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Abstract 
In a recent publication the author derived and experimentally tested several 
theoretical models, distinguished by different boundary conditions at the 
contacts with horizontal and vertical supports, that predicted the forces of 
reaction on a fixed (i.e. inextensible) ladder. This problem is statically inde-
terminate since there are 4 forces of reaction and only 3 equations of static 
equilibrium. The model that predicted the empirical reactions correctly used 
a law of static friction to complement the equations of static equilibrium. The 
present paper examines in greater theoretical and experimental detail the role 
of friction in accounting for the forces of reaction on a fixed ladder. The re-
ported measurements confirm that forces parallel and normal to the support 
at the top of the ladder are linearly proportional with a constant coefficient of 
friction irrespective of the magnitude or location of the load, as assumed in 
the theoretical model. However, measurements of forces parallel and normal 
to the support at the base of the ladder are linearly proportional with coeffi-
cients that depend sensitively on the location (although not the magnitude) of 
the load. This paper accounts quantitatively for the different effects of friction 
at the top and base of the ladder under conditions of usual use whereby fric-
tion at the vertical support alone is insufficient to keep the ladder from slid-
ing. A theoretical model is also proposed for the unusual circumstance in 
which friction at the vertical support can keep the ladder from sliding. 
 
Keywords 
Forces on a Ladder, Static Equilibrium, Law of Static Friction, Statically  
Indeterminate, Forces of Reaction 

 

1. Introduction 

In a recent publication [1] to be referred to as Part I, the author provided a 
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theoretical solution and supporting experimental test of the long unresolved 
problem to determine the four equilibrium forces of reaction on an inextensible 
ladder [2] inclined against a rough vertical wall, as schematically illustrated in 
Figure 1. The ladder was modeled as an Euler-Bernoulli [E-B] beam [3] [4] [5] 
in which the force of friction between the ladder and the wall constituted a criti-
cal part of the solution. The objectives of the present paper, designated Part II, 
are twofold: 1) to demonstrate quantitatively that the forces of reaction meas-
ured in Part I are consistent with the law of static friction [6] for the usual pre-
vailing condition that friction at the wall alone cannot keep the ladder from 
sliding, and 2) to clarify several important points of confusion regarding the dif-
ferences in the relations governing friction at the wall and at the ground.   

1.1. Background 

Despite its practical importance to workplace safety [7] [8] and personal injury 
litigation [9], as well as being an archetypical model system in rigid-body me-
chanics [10] [11] [12], the problem of the reaction forces on a ladder had re-
mained inadequately solved and experimentally untested for much of the past 
100 years. The core of the difficulty was that the problem is statically indetermi-
nate if the surface of the vertical support is not frictionless. In such circums-
tances there are 4 unknown reactions, but only 3 equations of static equilibrium, 
corresponding to the vanishing of 1) net horizontal force, 2) net vertical force, 
and 3) net torque about any stationary point. Although the fixed ladder modeled 
as an E-B beam has routinely served in the pedagogical literature to illustrate the 
condition of static equilibrium, the worked models were always simplified by 
neglect of friction at the wall in nearly every mechanics textbook known to the 
author in use from the early 20th Century [13] to the present time [14]. In the  
 

 
Figure 1. Schematic diagram of the reaction forces ( )1 2 3 4, , ,R R R R

 
by the ground and 

wall on a uniform ladder of length L inclined at angle θ  to the ground. W is the ladder 
weight acting at the center of mass; P is a load applied at a fraction β  of the length L.  
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very few cases where the system included friction at the wall, the problem did 
not call for, nor provide, expressions for the reactions at static equilibrium [15]. 
Moreover, the author is unaware of any previously published experimental 
measurement of these reactions apart from [1]. 

In general, the solution to a statically indeterminate mechanics problem calls 
for complementary information ordinarily in the form of a restrictive boundary 
condition or supplemental external force. Examples of the former, commonly 
found in textbooks and treatises covering the mechanics of continuous or de-
formable media, are cases of a statically indeterminate axially or transversely 
loaded beam [16] [17]. In these examples, the complementary information re-
quired to solve for unknown forces or torques depends on the elastic and geometric 
properties of the beam through the modulus of elasticity E, the cross-sectional area 
A, and bending moment of inertia I. Correspondingly, several published at-
tempts at solving the ladder problem were based on the assumption that the 
ladder was subject to axial compression [18] or a bending deformation [19]. 

In part I the author systematized the different approaches into three distinct 
fundamental physical models on the basis of the constraints imposed at the 
ground and wall supports. Models 1 and 2 involved constraints on axial com-
pression and bending deformation. In Model 3, the ladder was free to rotate (but 
not slide) about the contact point at the ground and to displace vertically against 
friction at the contact with the wall. The three models were solved analytically, 
and the predicted forces of reaction of each model were compared with meas-
ured forces of reaction as a function of load P and load location (as a fraction β  
of the ladder length L) measured from the origin at the ground. The experimen-
tal reaction forces, measured on both a fixed ladder and on an actual E-B beam, 
agreed well with predictions of Model 3 and disagreed markedly with predic-
tions of the other models. The theoretical expressions for the reaction forces 
were therefore found to depend only on the ladder weight W, load P, angle of 
inclination θ  with the ground, and coefficient of friction µ  between the lad-
der or beam and the wall—and not on E, A, and I.   

1.2. Force of Static Friction on a Ladder or Beam 

The phenomenological force of static friction adopted by the author in Model 3 
was based on two principles often referred to as Amontons laws [20], which ap-
ply to dry (i.e. non-lubricated) surfaces: 
• The maximum force of friction is directly proportional to the applied load.  (1) 
• The force of friction is independent of the apparent area of contact.      (2) 

Application of Equation (1) to the contact at the wall related the vertical reac-
tion 4R  to the horizontal reaction 3R  by a linear expression 

4 3R Rµ=                              (3) 

in which the coefficient µ  is a constant depending only on the surfaces of the 
beam and wall, and not on the angle of inclination of the beam or the magnitude 
or location of impressed loads. Equation (3) removed the indeterminacy of the 

https://doi.org/10.4236/wjm.2018.812032


M. P. Silverman 
 

 

DOI: 10.4236/wjm.2018.812032 448 World Journal of Mechanics 
 

problem and, together with the 3 equations of static equilibrium, led uniquely to 
the solution [1] 

4
3 2

1
2
tan

W PRR R
β

µ θ µ

+
= = =

+
                     (4) 

( )( )
1 3

1tan tan 1
2

tan

W P
R W P R

θ µ θ β µ
µ

θ µ

 + + + − 
 = + − =

+
       (5) 

where the first equality in Equation (4) expresses the vanishing of the net hori-
zontal force in static equilibrium, and the first equality in Equation (5) expresses 
the vanishing of the net vertical force.   

The coefficient µ  is not predicted by the model, but is obtained empirically 
from the data (i.e. the measured reactions) by a method of visual inspection and 
adjustment [21] or by standard statistical fitting procedures such as the method 
of maximum likelihood, method of least squares, or Bayes’ theorem [22]. As 
shown in detail in Part I, the forces of reaction given by Equations (3)-(5) for a 
constant value of µ  satisfactorily accounted for all empirical reactions meas-
ured for a wide range of loads P and load locations β  for both a fixed ladder 
and a single E-B beam. (The ladder and beam were made of different mate-
rials—metal and wood, respectively—and therefore had different frictional con-
stants µ .) Models dependent on the elastic constants of the two structures did 
not agree with the data.    

Agreement between theory (Model 3) and experiment notwithstanding, it is 
important for both conceptual and practical purposes to show explicitly how 
well the reactions at the wall satisfy the assumed law of static friction.  This 
demonstration is given in Section 2.   

Resolution of the ladder problem by complementary information in the form 
of the proportionality relation Equation (3) raises an important general question 
regarding the application of Amontons laws. It is to be understood, of course, 
that the laws of friction are not physical laws on par with such universal prin-
ciples as the laws of thermodynamics or the law of conservation of electric 
charge. Rather, statement (1) is a kind of constitutive relation that depends on 
the properties of materials and the geometry of their surfaces. Nevertheless, the 
laws of friction find wide application throughout science and engineering, and it 
is necessary to be able to apply them correctly. 

The question that arises is this: If the forces of reaction parallel and normal to 
the wall are related by Equation (3), can one likewise relate the forces of reaction 
parallel ( 2R ) and normal ( 1R ) to the ground by a comparable expression  

2 1gR Rµ =                             (6) 

where gµ  is the corresponding frictional constant and can differ from µ ? The 
equation is enclosed in square brackets to emphasize that it is a conjecture to be 
examined, and not an established equality. 

The short answer to the question is “No”. Equation (3) and Equation (6) can-
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not both be correct because these 2 independent relations, together with the 3 
equations of static equilibrium, constitute 5 independent relations to determine 
4 unknown forces. Thus, the system would be over-determined and there would 
in general be no self-consistent solution. Since the experiments in Part I provided 
strong evidence in support of Equation (3), it must follow that Equation (6) can-
not be correct as it stands. But, given that there is friction at both the wall and 
ground, why is there asymmetry in the application of the law of static friction, 
and what is the theoretically valid relation that replaces Equation (6)? These 
questions are answered in Section 2. 

1.3. Outline of Paper 

In Section 2 the experiments in Part I are briefly recapitulated with additional 
technical details concerning the measurements of pressure, shear, and strain. 
The measured forces of reaction at the wall are shown to confirm directly the va-
lidity of Equation (3). An exact expression relating the parallel and normal 
forces of reaction at the ground is derived and tested against experimental re-
sults. Issues concerning the apparent asymmetric application of the laws of static 
friction are resolved. 

Conclusions to this work are summarized in Section 3. 

2. Relation between Parallel and Normal Reactions 
2.1. Experimental Arrangement and Procedure 

Figure 2 shows a schematic diagram of the experimental setup for measure-
ments made on a fixed ladder (L = 244 cm; W = 18.9 lbs = 84.07 N) inclined at 

68θ =   to the ground. Panel A shows a front view and panel B a side view of 
the ladder resting on two force platforms (one under each rail) level with the 
ground, with the top of the ladder resting against a third force platform mounted 
vertically to the wall. A sequence of loads P, composed of 1 to 4 lead bricks of 
weight 25 lbs (111.21 N) each, was placed at fractional lengths along the ladder 
given by ( )32,62,92,122,152,182 244β = . 

An analogous setup (not shown) was employed to measure the reactions on a 
single Euler-Bernoulli wood beam ( 204 cmbL = , 15.3 lbs 67.9 NbW = = ) in-
clined at 57.7bθ =   to the ground. Loads were applied in units of 2 kg masses 
stacked on a weight hanger of 444 g hooked to eyelets at positions 

( )42,72,102,132,162,192 204β =

 

 along the beam length.  
External and internal features of the force platforms are respectively shown in 

frames A and B of Figure 3. Vertical red arrows in frame A mark the locations 
of the 4 load cells that register pressure on the platform and therefore reactions 
normal to the wall or ground. These load cells are indicated by the 4 red circles 
in frame B. The red double arrow in frame A marks the orientation for measur-
ing shear on the platform and therefore reactions parallel to the wall or ground. 
This orientation corresponds to the direction of deformation of the central load 
cell marked by a red double arrow in frame B.   

https://doi.org/10.4236/wjm.2018.812032
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Figure 2. (A) Front view of experimental setup to measure the forces of reaction by the 
wall and ground on a simple ladder. (B) Side view showing disposition of all forces. Green 
boxes signify force platforms; red boxes represent lead bricks. The actual ladder used in 
the experiment had 7 rungs of which 6 were used. 
 

 
Figure 3. (A) External view of force platform comprising 4 strain gauges (corner arrows) 
to sense pressure and 1 strain gauge (double arrow) to sense shear. (B) Internal view 
showing location of pressure gauges (red circles) and shear gauge (red double arrow). The 
circuit board (green) contains a Wheatstone bridge circuit. 
 

Figure 4 shows an individual load cell in detail. Depending on orientation, the 
same cell can measure strain due to either pressure or shear. Each load cell com-
prises 2 parallel strain gauges on opposite side faces. The strain gauge itself con-
sists of a metal foil covered by an insulated flexible support, seen as the white  
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Figure 4. (A) Side view of double-bending beam load cell with strain gauges in front 
(white rectangle) and rear (not seen). (B) Top view of load cell employed to measure 
shear, i.e. force parallel to the contact surface of the force platform. The deformation 
stretches the upper strain gauge and compresses the lower strain gauge (exaggerated for 
visibility). The difference in resistance of the two gauges, as determined by a Wheatstone 
bridge circuit, is proportional to the strain. 
 
rectangle on the front face of the load cell in frame A. When a deformation 
stretches the metal foil, as shown (to an exaggerated extent for visibility) in the 
top strain gauge of frame B, the resistance of the foil is slightly increased. Cor-
respondingly, when a deformation compresses the metal foil, as shown in the 
bottom strain gauge of frame B, the resistance of the foil decreases slightly. The 
degree of strain is proportional to the difference in resistance of the upper and 
lower strain gauges, as determined by means of a Wheatstone bridge circuit 
which detects a potential difference between the two foils. As a typical example, 
a bridge excitation voltage of 10 V can give rise to a detectable output voltage on 
the order of millivolts, thereby permitting measurement of strains (length change 
per initial length) of a few parts in 1000.   

2.2. Test of the Law of Static Friction 

The relation between parallel and normal forces of reaction on a single Eu-
ler-Bernoulli wood beam is shown graphically in Figure 5 for the reactions at the 
ground (panel A) and at the wall (panel B). Each set of 4 circles of a given color 
mark measurements at a fixed fractional load location β  for the 4 loads (in new-

tons) given by ( ) ( )2 0.444P k k g= +  for 2,3,4,5k =  with 29.8 m sg −= ⋅ . 
The index k is shown in panel A above the corresponding set of 5 values of β , 

which are color coded as follows: 42
204

 (blue), 72
204

 (red), 102
204

 (green), 132
204

 

(gold), 162
204

 (brown). The load index k is not needed in panel B since circles of 

the same color follow an upward progression with load as in panel A. 
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Figure 5. Single wood beam: (A) plot of reaction 2R  parallel to the ground as a function 
of reaction 1R  normal to the ground and (B) plot of reaction 4R  parallel to the wall as 
a function of reaction 3R  normal to the wall, for 4 different loads P at 5 different loca-

tions β  (defined by color). P = (43.6, 63.2, 82.8, 102.4) N. 42
204

β =  (blue), 72
204

 

(red), 102
204

 (green), 102
204

 (gold), 162
204

 (brown). Measured values are marked by co-

lored circles; solid lines in panel A and the dashed line in panel B show theoretical values 
calculated from Equations (3)-(5) for wall coefficient 0.31µ = . The index k = 2, 3, 4, 5 
gives the load in N by ( ) ( )9.8 2 0.444P k k= × + . Vertical and horizontal scales are in 

newtons (N). 
 

The experimental points in panel B are consistent with the assumed law of 
static friction in which the parallel reaction at the wall is the same linear function 
of the normal reaction at the wall irrespective of the magnitude and location of 
the load. The superposed linear function (dashed black line), calculated theoret-
ically from Equation (3) and Equation (4), bears out Amontons 1st law for a 
frictional coefficient 0.31µ ≈  at the wall. Although there is a narrow spread of 
points about the dashed line, each set of 4 points of the same color approximates 
a line of the same slope—and therefore same value of µ —as the theoretical 
line.  

In contrast to the single linear relation in panel B, the pattern of experimental 
points in panel A shows unambiguously that each set of 4 points of a given color 
(i.e. variation of 2R  and 1R  with P for fixed load location β ) follows a linear 
relation whose slope and therefore frictional coefficient depend on β . The solid 
lines in panel A were calculated theoretically from Equation (4) and Equation (5) 
for the same wall coefficient 0.31µ ≈  as in panel B. Thus, the conjectured Eq-
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uation (6) must actually take the form 

( )2 1gR Rµ β= .                          (7) 

The functional form of ( )gµ β  can be derived from Equation (4) and Equa-
tion (5) by noting that a differential change in load dP at constant W and θ  
results in differential changes in reactions 1R  and 2R  of the form 

( )( )
2

1

d d

d tan 1 d

R K P

R K P

β

θ µ β

=

= + −
                    (8) 

where K is a constant. It then follows that the slope 

( ) ( )
2

1

d
d tan 1g
R
R

βµ β
θ µ β

= =
+ −

                   (9) 

depends on load location β , but is independent of the magnitude P of the load. 
Thus, as a consequence of the law of static friction (3) at the wall support, a 
modified linear force law, Equation (7) with slope given by Equation (9), turns 
out to be applicable at the ground support.     

The variation of 2R  as a function of 1R  measured (in newtons) on a fixed 

ladder is shown in Figure 6 for loads P = (25, 50, 75, 100) lbs at locations 32
244

β =  

(blue), 62
244

 (red), 92
244

 (green), 122
244

 (gold), 152
244

 (cyan), 182
244

 (brown). 

Superposed on each set of 4 points of the same color is both a linear fit (dashed 
line) obtained by visual trial and adjustment and the theoretical curve (solid line) 
calculated from Equation (4) and Equation (5). Table 1 records the empirical 
and theoretical slopes of the lines (calculated from Equation (9)), which are in 

excellent agreement for all placements of the load except for 122
244

β = . The dis-

crepancy in the latter case is slightly greater than for the other load locations β , 
both lower and higher along the ladder. The cause is uncertain, but conceivably 
could have arisen from a small displacement of one or both rails of the ladder 
from the center of the horizontal force platform (under which is the load cell to 
measure shear).   

As discussed in Part I, the force platforms described in the previous section 
did not permit direct measurement of the parallel force 4R  of the wall on the 
ladder. Unlike a single beam, which could be positioned with the top at the cen-
ter of the vertical platform—and therefore directly above the load cell that 
measures shear—the top of the ladder spanned the width of the platform. Small 
deviations in position of the ladder resulted in erratic variations in the resulting 
values for 4R . Nevertheless, 4R  could be obtained independently from the 
equation of static equilibrium in the vertical direction: 4 1R P W R= + − . Substi-
tution of Equation (3) for 4R  leads to the relation 

1 3R R P Wµ+ = +                        (10) 

which provides an independent test of the assumed frictional force law. In Fig-
ure 7 the left side of Equation (10) is plotted against the right side as a function  
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Figure 6. Simple metal ladder: plot of reaction 2R  parallel to the ground as a function of 
reaction 1R  normal to the ground for 4 different loads P = (25, 50, 75, 100) lbs (indi-
cated above each associated column of points) at 6 different locations (defined by color): 

32
244

β =  (blue), 62
244

 (red), 92
244

 (green), 122
244

 (gold), 152
244

 (cyan), 182
244

 (brown). 

Vertical and horizontal scales are in newtons (N). Dashed lines are linear fits to the data; 
solid lines are theoretically calculated values from Equations (3)-(5) for 0.25µ = . 
 

 
Figure 7. Simple metal ladder: plot of total upward reaction 1 4R R+  against total 
downward force W P+  with implementation of the law of static friction 4 3R Rµ= . The 
validity of the law requires that all points fall on the theoretical line (dashed) of unit slope 
irrespective of the magnitude of P (shown in lbs) and the location β  (color coded as in 
Figure 6). Vertical and horizontal scales are in newtons (N). 
 
of the 4 loads P for each of the 6 load locations β . If Equation (3) correctly 
represents the relation between parallel and normal forces of reaction at the wall, 
then the resulting plot should be a single straight line of slope 1 upon which all 
24 points should closely lie, since µ  is expected to be independent of P and β . 
Figure 7 shows that all experimental points do indeed fall on or very near to the 
theoretical curve (dashed line) calculated from Equations (3)-(5).  
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Table 1. Linear Variation of Reaction 2R  with 1R  (Ladder parameters: W = 18.9 lbs, L 

= 244 cm, 68θ =  ). 

Load Location β  Theoretical ( )gµ β  Empirical ( )gµ β  

32/244 0.049 0.050 ± 0.005 

62/244 0.095 0.095 ± 0.005 

92/244 0.143 0.150 ± 0.005 

122/244 0.192 0.205 ± 0.005 

152/244 0.242 0.240 ± 0.005 

182/244 0.294 0.300 ± 0.005 

2.3. Constraint on Sliding at the Ground 

A more complete and accurate formulation of the law of static friction—i.e. the 
friction between two dry bodies in the absence of relative motion—takes the 
form of an inequality. Stated in words [6]:    
• The force of sliding friction between two surfaces relatively at rest is less than 

or equal to a certain constant times the normal force to the surfaces.    (11) 
• The maximum force of friction between the two surfaces, which is the tan-

gential force required to initiate motion, is directly proportional to the nor-
mal force.                                                    (12) 

• The proportionality constant in statement (12) is the defined coefficient of 
friction.                                                      (13) 

Applied to the contact of the ladder at the ground, statements (11)-(13) be-
come 

2 max 0 1R F Rµ≤ =                       (14) 

in which maxF  is the maximum frictional force that the ground can provide, 
and 0µ  is the coefficient of friction of the ladder with the ground. The equality 
sign applies at the verge or onset of relative motion of the two surfaces. The 
physical content of Equation (14) is that if maxF  does not exceed the parallel 
force of reaction 2R  (which, by the equations of static equilibrium, is equal to 
the normal force of reaction 3R  on the ladder by the wall; see Figure 1), then 
the ladder will slide along the ground.   

Substitution of Equation (4) for 2R  into Equation (14) leads to the inequality 

( )( )
0

1
2

1tan tan 1
2

W P

W P

β
µ

θ µ θ β µ

+
≥

 + + + − 
 

           (15) 

which, to insure no sliding, relates the coefficient of friction 0µ  at the ground 
and the frictional constant µ  at the wall. If the wall is frictionless and the lad-
der carries no load, then Equation (15) reduces to a purely geometric relation  

( ) 1
0 2 tanµ θ −≥                         (16) 

that is frequently found in elementary mechanics textbooks [14]. Alternatively, 
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one can re-express Equation (15) to yield the threshold angle of inclination be-
low which the ladder will slide 

( ) ( )( )
( )min

1 1 1
2tan

g g

g

W P

W P

µ µ β µ µ β
θ

µ

− + − −
=

+
.           (17) 

The practical utility of relation (15) or (17) is that it determines the angles of in-
clination that should be safe for a climber of weight P to ascend to a specified 
height. Figure 8 illustrates the content of (15) for a 150 lb climber ascending a 
25 lb ladder leaning against a wall with frictional constant 0.25. In the figure, 
solid curves are plots of the right side of (15) for a fixed value of β  as a func-
tion of angle of inclination. Horizontal dashed lines mark the coefficient of fric-
tion at the ground, i.e. values of the left side of relation (15). For given values of 

0µ  and β , the ladder should not slide at the ground if inclined at an angle for 
which the corresponding solid constraint curve is below the corresponding 
dashed line. For example, if 0 0.3µ =  (orange dashed line) and the 150 lb 
climber is to ascend safely halfway up the ladder, 0.5β =  (solid green curve), 
then the ladder should be set an angle with the ground of ~ 60θ ≥  .   

2.4. Correct Use of Static Friction at the Wall and at the Ground 

In view of the content of Section 2.3, the question posed previously regarding the 
difference in how the laws of friction were applied at the wall and at the ground 
is seen to be the wrong question. Rather than asking why an equation of the 
form of (3) does not apply at the ground, the appropriate enquiry should be why 
an inequality of the form of (14) does not apply at the wall.    

The answer to the right question is that use of Equation (3) at the wall is entirely  
 

 
Figure 8. Plot of frictional constraint relation (15) vs angle of inclination (solid curves) 

for a 150 lb climber ascending a 25 lb ladder to fractional length 1 1 30, , , ,1
4 2 4

β = . Hori-

zontal dashed lines mark values of the friction coefficient 0 0.5,0.4,0.3,0.2,0.1µ = . The 
range of angles for which the ladder does not slide corresponds to lines of specified β  
below the lines of given 0µ . 

https://doi.org/10.4236/wjm.2018.812032


M. P. Silverman 
 

 

DOI: 10.4236/wjm.2018.812032 457 World Journal of Mechanics 
 

consistent with the laws of static friction under the prevailing condition by 
which equilibrium of the ladder or beam was maintained. In the reported expe-
riments, the ladder did not slide along the ground because friction provided by 
the ground exceeded the normal reaction 3R  on the ladder by the wall. If the 
ground were frictionless, the ladder would have slid down the wall because the 
maximum upward force of friction at the wall was less than the residual down-
ward vertical force 1W P R+ − . Note, however, that the vertical reaction 4R  on 
the ladder is the maximum force of friction obtainable from the wall—and 
therefore, according to statement (12), 4R  should be directly proportional to 
the normal force 3R  at the wall. In other words, Equation (3)—and not an in-
equality analogous to relation (14)—constitutes a legitimate application of the 
laws of static friction to the ladder. 

It is important to underscore that the theoretical model that was confirmed 
experimentally in Part I and in the preceding sections of Part II predicts the 
forces of reaction on a ladder under usual conditions of use. By “usual” is meant 
that the friction provided by the vertical support (the wall) is insufficient to pre-
vent the ladder from sliding at the ground if the contact between the ladder and 
the ground were smooth (i.e. nearly frictionless). One can imagine, however, a 
system—such as a ladder inclined against a very rough stone wall—whereby the 
maximum force of friction at the wall exceeds the net vertical force downward. 
Then, if it is still the case that the maximum force of friction at the ground ex-
ceeds the parallel reaction 2R , the laws of static friction become inequalities at 
both the wall and ground. Such a statically indeterminate system would again be 
unsolvable without further complementary information because the forces of 
friction cannot be related to the forces of reaction. Although the coefficients of 
friction at the wall and ground would determine whether the ladder slid or not, 
they would not enter, and therefore could not determine, the mathematical ex-
pressions for the forces of reaction in static equilibrium.  

The author is unaware of any published theory or experiment that examined 
the static equilibrium of a ladder supported at both base and top by surfaces suf-
ficiently rough that each alone was capable of preventing the ladder from sliding. 
One approach to analyzing such a system within the framework of boundary 
constraints introduced in Part I, might be to regard the ladder (or E-B beam) as 
pinned at both the ground and wall. To recapitulate briefly, the three funda-
mental kinds of supports commonly encountered in the mechanics of deforma-
ble media are roller, pin, and fixed [23]. The boundary conditions defining a 
pinned contact point is that (a) translational displacement at that point is zero; 
(b) the bending moment (torque) at that point is zero; (c) the deformation curve 
at that point has a non-zero slope. Conditions (b) and (c) reflect the fact that the 
beam (or a segment of a deformable beam) can rotate about the pinned contact.  

The model of a ladder as a single E-B beam pinned at both ends was not in-
cluded among the 3 models analyzed in Part I because it led to results that could 
be dismissed immediately as unrepresentative of the statics of a ladder in usual 
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use. These results, however, may apply to the extraordinary condition discussed 
now, and therefore the analysis is given here. The steps of the analysis are as fol-
lows. 

1) Transform reactions ( )1 2 3 4, , ,R R R R , which are perpendicular or parallel to 
the ground or wall, into reactions ( )1 2 1 2, , ,A A B B , which are axial or transverse 
with respect to the beam, as shown in Figure 9. 

2) Use the equations of static equilibrium to solve for the transverse reactions 
( )1 2,B B . This can be done because there is no unknown internal bending mo-
ments at pinned contacts with the ground and wall. (Note: Such moments exist 
for a fixed contact. See [1].) 

3) Write the expression for the axial strain energy. This will contain one of the 
axial reactions. (In the analysis below, the axial strain energy is expressed in 
terms of 2A .) 

4) Express the axial reaction in terms of one of the perpendicular or parallel 
reactions. (In the analysis below, axial reaction 2A  is expressed in terms of 
perpendicular reaction 1R .) 

5) Use Castigliano’s theorem [17] (pp 201-217) to implement the boundary 
condition that the end points of the ladder cannot displace either perpendicular 
or parallel to the ground or wall. Solve the resulting equation for the perpendi-
cular or parallel reaction. (The analysis below applies the constraint on perpen-
dicular displacement at the ground and solves for 1R .) 

6) From steps 2 and 5 the entire set of reactions ( )1 2 3 4, , ,R R R R  can be ob-
tained. 

From Figure 9 one can relate the forces normal and parallel to the ladder to 
the forces axial or transverse to the ladder as follows: 

1 1 2

1 1 2

2 3 4

2 3 4

sin cos
cos sin

cos sin
sin cos

A R R
B R R
A R R
B R R

θ θ
θ θ
θ θ

θ θ

= +
= −
= − +

= +

                     (18) 

with inverse relations 
 

 
Figure 9. Decomposition of forces of reaction into components axial (a) and tangential (t) 
with respect to the beam. W and P are respectively the beam weight and impressed load; 
θ  is the angle of inclination of the beam with respect to the ground. 
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1 1 1

2 1 2

3 2 2

4 2 2

cos sin
sin cos
sin cos

cos sin

R B A
R B A
R B A
R B A

θ θ
θ θ
θ θ
θ θ

= +
= − +
= − −

= +

                     (19) 

Solution of the equations of static equilibrium for the transverse reactions lead 
directly to 

( )1

2

1 1 cos
2
1 cos
2

B W P

B W P

β θ

β θ

 = + − 
 
 = + 
 

                   (20) 

From Equation (20) and the second and fourth relations of Equation (18), one 
can express 3R  and 4R  in terms of 1R  

( )3 1

4 1

1 cos1
2 sin

R R W P

R W P R

θβ
θ

 = − − − 
 

= + −
                 (21) 

Substitution of Equation (21) into the third relation of Equation (18) leads to 
the axial reaction 2A  in terms of the perpendicular reaction 1R  

( )2 2
1

2

11 cos 1 cos
2

sin

W P R
A

θ β θ

θ

 − + − − 
 = .            (22) 

The axial strain energy takes the general form 

( )2

0

1 d
2

L
a aU F x x

EA
= ∫                      (23) 

where ( )aF x  is the compressive or tensile force throughout the beam. Apply-
ing Equation (23) to a ladder modeled as an E-B beam, one finds 

( )( ) ( )( )12 2
2 20

1 sin sin d 1 sin d
2a

LU A W P A W
EA

β

β
ξ θ θ ξ ξ θ ξ = − − − + − −  ∫ ∫ (24) 

after making a transformation of variables x Lξ = . Substitution of Equation 
(22) into Equation (24) and solution of the equation resulting from Castigliano’s 
theorem 

( )

1

0g aU
R

δ⊥

∂
= =
∂

,                         (25) 

where ( )gδ⊥  is displacement of the contact point at the ground in the direction 
of force 1R , leads to 

( )1
1 1
2

R W Pβ= + −                        (26) 

from which follows from Equation (21) 

4
1
2

R W Pβ= +                          (27) 

and 
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2 3 0R R= = .                        (28) 

The axial reactions at the base and top of the ladder  

( )1
1 1 sin
2

A W Pβ θ = + − 
 

                 (29) 

2
1 sin
2

A W Pβ θ = + 
 

                     (30) 

follow from Equation (28) and the first and third relations of Equation (18). 
The set of reactions (26)-(28) are independent of the angle of inclination θ , 

in marked contrast to the forces of reaction on an inclined ladder under usual 
circumstances. The foregoing solution is likewise obtained if the axial strain 
energy function (23) were expressed in terms of the parallel reaction 2R  and 
the application of Castigliano’s theorem took the form  

( )

2

0g aU
R

δ
∂

= =
∂

                         (31) 

where ( )gδ


 is displacement of the ground contact point in the direction of 2R . 
In fact, the same solution is obtained by applying Castigliano’s theorem directly 
to the axial strain energy function (24) without making the transformation (22). 
Although this would have been a simpler way to solve the problem, the approach 
was not followed here because the corresponding virtual displacement 

( )wall
axial 2aU Aδ = ∂ ∂  or ( )ground

axial 1aU Aδ = ∂ ∂  would be in a direction not permitted 
by the ground and wall constraints. 

3. Conclusions 

In the paper [1] designated Part I, the author derived theoretically and con-
firmed experimentally a solution to the long-standing “ladder problem”, i.e. the 
problem to predict the 4 forces of reaction on a fixed ladder resting on horizon-
tal ground and inclined against a vertical wall. The solution was obtained by 
combining the equations of static equilibrium and an equation for the force of 
static friction at the wall. In the present paper, designated Part II, the frictional 
force measured at the wall was shown to be proportional to the normal force 
measured at the wall, thereby confirming use of Amontons law of static friction. 
This relation held true experimentally for the same proportionality constant µ  
over a wide range of loads and different load positions along the ladder. Com-
parable experimental and theoretical agreement was also demonstrated for the 4 
forces of reaction measured on a single wood beam inclined against a wall.  

The foregoing proportionality of parallel and normal reactions was shown not 
to hold at the ground. At the ground, the theory predicted—and the measured 
reactions confirmed—that the force of friction and the normal force were li-
nearly related by a coefficient that depended sensitively on the position (al-
though not the magnitude) of the load. This apparently asymmetric consequence 
of friction at the wall and at the ground was resolved by noting that, in general, 
the law of static friction takes the form of an inequality. The law becomes a li-
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near proportionality only when the frictional force is the maximum obtainable 
from the immovable surface. This explanation envisions a system, such as ex-
amined experimentally in this paper and in Part I, in which a movable object (e.g. 
ladder) can slide against an immovable object (e.g. wall). It is understood, of 
course, that the force of friction depends on both surfaces. 

If this explanation is correct, then the following conclusions can be drawn 
from it regarding the role of friction in the experiments reported in Parts I and 
II: 
• Friction at the ground physically maintains the ladder or beam in static equi-

librium by preventing sliding. 
• Friction at the wall (together with the equations of static equilibrium) deter-

mines theoretically the four forces of reaction. In other words, the coefficient 
of friction at the ground does not enter any of the theoretical expressions for 
the reactions. 

• The reason why friction affected the ladder or beam differently at the ground 
than at the wall (i.e. “inequality” vs. “proportionality”) is due to the fact that 
the magnitude of friction, relative to other acting forces, was different at 
those two supports. At the ground, the maximum obtainable friction was 
greater than the parallel reaction 2R . At the wall, the maximum obtainable 
friction (identical to the parallel reaction 4R ) was less than the net down-
ward force. 

• In light of the preceding comments, the frictional constant µ  in Equation 
(3) is the canonically defined coefficient of friction at the wall—and therefore 
should yield (within experimental error) the same numerical value indepen-
dent of load and load placement whether deduced from the forces of reaction 
on the ladder or measured by any of the standard methods for determining 
coefficients of static friction [24] [25].   

The forces of reaction derived and tested in Parts I and II pertained to a phys-
ical system in which the force of friction at the wall was insufficient by itself to 
maintain the ladder in static equilibrium, i.e. to keep the ladder from sliding if 
the ground surface was smooth. Under the uncommon circumstance where a 
ladder is supported by two rough surfaces (ground and wall) at which neither 
the top nor base of the ladder is on the verge of sliding, the effect of friction at 
each surface must be expressed by an inequality. This statically indeterminate 
problem would then require additional complementary information to be solva-
ble. In the model analyzed in Section 2.4 of a single-beam ladder with both ends 
pinned, this complementary information made use of the axial strain energy 
function of the beam, although the resulting forces of reaction were found not to 
depend on the elastic constant E. 

The author is unaware of any experimental test of such a system. Whether the 
model of an inclined Euler-Bernoulli beam pinned at both ends satisfactorily 
describes a ladder in static equilibrium under the hypothetical condition por-
trayed above can be decided only by an experimental test. Such a test is outside 
the scope of this paper. 
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