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Abstract 

The human body is colonized with commensal microbes that attach to the skin and 

mucosal membranes and function to protect the host as part of the innate immune response. 

These indigenous microbiota are able to prevent infections by blocking attachment sites and 

outcompeting invading pathogens for necessary nutrients. Disturbance of the host-microbe 

symbiotic balance may increase a host’s susceptibility to disease. In addition, proper 

colonization of the normal flora has been implicated in playing a vital role in shaping the 

immune response. It has been hypothesized that reduced exposure to infectious 

microorganisms early in life can disrupt the development of normal immune regulation. This 

“hygiene hypothesis” states that the increased prevalence of allergic diseases in developed 

countries can be attributed to a more hygienic, westernized lifestyle that is characterized by a 

decrease in microbial challenges. Therefore, the allergic disease asthma, which is 

characterized by a heightened inflammatory response, could be the result of disturbed 

microbial colonization, hindrance of immune maturation, and subsequent disregulation of the 

allergic response. It would be expected that asthmatic individuals would exhibit a less diverse 

and less abundant population of normal flora as compared to non-asthmatic individuals. This 

preliminary study investigated the bacterial communities found in the upper respiratory tracts 

of asthmatic and non-asthmatic subjects. Terminal restriction fragment length polymorphism 

(tRFLP) was used to examine the composition of bacteria in oropharyngeal samples collected 

from student volunteers at Trinity College. The tRFLP profiles of asthmatic and non-

asthmatic subjects produced conflicting results, and it cannot be concluded if there is a 

difference in the diversity or abundance of bacterial communities in the upper respiratory 

tracts of both populations.  
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Introduction 

 Within the human body, a complex and symbiotic relationship exists between host 

cells and the indigenous microbiota known as normal flora. Shorty after birth, the skin and 

initially sterile mucosal membranes, such as the upper respiratory tract and the vaginal tract 

of the neonate are colonized with these commensal microbes. The greatest density of normal 

flora is found in the gastrointestinal tract, which contains approximately 1012 organisms per 

gram of intestinal content and around 1,000 different species (Macpherson and Harris, 2004). 

After approximately one week of life, colonization of the body is considered complete 

despite the fact that during the following three months there are enormous fluctuations in the 

abundance and number of species of bacteria (Björkstén, 2005). These differences are 

influenced by early life factors, which include type of birth and diet. For example, during 

birth, vaginally delivered babies are exposed to their mother’s vaginal and fecal normal flora 

and will therefore acquire similar bacterial communities, such as Lactobacillus or Prevotella. 

Contrastingly, infants delivered by caesarean section will encounter maternal skin bacteria 

and will therefore acquire skin associated bacterial normal flora, such as Staphylococcus and 

Corynebacterium (Dominguez-Bello et al., 2010). Diet can also influence colonization as 

studies have shown that intestinal flora differs between newborns who are breast-fed and 

those who are formula-fed (Harmsen et al., 2000).  

 The normal flora of the body exists as a type of ecosystem that, once established, is 

surprisingly stable under normal conditions (Björkstén, 2005). Most importantly, these 

commensal microbes function as part of the innate (nonspecific) immune response to help 

defend the host from infection. By colonizing the epithelial cells of mucosal surfaces, the 

nonpathogenic normal flora act as an anatomical barrier and are able to outcompete invading 
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pathogens for attachment sites and the available necessary nutrients (Goldsby et al., 2000). 

Normal flora can also produce compounds such as bacteriocins that inhibit or kill other 

bacteria. In addition to their role in the innate immune system, normal flora can also 

synthesize and excrete necessary vitamins and nutrients for the host. For example, Eschericia 

coli found naturally in the intestines is responsible for supplying the human body with 

Vitamin K (Todar, 2012). 

 Disturbance of the normal flora and any alteration of the existing bacterial symbiosis 

can result in disease by allowing pathogens to overcome protective factors. A common 

example of this, although a minor ailment, is digestive distress following the use of 

antibiotics. Broad-spectrum antibiotics, which act against a wide range of bacteria, can kill 

both invading pathogens as well as commensal microorganisms. The microbial ecosystem of 

the GI tract is disrupted, and as a result, food is improperly digested. In addition, many 

females experience yeast infections following antibiotic use because the vaginal tract flora is 

altered and the natural yeast is able to multiply and colonize in greater-than-normal amounts. 

While digestive distress and yeast infections are mostly just uncomfortable and fleeting, the 

disturbance of normal flora has also been implicated in the development of allergic disorders. 

 Over the past couple of decades, the prevalence of allergic and atopic diseases has 

been on the rise (Strachan, 1989), and this is especially true in industrialized countries with 

market economies (Burney, 1993). Atopic individuals have a genetic predisposition to a 

hypersensitive response and unusually high levels of IgE and allergy-related immune cells 

such as eosinophils and mast cells, in their bodies (Goldsby et al., 2000). One of the earliest 

studies to recognize an increase in allergic disease among “westernized” individuals found 

that a white community in central Saskatchewan, Canada had a much higher prevalence of 
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asthma and eczema than the Metis (aboriginal) community in northern Saskatchewan. The 

Metis community was burdened with helminth infestation as well as other untreated viral and 

bacterial diseases. Gerrard et al. (1977) attributed this difference in allergic disease 

prevalence as the “price paid by some members of the white community for their relative 

freedom” from the bacterial diseases. Then in 1989, David P. Strachan found that the risk of 

allergic diseases was lower for individuals who had more siblings, i.e. an inverse relationship 

exists between household size and allergy prevalence (Strachan, 1989). Children who live 

with a large number of siblings are more often exposed to common infections early in life 

than children with a smaller family size. And as a result of these findings, Strachan 

developed the “hygiene hypothesis,” which states that the reduced microbial stimulation 

during infancy and early childhood, as a result of improved hygienic conditions, is associated 

with the increasing prevalence of allergic disorders (Strachan, 1989). Therefore, exposure to 

microbes is essential for the development of normal immune regulation.  

 Many studies have been conducted to investigate the hygiene hypothesis and whether 

or not early exposure to infectious microorganisms can have an effect on subsequent allergy 

development. In 1997, a Swedish study followed children from birth to 12 – 15 years of age 

and found that those born during the tree pollen season (spring) were less likely to develop 

sensitization to pollen and allergic rhinoconjunctivitis than those born between September 

and February (Nilsson et al., 1997). In terms of pet ownership, early exposure to cats is 

associated with decreased cat sensitization later in life (Hesselmar et al., 1999; Roost et al., 

1999) and dog exposure at birth is associated with decreased atopic dermatitis and wheezing 

at age 3 (Bufford et al., 2008). Overall, exposure to household pets in the first years of life is 

associated with reduced allergic rhinitis, asthma, and decreased sensitization to indoor and 
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outdoor allergens in general in school children (Hesselmar et al., 1999; Anyo et al., 2002). 

Also, growing up on a farm, which is regarded as “less-hygienic” environment, is associated 

with reduced incidence of hayfever, asthma, and atopic sensitization in children (Kilpeläinen 

et al., 2000; Riedler et al., 2000). Finally, in addition to exposure to pollen and animals early 

in life, a study conducted in Italy found that respiratory allergy is less frequent in people who 

are heavily exposed to orofecal and foodborne microbes. These results supported the idea 

that a hygienic, westernized lifestyle in developed countries may contribute to the 

development of allergy.  

Allergy, or hypersensitivity, is an inappropriate and oftentimes heightened immune 

response that causes damage to the host. In a typical infection, however, the two main 

branches of the immune system known as the adaptive and the innate response will be able to 

recognize and eliminate invading pathogens without causing any self-harm. The innate 

response eliminates foreign microorganisms in a non-specific manner through multiple 

barriers, which include normal flora, mucosal membranes, and macrophages (cells that 

phagocytose and break down whole microorganisms). The immune cells of the adaptive 

response are able to recognize specific pathogens via a humoral or cell-mediated response. 

The B cells of the humoral response have membrane bound antibodies, which are able to 

recognize foreign antigens. Over time, as these cells are consistently exposed to a particular 

antigen, they can differentiate to plasma cells that secrete the specific antibody to the 

pathogen or to memory B cells that will be able to quickly recognize the antigen if it were to 

infect the host again. Therefore, the body is prepared to eliminate the antigen in the future. 

As an overview of the cell-mediated response, T cells recognize the antigen when it is 

presented by an infected, or altered, self-cell. As a result, T helper (TH) cells produce 
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chemical messengers known as cytokines to stimulate other immune cells and cytotoxic T 

cells (TC) respond by killing the altered self-cell. There are many areas of regulation in the 

immune response, but as a general overview, the immune cells are responsible for fighting 

off antigens with localized responses that do not cause any harm to the host, and in fact, can 

provide protection against future infections. In allergy, however, certain substances known as 

allergens trigger an inappropriate response that increases host sensitivity to the antigen, 

rather than protection. (Goldsby et al., 2000) 

Common allergens such as pollen, animal dander, and dust are antigens that will 

stimulate the humoral part of the adaptive immune response. Specifically, the majority of 

allergic reactions involve the actions of antibody (immunoglobulin) IgE. In a hypersensitive 

response, IgE antibodies, which are released by activated B cells and are membrane bound to 

histamine-releasing mast cells, recognize and bind to allergens. This cross-linking of allergen 

to mast cells induces the release of histamine and other molecules that will cause 

inflammation and irritation in the form of hives, eczema, or other local allergic responses. 

(Goldsby et al., 2000) 

Asthma is an example of an IgE mediated allergic disease with a hypersensitive 

response that occurs in the lower respiratory tract. Asthma attacks, which are a sudden 

worsening of asthma symptoms, such as wheezing, coughing, and shortness of breath, can be 

brought on by a number of triggers. These include typical allergens such as pollen and dust, 

and even allergen-independent factors such as exercise or cold weather. In an allergen-

induced reaction, IgE triggers the degranulation of mast cells and later responses such as 

mucus secretion, vasodilation, bronchial hyperresponsiveness, and airway inflammation 

(Busse and Lemanske, 2001). Although bronchoconstriction is a major component of asthma 
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pathophysiology, the disease is typically regarded as an inflammatory disorder that involves 

recruitment of inflammatory immune cells, such as eosinophils and neutrophils, into the 

bronchial tissue (Goldsby et al., 2000). In fact, a marked increase in blood eosinophil levels, 

known as eosinophilia, is associated with increased risk of asthma (Karakoc et al., 2002). In 

addition, prevalence of asthma is very closely related to serum IgE level, and asthma related 

reactions are almost always associated with heightened IgE (Burrows et al., 1989). High 

levels of IgE have also been found to precede allergic sensitization, indicating that a defect in 

immune system development can predispose an individual to allergic disease (Sherill et al., 

1999).  

T lymphocytes (T cells) are white blood cells that also play a role in allergic asthma. 

In the immune system, the two major T helper (TH) cell responses are known as TH1 and 

TH2, which mediate cellular defense mechanisms and allergic inflammation, respectively.  

TH2 cells produce the cytokines interleukin-4, 5, 6, 9, and 13 to recruit and communicate 

with other inflammatory cells (Busse and Lemanske, 2001). A balance exists between TH1 

and TH2 immunity, as they inhibit each other to prevent exaggerated immune reactions. In 

atopic individuals as compared to nonatopics, however, there is a bias towards production of 

TH2 cytokines (Romagnani, 1994). An imbalance between these helper lymphocytes has also 

been implicated in the development of asthma (Busse and Lemanske, 2001) as studies have 

revealed an overproduction of TH2 cells as opposed to TH1 cells in asthmatics (Holgate et al., 

2009). In addition, the amounts of IL-4, IL-5, and IL-13 cytokines are heightened in 

asthmatic airways (Neurath et al., 2002). This disregulation of immune cells can be linked to 

the hygiene hypothesis as less microbial pressure early in life could have delayed the 

postnatal maturation of the immune system. Therefore, the optimal balance between TH1 and 
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TH2 immunity was never able to develop, allowing the body to favor one immune response 

over the other.  

It is possible that the overexaggerated allergic response exhibited in asthma and other 

inflammatory diseases can be related to normal flora. The link between the hygiene 

hypothesis, normal flora colonization, and subsequent development of allergy has been 

examined primarily in the gastrointestinal tract. The gastrointestinal tract is responsible for 

many bodily functions such as digestion, but it is also the body’s largest organ of host 

defense. It drives development of the body’s immune response, and colonization of balanced 

normal flora is important for proper maturation of immune effector cells (Björkstén, 2005). 

For example, the normal flora of the GI tract is the principal signal for postnatal maturation 

of T-cell function and the balance between TH1 and TH2 responses (Holt et al., 1997). 

Therefore, disturbances in normal flora colonization could result in improper immune 

regulation and later development of allergic disease. Studies have shown that there is an 

association between these factors. Differences in neonatal gut microflora have been shown to 

precede atopic disorder (Kalliomäki et al., 2001), reinforcing the idea that an individual can 

have a predisposition to allergic disease as a result of their infant normal flora colonization. 

A study conducted in 1999 revealed that allergic children in Estonia were less often 

colonized with commensal microbes of the genus Lactobacilli as compared to non-allergic 

children in Sweden (Björkstén, 1999). A later study found that infants who had non-allergic 

parents were also more frequently colonized with Lactobacilli compared to infants with 

allergic parents, and non-allergic infants acquired Lactobacilli more frequently than allergic 

infants. In addition, at one week of life, significantly more non-allergic children were 

colonized with the commensal microbe B. bifidum than allergic children (Johansson et al., 
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2011). A more diverse gut microbiota early in life may help to prevent the development of 

allergy (Sjögren et al., 2009). 

Microorganisms of the genus Lactobacilli have been implicated in potential probiotic 

use to stimulate a proper immune response in the gastrointestinal tract (Salminen and 

Deighton, 1992). Allergic subjects who were exposed to Lactobacillus-based probiotics 

exhibited a shift in TH cell immunity from an exaggerated TH2 response to the development 

of a TH1 response with suppression of TH2 cytokines (Ghadimi et al., 2008). In addition, 6-

month old infants who were fed daily Lactobacillus-based supplements exhibited promotion 

of a more diverse and evenly distributed gastrointestinal normal flora, indicating a healthier 

microbial ecosystem (Cox et al., 2010). Depletion of commensal bacteria can result in GI 

inflammatory diseases, such as Crohn’s disease and ulcerative colitis, which have been found 

to have significantly different microbiota as compared to healthy individuals (Frank et al., 

2007).  

 As many studies have revealed the relationship between normal flora and the proper 

maturation of the immune system, the importance of these results has been clearly shown in 

studies of germ free (GF) animals. Germ free rodents have never been exposed to any type of 

microorganism, pathogenic or non-pathogenic, while specific pathogen-free mice are 

colonized solely by normal flora. When challenged with ovalbumin, a typical protein used to 

stimulate an allergic reaction, germ free mice had significantly more production of IL-4, a 

TH2 mediating cytokine, as well as a significantly reduced TH1 response as compared to 

specific pathogen-free mice. When the neonatal germ free mice were recolonized with 

Bifidobacterium infantis, typically found in the GI normal flora, the exaggerated TH2 

response was mitigated (Sudo et al., 1997). A more recent study found that after induction of 
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allergic airway inflammation, GF mice had elevated lymphocytes, eosinophils, basophils, 

TH2 associated cytokines, and IgE production as compared to specific pathogen free mice 

(Herbst et al., 2011). Overall, GF mice had an exaggerated allergic response and increased 

bronchial hyperresponsiveness, indicating that normal flora plays a pivotal role in modulating 

this immune reaction. 

 The gastrointestinal tract and the upper respiratory tract are both mucosal surfaces 

with normal flora lining the epithelial cells. Inflammatory GI diseases are attributable to a 

disregulation in the immune response, and because differences have been found in the 

composition of normal flora in the GI tract of allergic and non-allergic individuals, it can be 

hypothesized that a similar relationship exists in the upper respiratory tract. Patients with 

moderate to severe chronic obstructive pulmonary disease (COPD) exhibit exaggerated 

airway inflammation, and the normal flora of COPD patients has been found to be 

remarkably less diverse than the flora of healthy patients (Erb-Downward et al., 2010). 

Therefore, the allergic disease asthma, characterized by an inflammatory response, could also 

be the result of disturbed microbial colonization, hindrance of immune maturation, and 

subsequent disregulation of the allergic response. It would be expected that asthmatic 

individuals would exhibit a less diverse and less abundant population of normal flora as 

compared to non-asthmatic individuals. 

 The purpose of this pilot study was to use molecular, rather than culture-based tools, 

to examine the bacterial flora colonizing the oropharynx in individuals with and without 

asthma. The benefits of molecular tools as compared to culture-based have been well 

documented in the literature. This study aims to process biological samples using Terminal 

Restriction Fragment Length Polymorphism (tRFLP). This technique exploits the base pair 
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differences found in the bacterial 16s rRNA gene. The 16s rRNA transcribed by this gene is a 

component of the small ribosomal subunit and plays a vital role in protein synthesis. 

Therefore, it is present in all bacterial species, and it is highly conserved evolutionarily.  

 Previous studies have targeted the 16s rRNA gene during Polymerase Chain Reaction 

(PCR) amplification by using fluorescently labeled primers that are universal to all bacterial 

species (Liu et al., 1997). During amplification, the primers anneal to highly conserved 

regions of the 16s rRNA gene, producing an amplified fragment with labeled terminal ends. 

Then, the DNA is digested by restriction enzymes so that the slight polymorphisms between 

species will produce different fragmentation patterns. The resulting fluorescently labeled 

terminal fragments are unique to each species and can be used to generate a genetic 

“fingerprint.” By using this method of tRFLP, this study will examine the bacterial 

communities in the upper respiratory tracts of asthmatic and non-asthmatic individuals. 

Specifically, the relative amount of bacteria present in each group as well as the overall 

diversity of the bacterial species present in the upper respiratory tract will be analyzed. A 

greater understanding of the normal flora present in asthmatic versus non-asthmatic 

individuals may offer alternative treatments in the form of probiotics. 
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METHODS 

 

Collection of Throat Swab Samples From Trinity College Students 

 In December 2010, the Trinity College Health Center collected throat swab samples 

from Trinity College students. The participants signed an informed consent and completed an 

anonymous questionnaire regarding current health status, tobacco use, alcohol use, recent 

antibiotic use, and chronic disease (Appendix). Then, Health Center employees obtained 

oropharyngeal throat swab samples from the participants. The samples and corresponding 

questionnaire were labeled with matching identification numbers and then separated. In this 

manner, student researchers remained “blind” to the data. One milliliter of dH2O was added 

to the throat swab sample tubes, and then they were refrigerated until they were ready to be 

analyzed. Questionnaires remained locked in a drawer in the office of Dr. Lisa-Anne Foster 

until throat swab analysis was complete.  

  

Preparation of PCR template from Throat Swab 

Throat swabs were swirled around the 1mL of dH2O to resuspend as many bacterial 

cells as possible. The suspended cells were centrifuged for 5 minutes at 13,000 rpm, and then 

the supernatant was transferred to a sterile 1.5 mL tube. An additional 1mL dH2O was added 

to the tube containing the centrifuged pellet, and pipetted up and down to thoroughly 

resuspend the cells.   
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Amplification of the 16s rRNA gene: Polymerase Chain Reaction 

Fluorescently labeled universal primers U1 Fam (5’-[6-fam]CCAGCAGCCGCGG 

TAATACG-3’) and U2 Hex (5’-[5hex]ATCGGYTACCTTGTTACGACTTC-3’) were 

selected to anneal to the 16s rRNA region of the bacterial genome during amplification. In a 

total reaction mixture of 50 µL, reagents from the Qiagen PCR Core Kit (stored at -20°C) 

including, 5µL of 10x buffer, 10 µL of Q buffer, 1 µL of dNTP and 0.25 µL of Taq 

polymerase, were added to 28.35 µL of dH2O and 5 µL of DNA template. In addition, 0.2 µL 

of each 50 µM fluorescently labeled primer (U1 Fam and U2 Hex) was added for a final 

concentration of 0.2 µM. An additional negative control was prepared with all necessary 

components, except 5 µL of dH2O in replacement of DNA template. The PCR tubes were 

placed in the thermal cycler to amplify the DNA via the 16s rRNA AMP cycling program.  

The program began with a 5-minute initial denaturation at 94.0°C, followed by 30 

cycles of a 1 min denaturation at 95.0°C, 1 min annealing at 50.0°C, 1 min extension at 

72.0°C, 2 min final extension at 72.0°C. The program ended with a final hold at 4.0°C.  

 

Gel Electrophoresis 

 In a gel electrophoresis chamber, 0.5x TBE buffer was poured over polymerized 

1.2% agarose gel and then loaded with 2 µL of 6x gel loading dye that had been combined 

with 10 µL of amplified 16s rRNA products. The DNA in bacterial samples was not 

quantified. In addition to the samples and the negative control, a ladder containing 9µL 

dH2O, 2µL 6x gel loading dye, and 1µL of 1 kilobase (kb) DNA ladder, was added as a 

measure of fragment size to detect the ~996 bp 16s rRNA gene. The gel was run at 

approximately 80 to 100 volts for 60 – 90 minutes. Upon completion, the gel was removed 
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from the electrophoresis chamber and bathed in a solution of 25 µL of 10 mg/mL EtBr in 200 

mL dH2O for approximately 20 minutes to stain the bands. 

 

Purification 

 Protocol for purification with the QIAquick PCR Purification Kit was followed 

according to the manufacturer’s (QIAGEN) instructions. Buffer PB was added to the 

amplified product at a ratio of 5:1. If the mixture was an orange or violet color, 10 µL of 

sodium acetate was added to produce a color change to yellow. The entire mixture of Buffer 

PB, amplified product, and sodium acetate was centrifuged in a QIAquick column for 1 

minute at 13,000 rpm, and the flow through was discarded. Then, 750 µL Buffer PE was 

added and centrifuged in the same manner twice, with discarding of the flow through in 

between cycles. The cap of the QIAquick column, containing the QIAquick membrane, was 

transferred to a sterile 1.5mL centrifuge tube, and 35µL Buffer EB was added directly to the 

membrane. The columns were left to stand vertically for 1 minute, and then centrifuged again 

to collect the purified product. Purification of products was completed both after PCR and 

again after restriction digestion.  
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Restriction Digestion 

 In sterile 1.5mL centrifuge tubes, 15µL of purified product, 2µL of dH2O, 2µL of 10x 

NEBuffer 4, and 1µL of restriction enzyme were combined. Possible restriction enzymes 

included AluI, HaeIII, and MnlI. The reaction mixture was incubated at 37°C for 4 hours. 

Enzyme Restriction Site 
AluI 5’…AG↓CT…3’ 

3’…TC↑GA…5’ 
HaeIII 5’…GG↓CC…3’ 

3’…CC↑GG…5’ 
MnlI 5’…CCTC(N)7↓…3’ 

3’…GGAG(N)6↑…5’ 
 

Preparation of Purified Samples for Fragment Analysis by Capillary Electrophoresis 

 In a 96 well plate, 48 samples were prepared at two different dilutions. Purified throat 

swabs samples were combined with highly deionized formamide at both a 5µL:5µL and 

7µL:3µL mixture, respectively. Purified known organisms were combined with highly 

deionized formamide at both a 1µL:9µL and 5µL:5µL mixture, respectively. The 96 well 

plates were packaged and mailed to the DNA Analysis Facility on Science Hill at Yale 

University for capillary electrophoresis on a 3730xl 96-Capillary Genetic Analyzer. 

 

Software Analysis of DNA Fragments Using PeakScanner 

 Fluorescently labeled peaks on the electropherograms, representing U1 Fam and U2 

Hex terminal fragments of the amplified region of the bacterial 16s rRNA genes, were 

labeled using the program PeakScanner (Applied Biosystems). Number of peaks, abundance, 

and size were recorded for each sample in Microsoft Excel. After all data for throat swab 

samples was collected and tabled, subject surveys were opened from their sealed envelope. 
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Then, to eliminate experimenter bias, the surveys were matched with electropherogram data. 

The average number of U1 Fam and U2 Hex peaks for every subject was calculated, and the 

means between asthmatic and non-asthmatic subjects were compared using a student’s t-test 

(Microsoft Excel). In addition, the total abundance of U1 Fam and U2 Hex peaks for every 

subject was calculated, and the totals between asthmatic and non-asthmatic subjects were 

compared using a student’s t-test (Microsoft Excel). 
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RESULTS 

 

 The goal of this study was to use Terminal Restriction Fragment Length 

Polymorphism (tRFLP) to quantify the number of bacterial species present and the 

abundance of bacterial communities in the upper respiratory tracts of asthmatic and non-

asthmatic subjects. The fluorescently labeled universal primers, U1 Fam and U2 Hex, were 

used to anneal to the terminal ends of the 16s rRNA bacterial gene during PCR amplification 

of throat swab samples. DNA samples were purified and digested with the restriction enzyme 

Mnl1. The digested samples were purified again and sent to Yale University for fragment 

analysis by capillary electrophoresis. The Capillary Genetic Analyzer detected the terminal 

fragments of each amplified gene by the fluorescently labeled U1 Fam and U2 Hex primers. 

 Our lab received fragment analysis data from Yale University in the form of 

electropherograms. The Y-axis represented the relative fluorescence, and ultimately, the 

abundance of the fragment. The X-axis represented the size of the DNA fragment (in base 

pairs). The green peaks corresponded to the terminal fragments labeled with the U1 Fam 

primer while the blue peaks corresponded to the terminal fragments labeled with the U2 Hex 

primer.  

This study was concerned with investigating the diversity and abundance of the 

bacterial communities found in the upper respiratory tract of asthmatic and non-asthmatic 

individuals. In an electropherogram, the pair of a U1 Fam peak and a U2 Hex peak 

corresponds to the two terminal fragments of a gene of a single bacterial species. Therefore, 

the total number of peaks in an electropherogram is representative of the bacterial diversity 

(the number of species) found in the analyzed throat swab sample. In addition, the relative 
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fluorescence (height) of the peaks indicates the abundance of the fragments. Therefore, the 

total height of all the peaks in an electropherogram can be used to determine the relative 

bacterial abundance in a throat swab sample. 

 In our investigation, sixty throat swab samples that were collected from Trinity 

College students were analyzed. Digestions were completed using the restriction enzyme 

MnlI, while further analysis with addition enzymes is underway. Eleven students identified 

themselves as asthmatics while forty-nine students identified themselves as non-asthmatics. 

Non-asthmatics had significantly more U2 Hex peaks than asthmatics (Table 1, t-test, 

p=0.0193), indicating that non-asthmatics had more bacterial species, represented by the U2 

Hex terminal fragments, present in their throat swab samples. However, there was no 

difference between the average number of U1 Fam peaks in the asthmatic and non-asthmatic 

samples (Table 1, t-test, p=0.1231). Because the terminal fragments are paired together for 

one species, there should be one U1 Fam peak for every U2 Hex peak in a given sample. 

Therefore, within an experimental group the average number of U1 Fam and U2 Hex peaks 

should be the same. This is seen in the asthmatic population, as the average number of both 

the U1 Fam peaks and the U2 Hex peaks is 2.05 (Table 1). Unfortunately, the non-asthmatic 

population deviates from this expected result as the average number of U1 Fam peaks is 2.84 

and the average number of U2 Hex peaks is 3.60 (Table 1), indicating that there are more U2 

Hex peaks than U1 Fam peaks. As a result, it cannot be determined if the number of bacterial 

species present in the upper respiratory tract is different between asthmatics and non-

asthmatics. At this time, the data is conflicting as one primer (U1 Fam) indicates that there is 

the same number of species present, while the other (U2 Hex) indicates that non-asthmatics 
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have a greater number of bacterial species in their throat swab samples. Both primers need to 

be in agreement for a conclusion to be made. 

 

 

Table 1: Average number of U1 Fam and U2 Hex peaks for asthmatic and non-asthmatic 

throat swab samples digested with Mnl1 (means reported ± standard deviation).  

 
 U1 Fam U2 Hex 

Asthmatic (n=11) 2.05 ± 1.31 2.05 ± 1.62 
Non-Asthmatic (n=49) 2.84 ± 2.07 3.60 ± 2.69 

 

 

For all sixty samples, the total peak heights were calculated to determine total 

bacterial abundance. Non-asthmatics had significantly more abundant U1 Fam terminal 

fragments than asthmatics (Table 2, t-test, p=0.0343). However, there was no difference in 

the abundance of U2 Hex terminal fragments between the two groups (Table 2, t-test, 

p=0.3131). Unfortunately, in a similar manner to the data for the average number of peaks, 

there is a primer discrepancy between the U1 Fam and the U2 Hex terminal fragments. For 

any given species, the terminal fragments may be different sizes (in terms of base pairs), but 

they should be equally abundant. For the asthmatic population, the total abundance of U2 

Hex fragments appears to be much larger than the total abundance of U1 Fam fragments, 

however, with the large variation indicated by the standard deviations, the difference is not 

significant (Table 2, t-test, p=0.0606). Within the non-asthmatic population, however, the U2 

Hex abundance is significantly greater than the U1 Fam abundance (t-test, p=0.0032). 

Similarly to the previously stated results, this imbalance indicates that there are more U2 Hex 
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fragments than U1 Fam fragments in a given sample. Therefore, it cannot be determined if 

there is a difference in total bacterial abundance between asthmatics and non-asthmatics. 

While one primer (U1) suggests a greater bacterial load in non-asthmatic subjects, the other 

primer (U2) suggests that the bacterial abundance is the same in both populations. 

 

 

Table 2: Average height of U1 Fam and U2 Hex peaks for asthmatic and non-asthmatic 

throat swab samples digested with Mnl1 (means reported ± standard deviation).  

 
 U1 Fam Height U2 Hex Height 

Asthmatic (n=11) 198.36 ± 163.43 621.41 ± 652.62 
Non-Asthmatic (n=49) 403.82 ± 565.33 864.89 ± 901.33 

 

 

 Although the data cannot confirm a significant difference in the number of peaks 

between asthmatics and non-asthmatics, it is interesting to note the differences in peak 

distribution. All asthmatic throat swab samples had between 0 and 6 average peaks present 

on their electropherograms, with zero percent of the population above 5 total peaks (Figures 

1 & 2). Non-asthmatics, on the other hand, had a wider distribution of peaks. For example, 

8.16% and 2.04% of the non-asthmatic population had between 6 – 7.99 and 10 – 11.99 

average U1 Fam peaks, respectively (Figure 1) In addition, 10.20% of the non-asthmatic 

population had between 6 – 7.99 average U2 Hex peaks, with 6.12% between 8 – 9.99 and 

4.08% between 10 – 11.99 (Figure 2). The general trend for both experimental groups 

appears to be a decrease in percentage of the population as the average number of peaks 

increases (Figures 1 & 2).  
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Figure 1: U1 Fam peak distribution. 

 

 

Figure 2: U2 Hex peak distribution. 
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According to the demographic data for both sample populations, all of the asthmatic 

participants and 77.55% of the non-asthmatic participants use alcohol. Most of the students 

do not smoke cigarettes, although 18.18% of asthmatics and 22.45% of non-asthmatics 

reported that they do use tobacco (Table 3). 

 

Table 3: Demographic data for self-identified asthmatic and non-asthmatic Trinity College 

students. Values reported as percentages of population. 

  Asthmatic (n=11) Non-asthmatic (n=49) 
Gender Male 36.36 63.27 

Female 54.55 28.57 
No Response 9.09 8.16 

Alcohol Use None 0 22.45 
Infrequent 54.55 42.86 

Habitual 9.09 20.41 
Binge 36.36 14.29 

Tobacco Use None 81.82 77.55 
Social 9.09 20.41 

Habitual 9.09 2.04 
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Figure 1: Chromatogram data representative of a self-identified asthmatic student at Trinity 

College (Sample 57 digested with restriction enzyme Mnl1). 
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Figure 2: Chromatogram data representative of a self-identified non-asthmatic student at 

Trinity College (Sample 35 digested with restriction enzyme Mnl1). 
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DISCUSSION 

In the past couple of decades, the prevalence of asthma has been steadily increasing, 

and in the United States currently there are 18.7 million adults and 7 million children living 

with asthma (Schiller et al., 2010). There is no real answer to the question, “What causes 

asthma?” but it is known that the disease has a genetic origin (Cookson, 1999), and 

symptoms are triggered by a number of factors such as weather, respiratory infections, 

exercise, irritants in the air, and common allergens such as pet dander or dust (Anonymous, 

2011). The frequency of symptom exacerbation, also known as asthma attacks, varies from 

person to person and depends on the severity of the disease in addition to how well it is 

controlled. Minor cases of the disease may cause slight breathing difficulties, while severe 

cases can result in death from a grossly over exaggerated inflammatory response. In fact, the 

inflammatory component of asthma was initially revealed upon examination of cadavers who 

had fatal asthma. These patients exhibited, among other symptoms characteristic of 

inflammation, lung infiltration by neutrophils and eosinophils, degranulated mast cells, and 

hyperplasia and hypertrophy of bronchial smooth muscle (Busse and Lemanske, 2001).  

The increased prevalence of asthma and other allergic diseases has recently become 

quite a concern. The “hygiene hypothesis” has attributed the increased sensitivity to allergic 

disorders in the westernized world to a decreased exposure to infectious microorganisms 

early in life. Many studies have since supported this theory and additionally have found that 

the reduced microbial challenges in the first years of life can disrupt the proper colonization 

of normal flora in the body. As normal flora have been shown to regulate the development of 

the immune response, additional evidence has mounted for the hygiene hypothesis: 



 

 

 

Asthma, specifically, is an IgE mediated allergic disease with a hypersensitive 

response that occurs in the lower respiratory tract. In an allergic reaction, the bronchio

restrict and become inflamed, resulting in breathing difficulty. In the airways, the presence of 

commensal bacteria has been demonstrated to be crucial for modulating the T

inflammatory response (Herbst

immune regulation has been documented in the upper respiratory tract, this study set out to 

investigate whether or not bacterial diversity and abundance in the upper respiratory tract 

was different between asthmatics and non

responsible for the development of asthma, it would be expected that the asthmatic thr

swab samples would exhibit

respect, the pathogens would be able to outcompete the normal flora in the 

bacterial community.  

 The results of this study of eleven self

identified non-asthmatics from Trinity College are inconclusive due to discrep

primer data. Non-asthmatics had significantly more U2 Hex peaks than asthmatics, 

suggesting that a greater number of bacterial species were present in their throat swab 

samples. However, both groups had the same number of U1 Fam peaks, sugges

number of bacterial species present in their samples was the same. A similar issue with the 

primer data arose upon calculations of total bacterial abundance, represented by peak height. 

Decreased 
exposure to 
infectious 

microorganisms 
early in life

colonization of the 
normal flora in the 

Asthma, specifically, is an IgE mediated allergic disease with a hypersensitive 

response that occurs in the lower respiratory tract. In an allergic reaction, the bronchio

restrict and become inflamed, resulting in breathing difficulty. In the airways, the presence of 

commensal bacteria has been demonstrated to be crucial for modulating the T

inflammatory response (Herbst et al., 2011). Because the pivotal role of normal flora in 

immune regulation has been documented in the upper respiratory tract, this study set out to 

investigate whether or not bacterial diversity and abundance in the upper respiratory tract 

was different between asthmatics and non-asthmatics. If a disturbance in normal flora was 

responsible for the development of asthma, it would be expected that the asthmatic thr

swab samples would exhibit less diverse and less abundant bacterial ecosystem

pathogens would be able to outcompete the normal flora in the 

The results of this study of eleven self-identified asthmatics and forty

asthmatics from Trinity College are inconclusive due to discrep

asthmatics had significantly more U2 Hex peaks than asthmatics, 

suggesting that a greater number of bacterial species were present in their throat swab 

samples. However, both groups had the same number of U1 Fam peaks, sugges

number of bacterial species present in their samples was the same. A similar issue with the 

primer data arose upon calculations of total bacterial abundance, represented by peak height. 

Disrupted 
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regulation of the 
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Asthma, specifically, is an IgE mediated allergic disease with a hypersensitive 

response that occurs in the lower respiratory tract. In an allergic reaction, the bronchioles 

restrict and become inflamed, resulting in breathing difficulty. In the airways, the presence of 

commensal bacteria has been demonstrated to be crucial for modulating the TH2 allergic 

e of normal flora in 

immune regulation has been documented in the upper respiratory tract, this study set out to 

investigate whether or not bacterial diversity and abundance in the upper respiratory tract 

. If a disturbance in normal flora was 

responsible for the development of asthma, it would be expected that the asthmatic throat 

bacterial ecosystems. In this 

pathogens would be able to outcompete the normal flora in the asthmatic 

identified asthmatics and forty-nine self-

asthmatics from Trinity College are inconclusive due to discrepancies in the 

asthmatics had significantly more U2 Hex peaks than asthmatics, 

suggesting that a greater number of bacterial species were present in their throat swab 

samples. However, both groups had the same number of U1 Fam peaks, suggesting that the 

number of bacterial species present in their samples was the same. A similar issue with the 

primer data arose upon calculations of total bacterial abundance, represented by peak height. 

Allergic Disease 
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Non-asthmatics had significantly more U1 Fam terminal fragments than asthmatics, 

suggesting a greater bacterial abundance in non-asthmatic throat swab samples. However, 

there was no difference in the abundance of U2 Hex terminal fragments between the two 

groups, suggesting that the bacterial abundance is the same in both populations. For a 

conclusion to be made, both primers should be in agreement in terms of significance.  

In terms of sample preparation, there are limited areas that could contribute to the 

differences between the primers. In a PCR reaction, amplification of the 16s rRNA gene 

would not occur unless both primers bind to the terminal ends. In addition, the primers 

should have equal binding capacity, with the same sensitivity to degradation, and the 

fluorescent tags should not be able to detach from the primers. The Capillary Genetic 

Analyzer used by Yale University to separate the DNA fragments by capillary 

electrophoresis is programmed to have the same sensitivity to both fluorescent primers. 

Therefore, during the fragment analysis, the primers should be detected in equal amounts.  

 The probable explanations for why the two primers appear in conflicting amounts 

involve sequence variation between species, incomplete digestion, and the subjective nature 

of our analysis. It is likely that the sequence variations between species could result in some 

matching restriction sites, and therefore produce a common sized U1 terminal fragment but 

differing U2 terminal fragments. For example, if two species have a shared restriction site in 

equal distance from the U1 primer, their U1 terminal fragments will be the same size (in base 

pairs) and appear as a singular peak on the electropherogram. However, if the species have 

unique restriction sites at unequal distances from the U2 primer, they will produce terminal 

fragments of different sizes (in base pairs). On an electropherogram, this data would appear 

as a singular U1 peak with two distinct U2 peaks.  
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Another possible explanation for the variability in the primer data is that the purified 

DNA fragments were not digested completely. For example, if the 16s rRNA gene of a 

species had three Mnl1 restriction sites, four fragments would be produced, but only two 

would be the terminal fragments labeled with fluorescent primers. In an incomplete 

digestion, the fragment may only be cut at two out of the three sites, resulting in one “true” 

terminal fragment, and an additional fluorescently labeled fragment that resembles a terminal 

fragment in an electropherogram, but is larger than normal because it should have been 

digested. As a result, more than two terminal fragments, at altered abundances, may appear 

on the electropherogram for an individual species in a throat swab sample.  

Finally, an additional explanation for the disparity in primer data is the subjective 

nature of deciding what will be labeled as a “true peak” on the electropherogram. Our lab 

works diligently as a group to determine what peaks are representative of bacterial DNA 

fragments, as opposed to the series of very small peak fragments at the bottom that can be 

considered as “noise.” However, in this respect, our decisions have led to unequal labeling of 

peaks within a number of samples. For example, if an electropherogram appeared to have six 

true green peaks but only five true blue peaks, the labeling remained that way. It would be 

incorrect to label a sixth blue peak, that doesn’t actually appear to be a peak, just to make the 

numbers even.  

To eliminate these issues, the characteristic terminal fragments of individual species 

should be identified. This can be achieved by running in silico digests of the 16s rRNA 

region. The sequence of the 16s rRNA gene is available for thousands of bacterial species on 

the GenBank sequence database provided by the National Center for Biotechnology 

Information (NCBI). The sequence data can then be used to identify where the U1 and U2 
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primers will bind, as well as where the restriction enzymes, such as AluI, HaeIII, and MnlI, 

will cut the DNA. As a result, the “true” terminal fragments can be determined for given 

species when it is cut with a specific enzyme. For example, this technique would allow 

researchers to say that when a certain species is cut with the enzyme MnlI, it will produce a 

26 bp U1 fragment and a 50 bp U2 fragment (hypothetically). These known fragment sizes 

can be used to recognize when multiple species have similar restriction sites, and they can 

also be used to identify a species by its terminal fragments in an electropherogram. In 

addition, the known fragment sizes can reveal incomplete digests. For example, a species that 

produces a terminal fragment of 30 bp and a non-terminal fragment of 60 bp can be 

considered incompletely digested if a 90 bp peak appears on the electropherogram. Finally, 

other studies that use tRFLP have access to software programs that can automatically 

determine a baseline threshold for identification of true peaks over noise, thus eliminating the 

subjective nature of analysis.  

If the data had supported the hypothesis that non-asthmatics had significantly more 

bacterial diversity and abundance than asthmatics, the results could have been interpreted in a 

number of ways. Greater diversity of bacterial species in an environment, such as the upper 

respiratory tract, typically represents a healthy ecosystem. However, an increase in diversity 

and abundance can correspond to either an increased population of pathogenic 

microorganisms, an increased population of commensal organisms, or increased populations 

of both. The present species would have to be identified to determine the relationship 

between bacterial abundance and presence of allergic disease.  

 The normal flora varies throughout the body, and many bacterial species are specific 

to different anatomical sites. In the upper respiratory tract, for example, the typical 
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commensal organisms are of the genera Streptocccus, Staphylococcus, Corynebacerium, 

Neisseria, and Haemophilius. The normal flora of the gastrointestinal tract, on the other 

hand, includes the genera Lactobacillus and Bifidobacterium, among many others (Madigan 

et al., 2005). Part of normal colonization of the commensal microbes involves these 

organisms localizing to the correct locations, and this process can be disturbed early in life. 

For example, as it has been shown that vaginally delivered babies acquire their mother’s 

vaginal and fecal normal flora, such as Lactobacillus and Prevotella, across all body habitats 

(oral, nasopharyngeal, and gut), and infants who are delivered by caesarean section will 

acquire their mother’s skin normal flora such as Staphylococcus and Corynebacterium across 

all body habitats. For both vaginally delivered and caesarean section delived neonates. As 

vaginal birth is the natural route, the vaginal microbiota serves an early defensive role that 

the caesarean section delivered babies do not acquire. Instead, C-section babies acquire an 

abundance of surface skin microbiota in their bodies, and they are more susceptible to certain 

pathogens. It is documented that 64 to 82% of reported methicillin-resistant Staphylococcus 

aureus (MRSA) skin infections in newborns occur in C-section babies (Dominguez-Bello et 

al., 2010). As both vaginally delivered and caesarean delivered babies may have abundant 

and diverse normal flora upon birth, it is essential that the bacterial communities colonize the 

proper mucosal surfaces. 

Therefore, in analysis of bacterial abundance and diversity, it is important to take into 

account the commensal microbes that are normally present in the investigated area of 

interest. A reexamination of bacterial communities in the upper respiratory tracts of 

asthmatics and non-asthmatics should focus on identifying the species present. If 

oropharyngeal swabs of asthmatics revealed a decreased abundance of normal flora, such as 
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Streptococcus, Staphylococcus, Corynebacerium, Neisseria, or Haemophilius, as compared 

to non-asthmatic subjects, a possible link could be drawn between the improper colonization 

of commensal microbes and the development of allergic disease. In that case, the disturbance 

of normal flora in asthmatics could potentially be responsible for the exaggerated immune 

response.  

This pilot study aimed to examine the bacterial communities in the upper respiratory 

tracts of asthmatics and non-asthmatics. A future study will be conducted in the laboratory of 

Dr. Lisa-Anne Foster that eliminates many of the confounding variables in this investigation, 

such as self-identification of asthma, antibiotic use, alcohol use, and tobacco use. 

Specifically, physicians at the Connecticut Children’s Medical Center (CCMC) will obtain 

throat swab samples from children of certain eligibility requirements. The asthmatic children 

will be clinically diagnosed with asthma, as opposed to the self-identified participants in this 

study, and the non-asthmatic children will be in good health. The children will be between 

the ages of 5 and 18, and none of the participants will be tobacco users. In this study, many 

of the subjects were frequent users of both alcohol and tobacco. In addition, the clinical 

samples obtained from CCMC should have greater representative sample sizes from each 

experimental group. Future data may reveal if there is or is not a significant difference 

between the bacterial communities in the upper respiratory tracts of asthmatic and non-

asthmatic individuals. Then, conclusions can be draw on what effects the normal flora 

colonization has on development of the allergic disease asthma.  

 

 

 

 

 



 

 34

Appendix 
 
After signing the informed consent page, please tear off this sheet and answer the 

following questions completely and truthfully. 

 

Date:___________         Graduating Class: 20___ 
Sex: M or F (circle one)            Age: ________ 
 
Have you been sick (i.e. cough or cold) in the last 30 days? Yes or No (circle one) 
 What, if any, over-the-counter medications did you take? ______________________ 
 Did you seek medical attention? Yes or No (circle one) 
 What, if any, medications were you prescribed? _____________________________ 
  Was this prescription for an antibiotic? Yes or No (circle one) 
 Did you finish the prescription? Yes or No (circle one) 
 If not, when did you stop? _________________________________ 
 
Have you been diagnosed with a chronic health condition? Yes or No (circle one) 
If yes, check all that apply: 

� Immune system disorder, specify: _______________________ 
� Asthma 
� COPD 
� Other, specify: __________________ 

When were you diagnosed? ______________ 
What, if any, medications were you prescribed for this condition? _______________ 
Do you continue to take this medication on a regular basis? Yes or No (circle one) 

 
Do you smoke tobacco? 

� I do not smoke tobacco 
� I am a social smoker (5 or fewer cigarettes per week) 
� I am a habitual smoker (1 pack or greater per week) 
� Other, specify: ______________ 

 
Alcohol consumption: 

� I do not consume alcohol. 
� I am an infrequent drinker (one drink per week) 
� I am a habitual drinker (1-2 drinks per day) 
� I frequently consume 4-5 drinks over a short period of time for the purpose of 

becoming intoxicated 
 
Thank you for your time in filling out the questionnaire and providing a throat swab sample! 

 

 

For Official Use Only 

 

Sample Code: _________ 
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