevertheless, the histogram of ( )1 2 3 4lnY X X X X=  is again well represented by 
a Gaussian PDF, which indicates that 1 2 3 4Z X X X X=  should be reasonably 
well described by a log-normal RV, as shown in greater detail in Figure 8.  

3.3. Laplace Basis X = La 

A Laplace RV ( ) ( ), ,X Laµ σ µ β=  is symbolized by a location parameter µ  
corresponding to the mean of X and a scale parameter β  related to the stan-
dard deviation of X by 

1
22β σ

−
=                           (56) 

(see Table 2). The four basis variables of the simulation, which have the same 
means and variances as the basis RVs of Section 3.1, are then respectively 

( )
( )
( )
( )

1 1

2 2

3 3

4 4

1.0,0.1414

4.0,0.3536

6.0,0.7071

10.0,1.0607

X La

X La

X La

X La

=

=

=

=

                   (57) 

The skewness and kurtosis of a Laplace distributed RV are  
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Figure 7. Monte-Carlo simulated histograms of uniform variables ( ) ( ), ,i i i i i iX U a bµ σ =  

with means iµ  and standard deviations iσ  listed in (44), and 
4

1

ln i
i

Y X
=

 =  
 
∏ . Histo-

grams iX  are enveloped by their associated uniform PDFs (red). Histogram Y is enve-
loped by the Gaussian PDF of Figure 5. Sample size, symbolic notation, and color coding 
are the same as in Figure 5. 

 

 

Figure 8. Panel A: Histogram of uniform product Z of Figure 7 enveloped by PDF of 
log-normal variable (26) with values (44). Panel B: Histogram of ( )lnY Z=  of Figure 7 

enveloped by PDF of Gaussian variable (35). 
 

( ) 0La
XSk =                         (58) 

( ) 6La
XK = .                        (59) 

Figure 9 shows a panoramic plot of the histograms iX , which have sharp 
cusps and fat tails in comparison to the Gaussian histograms of Figure 5. Equa-
tion (59) establishes quantitatively that a Laplace RV is leptokurtic, as is appar-
ent from Figure 1. Nevertheless, the histogram of ( )1 2 3 4lnY X X X X=  is again 
well represented by a Gaussian PDF, which indicates that 1 2 3 4Z X X X X=  
should again be a log-normal variable to good approximation, as shown in 
greater detail in Figure 10.  
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Figure 9. Monte-Carlo simulated histograms of Laplace variables 
( ) ( ), ,i i i i i iX Laµ σ µ β=  with means iµ  and standard deviations iσ  listed in (44), and 

4

1

ln i
i

Y X
=

 =  
 
∏ . Histograms iX  are enveloped by their associated uniform PDFs (red). 

Histogram Y is enveloped by the Gaussian PDF of Figure 5. Sample size, symbolic nota-
tion, and color coding are the same as in Figure 5. 

 

 

Figure 10. Panel A: Histogram of Laplace product Z of Figure 9 enveloped by PDF of 
log-normal variable (26) with values (44). Panel B: Histogram of ( )lnY Z=  of Figure 9 

enveloped by PDF of Gaussian variable (35). 

3.4. Log-Normal Basis X = Λ  

A log-normal RV ( ) ( )2, ,X m sµ σ = Λ  is symbolized by the mean and variance 
of the normal variable ( ) ( )2, lnY N m s X= = . From Equation (24), re-expressed 
below for convenience, 

( )
( )( )

2 2 2

2 2 2 2

ln

ln

m

s

µ µ σ

µ σ µ

= +

= +
                 (60) 

it follows that the four log-normal basis variables with properties (44) are re-
spectively  
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( )
( )
( )
( )

1 1

2 2

3 3

4 4

0.0196,0.1980

1.3785,0.1245

1.7781,0.1655

2.2915,0.1492

X

X

X

X

= Λ −

= Λ

= Λ

= Λ

                   (61) 

The skewness and kurtosis of a log-normal RV 

( ) ( )( ) ( )2 2exp 2 exp 1XSk s sΛ = + −                  (62) 

( ) ( ) ( ) ( )2 2 2exp 4 2exp 3 3exp 2 3XK s s sΛ = + + −             (63) 

are not constants, but depend on the scale parameter s. Skewness (62) is greater 
than 0 for all values of 0s > ; kurtosis (63) is greater than 3 for all values of 

0s > .  
Figure 11 shows a panoramic plot of the log-normal histograms iX , which 

skew to the right in comparison to the symmetric shapes of the Gaussian basis 
histograms of Figure 5. The histograms of ( )1 2 3 4lnY X X X X=  and 

1 2 3 4Z X X X X=  are seen to be precisely normal and log-normal, respectively, as 
predicted in Section 2.3 and shown in detail in Figure 12.  

3.5. Commentary 

The set of variates (45) comprise the response of a crowd to a problem for which 
the sought-for solution is a composite random variable Z. The information, or 
so-called “wisdom of the crowd” [1], lies in the distribution of Z from which the 
full population statistics can be determined. In comparing the MCS histograms  
 

 

Figure 11. Monte-Carlo simulated histograms of log-normal variables 
( ) ( )2, ,i i i i i iX m sµ σ = Λ  with means iµ  and standard deviations iσ  listed in (44), 

and 
4

1

ln i
i

Y X
=

 =  
 
∏ . Histograms iX  are enveloped by their associated log-normal 

PDFs (red) (41). Histogram Y is enveloped by the Gaussian PDF (40). Sample size, 
symbolic notation, and color coding are the same as in Figure 5. 
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Figure 12. Panel A: Histogram of log-normal product Z of Figure 11 enveloped by PDF 
of log-normal variable (41). Panel B: Histogram of ( )lnY Z=  of Figure 11 enveloped 

by PDF of Gaussian variable (40). 
 
of Y and Z to the profiles of their respective PDFs, one should bear in mind that 
in general there is no underlying fundamental theory of crowd response. The 
log-normal model is not a fundamental theory such as one encounters in physics, 
and therefore the MCS histograms in Section 3 were not subjected to a 
chi-square goodness-of-fit test, as is often done in physics to compare experi-
ment and theory. 

The validity of the analytical model developed in this paper lies in how well it 
enables the analyst to predict an unknown quantity represented by the sampled 
variable Z, and not necessarily in how closely the complete distribution of the 
sample (i.e. histogram of Z) is matched by a log-normal distribution. However, if 
there is reason to believe that the basis variables iX  comprising the composite 
variable Z are distributed log-normally, then Z itself should be rigorously 
log-normal, and a goodness-of-fit test may then be appropriate. This point will 
be illuminated further in Section 4, which reports a crowdsourcing experiment 
and MCS to estimate the number of identical objects in a receptacle.  

The preceding comments notwithstanding, Figures 5-12 illustrate how well 
the predicted log-normal distribution fits the histograms of Z generated by basis 
variables of widely differing distribution shapes, as distinguished by their skew-
ness and kurtosis. Simulations using normal or log-normal basis variables 
yielded the visually closest matches to the log-normal model. In the case of a 
log-normal basis, theory predicted, and MCS sustained, an exact log-normal dis-
tribution of Z.  

4. Test of Crowdsourced Estimation 

In a collaborative effort with the BBC The One Show (nearly exactly 100 years 
after Galton’s pioneering statistical experiment), the author was able to obtain, 
using the wide reach of national television, a crowdsourced sample sufficiently 
large to test the log-normal hypothesis, namely, that under appropriate condi-
tions composite random variables are distributed log-normally. Two kinds of 
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experiments were performed entailing crowdsourced estimates of 1) the weight 
of a tangible local object, and 2) the quantity of a remotely viewed object. (See 
Ref. [10] for a popular account.) Experiments of these kinds were conducted by 
the author in various physics classes during the past two decades, but no single 
sample was large enough to permit reliable inference of the statistical distribu-
tion. Pooling of results from different sample populations was not feasible since 
the conditions of the experiments were not all identical.  

4.1. The Coin-Estimation Experiment 

The experiment analyzed in detail here is of the second kind. Viewers of The 
One Show were shown on their televisions a transparent tumbler filled with 
opaque £1 coins. The tumbler rested on a table adjacent to two ordinary cylin-
drical glasses of water to provide clues to scale. No explicit dimensions of any 
objects were given. The challenge posed to viewers (i.e. the crowd) was to esti-
mate the number of coins in the vessel.  

The experimental estimates ( )exp
kz , 01, ,k n=  , were transmitted to the show 

by email, and the author subsequently received the full set of 0 1706n =  ano-
nymous responses, which ranged from a low of 42 to a high of 43,200.1 The 
mean and median of the estimates were respectively ( )exp 982Z = , ( )exp 695Z = . 
The true count was 1111cN = . If the mean is taken as the measure of crowd 
response—a standard statistical practice—the fractional error of the crowd was 

( ) ( )( )exp exp 11.6%c c cN Z N N∆ = − = − .               (64) 

Although result (64) is not bad, it calls into question—at least to the au-
thor—how Galton’s crowd of just 800 members (less than half the BBC sample 
size) could guess the weight of an ox to within a fractional error of less than 0.1%. 
One explanation might be that the participants at the fair comprised a crowd of 
experts familiar with livestock. The respondents to The One Show apparently 
had no special expertise in the estimation of quantity. 

Figure 13 shows a scatter diagram of the estimates as a function of sample 
number, i.e. the order in which the estimates were received. Estimates in the ap-
proximate range between 0 and 1000 form a dense band; estimates from about 
2000 to 10,000 resemble a foam of points the density of which falls off with in-
creasing ordinate. The blue histogram labeled “Experiment” in Figure 14 shows 
the distribution of estimates partitioned over K = 24 bins of equal width ranging 
from 0 to 4000. Points that extended beyond 4000 are not shown, since the main 
body of the histogram would then be severely compressed. Superposed on the 
histogram of experimental results is the profile (dashed blue) of the correspond-
ing log-normal PDF with sample parameters obtained by application of the me-
thod of maximum likelihood (ML) to a Gaussian ( )expY  [30], 

 

 

1Actually, the maximum value submitted was 25 million, which was about 15% of the entire BBC 
One network annual budget in the form of £1 coins in a small glass tumbler. The submission was re-
jected on the grounds that it was so preposterous as to be intended to undermine the experiment. 
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Figure 13. Estimates, in order of receipt, of the number of £1 coins in a tumbler 
displayed on the BBC One Show in 2007. The true count was 1111 coins; the sample 
size was 1706. Statistics of the experiment are given in Table 4. 

 

 

Figure 14. Comparison of the histogram (blue) of 1706 crowdsourced estimates 
with the histogram (gray) of 106 Monte Carlo simulated responses employing 
log-normal basis variables for coin density and tumbler geometry. The crowd-
sourced mean estimate was 982; the MCS mean was 1057; the true count was 1111. 
Relevant statistics are given in Table 4. Enveloping the histograms are the profiles of 
the log-normal PDFs for the sample (dashed blue) and simulation (solid red). 

 

( )0
exp

0
10

1 6.565
n

k
k

m y
n =

= =∑                      (65) 

( )( )0 2exp
0 0

10

1 0.719
n

k
k

s y m
n =

= − =∑                  (66) 

where the variates ( )exp
ky  are defined by 

( ) ( )( )exp explnk ky z= .                        (67) 
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Parameters 0m  and 0s  in Equation (65) are respectively the mean and 
standard deviation of ( )expY . The gray histogram with red border in Figure 14 
will be discussed in Section 4.2. 

Despite the caution about goodness-of-fit tests in Section 3.5, it is noteworthy 
that the fit of the log-normal PDF with parameters (65) to the histogram of ex-
perimental estimates actually does exceed the 5% acceptance threshold of a 
chi-square test for 21ν =  degrees of freedom: 2

21 6.4%χ = . The number ν  of 
degrees of freedom is given by 

1K pν = − −                          (68) 

where K = 24 is the number of distribution categories (bins), p = 2 is the number 
of parameters ( )0 0,m s  determined from the data, and the numeral 1 refers to 
the fact that the histogram is normalized to unit area, in which case knowledge 
of the values of 1K −  bins determines the value of the remaining bin.  

4.2. Monte Carlo Simulation of the Coin Estimation Experiment 

Passing a goodness-of-fit test does not necessarily prove that a hypothesized 
theory is correct. Rather, it signifies that the theory should not be rejected on the 
basis of the tested data. The statistical significance of the experiment described 
in Section 4.1 is that the distribution of estimates of the number of coins (a 
composite RV) is consistent with a log-normal distribution for the given sample. 
Nevertheless, the implication of this result is of far-reaching practical impor-
tance: 

If it is indeed the case that the estimates from a crowd of given size are distri-
buted log-normally, then one should be able to simulate the estimates of a much 
larger crowd by constructing the appropriate basis variables that form the factors 
of the sought-for composite variable.  

In other words, the analyst may be able to avoid sampling an impractically 
large crowd, yet still obtain reliable statistical information by a Monte Carlo si-
mulation (MCS). In this section the responses from a hypothetical crowd of 1 
million were simulated by applying the underlying reasoning and mathematical 
procedure described in Section 2. 

Responses from a large crowd to a question that calls for a quantitative answer 
will presumably include some random guesses as well as reasoned estimates. As 
the author has emphasized elsewhere [10], a seminal principle to increasing the 
proportion of reliable estimates in crowdsourcing is to provide participants with 
a personal incentive to respond thoughtfully. Broadly speaking, there are two 
types of incentives. The first is to reward all respondents in some way for partic-
ipating. For example, the author has used this method to provide extra credit 
toward the final course grade of all students in the class who executed certain 
tasks designed to measure the randomization of shuffled playing cards [31]. 
Another example of this reward structure is the internet-based Amazon Me-
chanical Turk which, according to Amazon, leverages “the skills of distributed 
Workers on a pay-per-task model” [32]. The second kind of incentive, which has 
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also been applied by the author in his physics classes as well as by The One Show 
in the experiment to estimate weight, is to reward only the respondent(s) whose 
estimate(s) comes closest to the true (or best) answer to the problem, once the 
answer becomes known. In this second approach, the members of the crowd are 
effectively in a competition where skill matters—unlike the case of a lottery 
where success depends primarily on probability and luck. 

Let us assume, then, that members of the hypothetical crowd represented by 
the MCS are incentivized to deduce the number of coins as described in Section 
2. A likely approach entails multiplying the numerical density of coins by the 
geometrical dimensions of the volume of the receptacle. The televised image of 
the tumbler showed it to have the shape of an inverted truncated right circular 
cone, or frustum, such as illustrated in Figure 15. The number Z of coins in the 
tumbler could then be calculated from the expression [33] 

( )( )2 2
1 1 2 2π 3Z R R R R HC= + +               (69) 

in which 1R  is the lower radius, 2R  is the upper radius, H is the height, and C 
is the numerical density of the coins. Because the upper and lower radii, height, 
and numerical density of coins are quantities unknown to the crowd, they must 
be treated as random variables. The author, himself, did not know the true nu-
merical values, but, judging from the same image presented to the viewers, as-
signed random variables with the following estimated means and standard devi-
ations (in units of cm) 

( )
( )
( )
( )

1

2

3,0.7

5,1.0

20,2.0

1,0.2

R X

R X

H X

C X

=

=

=

=

                      (70) 

Monte Carlo simulations were then implemented for both normal variables 
X N=  and log-normal variables X = Λ .  

Figure 16 shows a panoramic plot of the distributions of variables 
, 1, 2,3, 4iX i = , for both normal (dashed) and log-normal (solid) bases. Although 

the former (normal) are symmetric about the mean and the latter (log-normal) 
exhibit skewness, the difference in visual appearance of the two PDF profiles for 
each variable is relatively insignificant for the parameters shown in relations 
(70).  

The gray histogram marked “Simulation” in Figure 14 shows the outcome of 
a MCS comprising 610sn =  samples from log-normal random number gene-
rators with parameters given by relations (70). The profile (solid red) of the his-
togram is the PDF of the log-normal variable ( ),s sm sΛ  with Gaussian para-
meters  

( )sim

1

1 6.892
sn

s k
ks

m y
n =

= =∑                     (71) 

( )( )2sim

1

1 0.378
sn

s k s
ks

s y m
n =

= − =∑                (72) 
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Figure 15. Geometry of the tumbler is a truncated right circular cone or 
frustum with dimensions given by independent random variables for 
height H, lower radius 1R  and upper radius 2R .  

 

 

Figure 16. Distributions of the numerical density (C) and geometrical attributes ( 1R , 

2R , H) represented by normal (dashed) or log-normal (solid) random variables, used 
in the Monte Carlo simulations of Figure 14. The sample size was 106. 

 
where variates ( )sim

kz , 1, , sk n=  , are the simulated values of Z in Equation (69) 
and  

( ) ( )( )sim simlnk ky z= .                        (73) 

For the log-normal basis and sample size of 1 million, the match of theory 
and simulation in Figure 14 is visually perfect at the scale shown. The pre-
dicted number of coins, given by both the theoretical expectation 

( )0
, dZ s sZ zp z m s z

∞
= ∫  and sample mean Z , Equation (47), is 1057, which 

represents a fractional error  
( ) ( )( )sim sim 4.86%c c cN Z N N∆ = − = −                 (74) 

as summarized in Table 4. Thus, the MCS estimate was considerably closer to 
the true value 1111cN =  than the mean estimate of 982 by the crowd. 
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Table 4. Crowdsourced estimate of number of £1 coins in a tumbler. 

Simulation Variables 

Basis RVs 

( ),i iX µ σ  ( )1 3,0.7R  ( )2 5,1.0R  ( )20,2.0H
 

( )1,0.2C  

Composite RVs 
( )( )2 2

1 1 2 2π 3Z R R R R HC= + +  

( )lnY Z=  

 
Mean 

Z  or Z  
S.E. 

ZS  or ZΣ  
Mean 

Y  or Y  
S.D. 

Ys  or Yσ  
S.E. 

YS  or YΣ  

Sample 
n = 1706 

982 38.56 6.57 0.72 0.017 

Simulation 
Log-Normal 

n = 1,000,000 
1057 0.42 6.89 0.38 0.00038 

Theoretical 
Expectations 

1057 0.41 6.89 0.38 0.00038 

Simulation 
Normal 

n = 1,000,000 
1057 0.40 6.89 0.39 0.00039 

Theoretical 
Expectations 

1061 0.43 6.89 0.39 0.00039 

True Count 1111  

Fractional Error: Experiment (n = 1706) −11.61%; Simulation (n = 1,000,000) −4.86%; Theory (n = 
1,000,000) −4.50%. 

 
The histogram obtained from the MCS with normal basis variables is nearly 

identical to that in Figure 14, and therefore not shown. The match with the cor-
responding theoretical log-normal PDF is marginally less close, but the higher 
mean 1061Z =  is marginally closer to cN , yielding a fractional error of 
−4.50%. Since the standard error of the mean (i.e. the standard deviation divided 
by the square root of sample size) is 43.8 10−× , the difference of means (1061 − 
1057 = 4) is statistically significant in principle. In practical terms, however, the 
Monte Carlo simulation with either the log-normal or normal basis variables 
yielded effectively equivalent predictions. Since the individual estimates received 
from the respondents consisted solely of a single number of coins, it was not 
possible to conclude which of the two sets of basis variables more accurately de-
scribed the crowd. 

The most significant statistical outcome, however, is that the MCS predicted 
the number of coins in the tumbler much more closely than did the actual crowd. 
Results of the experiment and simulations are summarized in detail in Table 4. 
Theoretical means and sample means are distinguished respectively by expecta-
tion brackets like Z  and overbars like Z . Theoretical standard deviations 
(SD) and standard errors (SE) are symbolized by Greek letters (lower case and 
upper case sigma, respectively); sample SD and SE are symbolized by Roman 
letters (lower case and upper case s, respectively).  
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4.3. Commentary on the Experiment and Simulations 

The coin estimation study raises several issues worth clarifying if the investiga-
tion is to provide a useful general methodology for seeking solutions to other 
quantitative problems by crowdsourcing. 

1) Although sample size matters, the reason that the MCS did much better 
than the BBC crowd in estimating the number of coins in the tumbler was not 
primarily due to sample size. The populations sampled by crowdsourcing and by 
MCS were different not only in size but principally in their effective information 
content. This was seen by running the MCS with the same parameters (44) as 
before, but for a sample size comparable to that of the coin experiment, i.e. 
~2000. The result was a 24-bin histogram that produced a sample mean of ~1048 
and a shape that effectively overlapped the MCS histogram of Figure 14. The 
distinction between the two populations is that the BBC crowd contained a sub-
population of uninformed individuals who guessed randomly, whereas the ran-
dom choices of the MCS were more tightly constrained by the variances assigned 
to the basis variables. In effect, the MCS population comprised a more rational 
crowd who used the visual cues better and made better use of a rudimentary 
knowledge of geometry. 

2) Although the MCS of Section 4.2 estimated the number of coins by calcu-
lating the volume of a conical frustum, it is unlikely that respondents to The One 
Show arrived at their estimates in precisely the same way. Quite possibly, very 
few of the members of the crowd would have known what a frustum is or how to 
calculate its volume. It is not this geometrical detail that is important in deter-
mining the distribution of estimates, but only the act of estimating a volume and 
multiplying it by a numerical density. The crowd could have treated the glass 
tumbler simply as a rectangular solid. The independent variations of height, 
length, and width assumed by different respondents would have again generated 
estimates distributed log-normally to an excellent approximation, as demon-
strated in Section 3. The fact that the sample mean of the crowd was reasonably 
accurate indicates that most respondents probably applied some kind of valid 
reasoning to obtain their answers. How closely the MCS estimate matches the 
true value of a composite variable depends on how well the analyst can model 
the statistical uncertainties in the factors upon which the sought-for variable de-
pends. 

3) It is especially noteworthy that the MCS estimates Z, defined in Equation 
(69), resulted in a virtually perfect log-normal distribution, as shown by Figure 
14. This outcome suggests that the validity of the log-normal hypothesis of 
composite variables applies beyond what was explicitly demonstrated in the 
analysis of Section 2. In contrast to a composite RV like (26) which is formed by 
products of independent basis RVs, the products forming the variable Z in Equ-
ation (69) are not all independent. In particular, the product 1 2R R  is correlated 
with both 2

1R  and 2
2R . In the case of two correlated variables—call them U 

and V—one cannot assume, as was done in the last step of Equation (8), that the 
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expectation operation factors; in other words, UV U V≠ .  
One widely used measure of the degree of correlation between two random 

variables U, V is provided by the Pearson correlation coefficient ,U Vρ  defined 
by [34] 

( ) ( )( )

( ) ( )
,

2 2

cov , U V
U V

U V
U V

U VU V

U V

µ µ
ρ

σ σ µ µ

− −
≡ =

− −
.            (75) 

,U Vρ  can range between −1 and +1. At the upper limit +1, V varies in the 
same direction and in perfect linearity with U; at the lower limit −1, V varies in 
the opposite direction in perfect linearity with U. If two random variables are 
independent, then , 0U Vρ = , but the converse is not true; , 0U Vρ =  does not 
prove that U and V are independent. Various interpretations have been given to 

,U Vρ  [35] [36]. Perhaps the most useful quantitative interpretation is this [37]: 
The square of the correlation coefficient is equal to the fraction of the variance of 
variable V that is accounted for by a linear relationship with variable U. Other, 
more general, methods of testing for nonlinear dependence of two random va-
riables are also known [38] [39]. 

To estimate the degree of correlation of terms in Equation (69) for the volume 
of the tumbler the Pearson correlation coefficient was used. Substitution of  

2
1

1 2

U R
V R R
≡
≡

                          (76) 

into Equation (75), where the radii 1R  and 2R  are given in Equation (70), re-
sulted in correlation coefficients 

( )

( )
,

,

0.741

0.740

N
U V

U V

ρ

ρ Λ

=

=
                        (77) 

for normal (N) and log-normal (Λ ) radius variables, respectively. The analysis is 
given in Appendix 2. 

The author is unaware of any closed-form expression for the PDF or CDF of a 
sum of correlated or uncorrelated log-normal RVs, although it is known that the 
resulting RV is not rigorously log-normal [40]. Various approaches exist to ap-
proximating the sum of log-normal RVs under special circumstances (such as 
independent identically distributed terms), or to achieve accuracy in selected 
parts of the distribution profile (e.g. the tails), or to match the lowest moments 
(e.g. mean and variance) of an empirical distribution [40] [41] [42] [43]. No sin-
gle analytical method appears to provide a satisfactory approximation for all 
conditions.  

Nevertheless, the Monte Carlo simulations executed in the present study of 
crowdsourcing have shown by computational and graphical means that compo-
site random variables are distributed log-normally to an excellent approximation 
for large sample size and log-normal basis RVs of low variance ( )1i iσ µ < , 
even if the composite variable comprises correlated terms.  
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5. Conclusions 

This paper examined analytically, numerically, and experimentally the distribu-
tion of crowdsourced estimates of the solution to a problem seeking the number 
of objects in a partially revealed three-dimensional volume. Experimentally, the 
mean response of the crowd, which comprised approximately 2000 viewers of a 
BBC television show, was within ~12% of the true count. More significantly, the 
distribution of viewer responses was satisfactorily accounted for by a log-normal 
distribution.  

Theoretical analyses of the product of independent random variables of low 
standard deviation-to-mean ratios showed that the product was distributed 
log-normally to an excellent approximation irrespective of the number of factors 
and their individual distributions. Monte Carlo tests of the theory were made 
with normal, uniform, Laplace, and log-normal factor variables, all of the same 
mean and variance, but differing widely in the shape statistics skewness and 
kurtosis. For independent factors of the log-normal type, the product was rigo-
rously (not approximately) log-normal.  

Monte Carlo simulations of the coin estimation experiment, employing ba-
sis variables of either the normal or log-normal type and a sample size of 1 mil-
lion, resulted in mean estimates that were within ~5% of the true count. Par-
ticularly noteworthy is the fact that the sought-for composite variable com-
prised terms that were not independent, but linearly correlated. Nevertheless, 
the histogram of the product variable was, to all visual appearances, rigorously 
log-normal.  

Telecommunications media and the internet have the potential to make poss-
ible large-scale crowdsourcing of problems like the archetype investigated here, 
which involved image analysis and object counting. However, the robustness of 
the log-normal distribution as a kind of universal distribution of composite 
random variables suggests that crowdsourcing can likewise be accomplished ac-
curately by computer simulations of sufficiently large sample size, provided the 
underlying statistical model accurately accounts for the uncertainties of the fac-
tor variables. 
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Appendix 1 

Probability Density Function of ( )Z Yexp=   

Consider random variables Y and Z related by 

( )expZ Y= .                         (78) 

The cumulative probability function (CPF) of Z is defined by the relation 

( ) ( ) ( )
0

Pr d
z

Z Zz
F z Z z p z z′ ′= ≤ = ∫                (79) 

where 0z  is some constant reference point. The probability density function 
(PDF) of Z can be calculated from the CPF by differentiation (see Ref [20], pp. 
60-62) 

( ) ( )d dZ Zp z F z z= .                      (80) 

Substitution of Equation (78) into (79) leads to the chain of deductions 

( ) ( ) ( )( ) ( )( )ln
Pr e Pr ln d

zY
Z YF z z Y z p y y

−∞
= ≤ = ≤ = ∫ .        (81) 

Substitution of Equation (81) into (80) leads by the Leibniz integral formula 
(see Ref [17], p 590) to 

( ) ( )( )1 lnZ Yp z z p z−= .                     (82) 

Appendix 2 

Calculation of the Correlation Coefficient of Variables X2 and XY  

Consider the two composite variables 

( ) ( )
( ) ( ) ( )

2
1 1 1 1 1

2 2 2 1 1 2 2

, ,

, , ,

Z X m s

Z X m s Y m s

µ σ

µ σ

=

=
                (83) 

where ( )1 1,X m s  and ( )2 2,Y m s  are independent RVs with respective means 
( )im  and standard deviations ( )is , 1,2i = . The correlation coefficient de-
fined by Equation (75) then takes the form 

( )( )1 2

3 2

2 2 24 2 2 2
Z Z

X Y X X Y

X X X Y X Y
ρ

−
=

− −
       (84) 

Equation (84) will be evaluated for the two basis distributions of Section 4. 
Case 1: X and Y are normal RVs 
Substitution of the variables 

( ) ( )
( ) ( )

2
1 1 1 1

2
2 2 2 2

, ,

, ,

X m s N m s

Y m s N m s

=

=
                    (85) 

into Equations (83) and (84) leads to expectation values 
2 2 2 2 2 4

1 1 1 1 1 1 1
2 2 2 2 2 2 2

2 1 2 2 1 2 2 1 1 2

4 2m s m s s

m m m s m s s s

µ σ

µ σ

= + = +

= = + +
             (86) 
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and the correlation coefficient 

( )

( )( )1 2

1 2 1

2 2 2 2 2 2 2 2
1 1 1 2 2 1 1 2

2

2
N

Z Z
m m s

m s m s m s s s
ρ =

+ + +
           (87) 

Case 2: X and Y are log-normal RVs 
Substitution of the variables (with parameters related by Equation (60)) 

( ) ( )
( ) ( )

2
1 1 1 1

2
2 2 2 2

, ,

, ,

X m s a b

Y m s a b

= Λ

= Λ
                  (88) 

into Equations (83) and (84) leads to expectation values 

( )
( ) ( ) ( )( )

2 2
1 1 1

2 2 2
1 1 1 1

exp 2 2

exp 4 exp 8 exp 4

a b

a b b

µ

σ

= +

= −
          (89) 

( ) ( ) ( )( )

2 2
2 1 2 1 2

2 2 2 2 2
2 1 2 1 2 1 2

1 1exp
2 2

exp 2 2 exp 2 2 exp

a a b b

a a b b b b

µ

σ

 = + + + 
 

= + + − +
    (90) 

and the correlation coefficient 

( ) ( )
( ) ( ) ( )1 2

2
1

2 2 2 2 2
1 2 1 1 2

exp 2 1

exp 5 exp 4 exp 1
Z Z

b

b b b b b
ρ Λ

−
=

+ − − + +
.   (91) 

With regard to the random variables representing the geometry of the tumbler 
in Section 4, application of the foregoing relations leads to 

( )
( ) ( )

22 2
1 1 1

2 2
2 1 2 1 2

3,0.7

3,0.7 5,1.0

Z R N

Z R R N N

≡ =

≡ =
           (92) 

and 
( )

1 2
0.741N

Z Zρ =                    (93) 

for Case 1, and to 

( )
( ) ( )

22 2
1 1 1

2 2
2 1 2 1 2

1.0721,0.2302

1.0721,0.2302 1.5898,0.1980

Z R

Z R R

≡ = Λ

≡ = Λ Λ
       (94) 

and 
( )

1 2
0.740Z Zρ Λ =                        (95) 

for Case 2. 
The correlation coefficients are virtually the same for the normal and 

log-normal bases, as one might have anticipated from the close match of the in-
dividual distribution functions displayed in Figure 16. 
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