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Fig. 2 Community structure: single layers. Community structure, indicated by color, for the networks from
the three most recent years of a 2011, b 2012, and c 2013. Minor parameter: α = 0.5

represented by the adjacency matrix A can be identified by maximizing the modularity Q
(Newman and Girvan 2004), defined as

Q = 1
N〈k〉

∑

ij

(
Aij − kikj

N〈k〉
)

δ(si, sj), (3)

where ki = ∑
j Aij is the (possibly weighted) degree of node i, 〈k〉 = N−1 ∑

i ki is themean
degree, and δ(si, sj) is the Kronecker delta function that evaluates to one if si = sj and
zero otherwise. In practice, finding community structure in large networks is a difficult
problem, however several methods exist for identifying community structures including
aggregative (Clauset et al. 2004), divisive (Duch and Arenas 2005), and spectral (Newman
2006) methods. Here we use the divisive method of extremal optimization (Duch and
Arenas 2005).
We begin by studying community structure in single layers of the network, constructed

using a minor parameter of α = 0.5, corresponding to a weighting where major-minor
interactions are half as significant and double major interactions and double minor inter-
actions are a quarter as significant. In principle one could estimate α as the ratio of the
average number of credits required for institution-wide minors to the average number of
credits required for institution-wide majors. Here wemake this simple choice, noting that
we will consider varying α below. In Fig. 2 we illustrate community structure found in the
single-layer networks from the three most recent years of 2011, 2012, and 2013, indicating
different communities by color. Departments are presented in an order that best groups
departments in the same community, and in the same order through the three years. In
2011 we identify three communities, roughly corresponding to historical humanities (red,
e.g., economics, history, and political science), artistic humanities and descriptive sci-
ences (green, e.g., english, religion, biology, and neuroscience), and finally the quantitative
science (blue, e.g., engineering, mathematics, and physics). Note that this partition into
communities is significantly different from the sciences vs. humanities separation that
one may expect. In particular, while the quantitative sciences constitute a community, the
descriptive sciences belong to the same community as the artistic humanities. In 2012 we
observe a significant change via the birth of a new community, roughly corresponding
the descriptive sciences (orange). This community is primarily made up of departments
which belonged to the artistic humanities the previous year, but also includes anthro-
pology and environmental science, both of which belonged to the historical humanities.
Also, classical studies department switched from the quantitative sciences community to
the historical humanities community. Finally, more changes are observed in 2013: physics
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Fig. 3 Community structure: temporal network. Evolution of community structure, indicated by color,
throughout the college from 2004–2013. Minor parameter: α = 0.5. Persistence parameter: ω = 0.2

joins the descriptive science community, economics, environmental science, and urban
studies join the quantitative science community, and philosophy and religion join the
historical humanities.
The year-to-year variation in the communities described above indicates the need for a

more nuanced approach for understanding the evolution of community structure through
time (Mucha et al. 2010). In particular, while the overall composition of communities
from year-to-year share similar properties, we observe both the split of one community
into two as well as switching of some department from one community to another. A
natural question then arises: do we still observe such phenomena if a given node’s com-
munity membership in two adjacent layers is connected? In order to answer this question
we turn to recent work where the concept of modularity has been formulated for the
case of temporal multiplex networks (Bazzi et al. 2016). In particular, we now designate
the community of node i in each layer t by s(t)i , and adopt the multilayer modularity
formulation

Qω = 1
L

L∑

t=1

⎡

⎣ 1
N〈k(t)〉

N∑

i,j=1

⎛

⎝A(t)
ij − k(t)

i k(t)
j

N〈k(t)〉

⎞

⎠ δ
(
s(t)i , s(t)j

)
⎤

⎦ (4)

+ 2ωmod
N(L − 1)

L−1∑

t=1

N∑

i=1
δ
(
s(t)i , s(t+1)

i

)
, (5)

where L is the total number of layers in the multiplex, k(t)
i is the degree of node i in layer

t, and 〈k(t)〉 is the mean degree in layer t. We note that the formulation of the multilayer
modularity in Eq. (5) has two contributing terms and is a slight modification (up to a
rescaling of Qω and ωmod) of that in Ref. (Bazzi et al. 2016). The first term accounts for
the modularity within each individual layer and the second term, which includes amodu-
larity persistence parameter ωmod > 0 accounts for the agreement in the communities for
the same node in two adjacent layers. Thus, ωmod modifies the degree to which the com-
munities of the same node in subsequent layers is preferred to be the same, i.e., persist.
In the limit ωmod → 0+ persistence has no effect on the multilayer modularity and the
resulting community structure is simply that of each individual layer, while larger values of
ωmod dictate a preference for nodes in adjacent layers to remain in the same community,
thereby unifying the community structure of the multiplex.
In Fig. 3 we illustrate the community structure, indicated by color, found in the 10-

layered multiplex consisting of the years 2004–2013 for a minor parameter value α = 0.5
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and persistence value of ωmod = 0.2, which we find nicely balances the effects of
persistence vs. modularity in individual layers. (Community structure is found using a
modification of the extremal optimization technique and is summarized in the Appendix.)
Departments are presented in an order that best groups departments in the same com-
munities, easing the visual identification of different communities and their evolution.
Overall, we observe four different communities and a complex pattern of structure. First,
several “stalwart” departments exist that remain in the same community over all ten
years: art history, history, international studies, and language and culture studies form
a backbone of the historical humanities community (red), chemistry, computer science,
engineering, mathematics, and physics form the backbone of the quantitative science
community (blue), and english, film studies, and religion (as well as the individualized
degree program) form the backbone of the artistic humanities community (green). These
stalwart departments are contrasted by traveler departments: those that switch com-
munity membership at least once through the ten years studied. We note that physics
belonged to different communities when considering layers in isolation [see Fig. 2], but
with the added preference for agreement between nodes in adjacent layers via the persis-
tence parameter ωmod, physics becomes a stalwart of the quantitative sciences. Another
community also exists (yellow) comprised of the descriptive sciences and some other
humanities, but is extinguished by the year 2011, by which time most of its members have
joined the artistic humanities community. Again, the effect of persistence is observed in
the descriptive sciences: in the single layers for 2012 and 2013 the descriptive sciences
comprised its own community [see Fig. 2], but this is not true for the overall multiplex
with ωmod = 0.2. Rather, the effect of persistence is to keep the descriptive sciences in
the same community as the artistic humanities. Finally, we observe in many instances
that multiple traveler departments switch communities simultaneously or approximately
at the same time. For instance, economics, political science, public policy and law, and
urban studies all switch from the quantitative science community to the historical science
community at the end of 2006. Moreover, philosophy, music, theater and dance, Ameri-
can studies, women, gender, and sexuality, sociology, and anthropology all join the artistic
humanities between 2005 and 2008.

Centrality
As a complement to the features of our academic network captured by community
structure, we also study the centrality properties of our network. While a great many
centrality measures exist for a given network, each with slightly different meanings, all
centralities measure in some sense each node’s role or importance in connecting the
network (Newman 2003). Moreover, many of the most useful centrality measure are rep-
resented by eigenvectors of a matrix, for instance PageRank centrality (Gleich 2015), hub
and authority centrality (Kleinberg 1999), dynamical importance (Restrepo et al. 2006),
and classical eigenvector centrality (Newman 2003). For a single-layered network any
eigenvector-based centrality measure is described by the the dominant eigenvector of a
matrix C that is some function of the adjacency matrix A (MacCluer 2000). For instance,
in the case of PageRank centrality the centrality ci of node i is given by vi where v is the
leading eigenvector of the matrix C = (Din)−1A, where Din = diag(kin1 , . . . , kinN ).
Recently Taylor et al. (2016) formulated the centrality problem for a temporal multiplex

network for any eigenvector-based centrality. Given a temporal multiplex as we study
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Fig. 4 Eigenvector centrality: Quantitative sciences. Evolution of the a number of majors and b eigenvector
centrality of chemistry, computer science, engineering, mathematics, and physics from 2004–2013 using
ωcen = 5

here with adjacency matrices A(1), . . . ,A(L) for the different layers the centrality matrices
C(1), . . . ,C(L) are computed and used to construct the supra-centrality matrix

C =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

C(1) ωcenI 0 · · · 0

ωcenI C(2) . . .
...

0
. . . . . . . . . 0

...
. . . C(L−1) ωcenI

0 · · · 0 ωcenI C(L)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (6)

where ωcen represents a centrality persistence measure with a similar interpretation as the
modularity persistence parameter used above. The centrality of each node in each layer is
then given by the dominant eigenvector of C, which comes in the form

v =
[
v(1)T |v(2)T | · · · |v(L)T

]T
. (7)

Finally, since the centrality of a given node may differ significantly from layer-to-layer,
i.e., the values of v(t) may differ on average significantly from those of v(t′) we compute
the conditional centralities of each node in each layer, defined as

u(t)
i = v(t)

i∑N
j=1 v

(t)
j

. (8)

Specifically, the conditional centralities normalize the centralities in each layer to one,
quenching any effect of layer-to-layer effects.
Here we focus on classical eigenvector centrality of our network, using C(t) = A(t),

which not unlike PageRank centrality values nodes that are nearby other important nodes.
The eigenvector centrality of a given node tends to be (but is not always) positively
correlated with the degree of that node. We begin by investigating the centralities of
the stalwart departments of the quantitative sciences community found above: chem-
istry, computer science, engineering, mathematics, and physics. For reference, we plot
the number of majors present in each department during each year in Fig. 4a. (We forgo
plotting their minors due to the fact that these particular departments do not offer disci-
plinary minors and therefore have little effect on the centralitles.) In Fig. 4b we plot the
evolution of each department’s eigenvector centrality over the last ten years, computed
using ωcen = 5 (and α = 0.5). First, we note that of these five departments engineering
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Fig. 5 Eigenvector centrality: Effect of minors. Evolution of the a number of majors and b number of minors
of economics, international studies, language and culture studies, and political science from 2004–2013. For
the same years, the eigenvector centralities of each department using ωcen = 5 and minor parameters c
α = 0.05, d 0.35 e α = 0.65, and f 0.95

has on average the most majors, followed by mathematics, computer science, chemistry,
then physics. However, mathematics has by far the largest centrality score. In hindsight
we find that (i) a larger percentage of mathematics students also major or minor in
another department and (ii) the other major or minor chosen by mathematics majors are
surprisingly broad – in addition to sharing majors and minors with the other quantita-
tive sciences a significant number of mathematics students share majors or minors with
department such as classical studies, economics, music, and philosophy (particularly in
the most recent years).
We also use our network centrality measure to investigate the effect that minors have

on the overall network structure. In particular, we study the eigenvector centrality of the
four most central departments over the last ten years: economics, international studies,
language and culture studies, and political science. In Fig. 5a and b we plot the number of
majors and minors, respectively, of these four popular departments. Economics has by far
the most majors, followed by political science, then international studies, then language
and culture studies. However language and culture studies has far more minors than the
other three. (This is due to the fact that a large number of students complete a minor in
a foreign language, all of which are housed in the language and culture studies depart-
ment.) To highlight the role that minors play, we next compute the centralities for these
four departments using a small minor parameter, α = 0.05, intermediate minor param-
eters, α = 0.35 and 0.65, and a large minor parameter, α = 0.95, plotting the results in
Fig. 5c and d. In the former case with α = 0.05 the evolution of the departments’ central-
ities are reasonably well-described by the number of majors shown in Fig. 5a, except that
language and culture studies is perhaps more central than expected, but still ranks below
economics. However, as α is increased through 0.35, 0.65, and eventually to 0.95, language
and culture studies’ centrality is strengthened by its large number of minors, making it
the most central department in the college by a significant margin.
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Discussion
The academic landscape of today’s colleges and universities are organized by complex,
time-varying networks that describe interactions between different departments (Berger
2002). Moreover, the structural features of these academic networks have a strong impact
on the activity of faculty members and the endeavors of students (Pascarella et al. 2005).
While social networks within colleges and universities have been studied in the past
(Bernard et al. 1980; Guimera et al. 2003), the academic network structures describing
interactions between departments is poorly understood. This leaves administration and
individual departments to make decisions based on more simplistic statistical measure,
without a robust understanding of the structure of the institution as a whole. To address
this shortcoming, we have presented in this paper a framework constructing such an
academic network and performed an analysis of community structure and centrality.
Our approach stems from the construction of a temporal multiplex network based on

the double major, major-minor, and double minor patterns of graduating students. In par-
ticular, by representing departments as nodes and years as layers, we construct for each
year a network based on the number of students that each pair of departments shares.
Network features can then be extracted from any individual layer, or from the multiplex
as a whole. Here we have focused on the two key features of community structure and
centrality, using our home institution of Trinity College in Hartford, CT as an example.
Beginning with community structure, we find that the community structure in any given
year is more nuanced than the expected breakdown of sciences vs humanities. Rather,
the sciences tends to break down into two communities, roughly corresponding to quan-
titative and descriptive sciences, while the humanities also tend to break down into two
communities, roughly corresponding to historical and artistic humanities. Interestingly,
recent years show a breakdown of, roughly speaking, historical and political humani-
ties, artistic humanities, quantitative sciences, and descriptive sciences. However, through
time these departments split and combine with one another, and certain departments
switch between different communities while other stalwart departments remain in the
same community.We also use time-varying eigenvector centrality to identify departments
that are particularly important in connecting the college and study the effect that minors
play in determining the relative standing of different departments.
These results have several practical applications. For instance, policy designed for the

sciences will likely impact departments in different ways, depending on whether it is a
quantitative or descriptive science. Thus, we hypothesize that in certain cases, taking
the more subtle structure of the institution into account might result in more effective
policies, and in other cases separate policies should be implemented targeting differ-
ent parts of the college. Additionally, these results indicate an academic structure that
might be more segregated than is ideal. To better unify the academic environment of
the college, departments could focus on developing partnerships and interactions with
other departments outside their community rather than inside. Moreover, we have used
the time-evolution of the community structure to find stalwart departments that tend to
remain in the same community, while others switch between communities intermittently,
identifying which departments have more or less flexible interactions with their fellow
departments.
Second, we have found that the evolution of the eigenvector centrality of a depart-

ment reveals more than just the relative size of the department. We emphasize that a
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department’s centrality does not necessarily correspond to its individual importance, but
rather its importance in connecting the college as a whole. For instance, while mathe-
matics has a moderate number of majors compared to the other quantitative sciences, it
is highly central due to both its high number and diversity of double majors. Addition-
ally, we can differentiate departments that are central due to their major influence (e.g.,
economics and political science) from those that are central due to their minor influence
(e.g., language and culture studies).
While we have applied this approach to our home institution, we note that it is flexible

and can in principle be applied to any other college or university where data describing
the degrees of graduating seniors can be obtained. This opens the possibility for other
researchers and institution officials to perform similar studies on their own college or
university in order to better craft policies. A natural question then arises: how “similar”
are the network structures at different colleges and universities? For instance: At differ-
ent institutions, do communities break down into similar categories as we have found at
Trinity? Do highly central departments at one institution tend to also be more central at
other institutions? Are there significant differences in the structure of liberal arts colleges
vs larger universities? We hypothesize that the framework presented here can be used to
give insight into these questions.

Appendix
Department codes

The degrees awarded by Trinity College belong to 32 different departments. Here we
identify each department with a different four-letter key, summarized in Table 1.

Multiplex community detection

As discussed in Ref. (Bazzi et al. 2016), community detection in multiplex networks
involves several subtle challenges. However, the optimization of multiplex modularity,
i.e., Eq. (5), can often be done using a modification of existing techniques for detecting
communities in simple monoplex networks. Here we use a modification of the extremal

Table 1 Key of department codes

Code Department Code Department

AMST American Studies INTS International Studies

ANTH Anthropology LCST Language and Culture Studies

ARTH Art History MATH Mathematics

BIOC Biochemistry MUSI Music

BIOL Biology NEUR Neuroscience

CHEM Chemistry PHIL Philosophy

CLST Classical Studies PHYS Physics

COMP Computer Science POLS Political Science

ECON Economics PSYC Psychology

EDUC Educational Studies PPLW Public Policy and Law

ENGR Engineering RELI Religion

ENGL English SOCI Sociology

ENVI Environmental Science STUD Studio Arts

FILM Film Studies THDA Theatre and Dance

HIST History URBS Urban Studies

INDP Individualized Degree Program WGSE Women, Gender and Sexuality
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optimization approach (Duch andArenas 2005) summarized as follows.We begin by find-
ing the community structures for each individual layer using extremal optimization. Next,
we re-index the communities such that the Hamming distance between the communi-
ties for each pair of adjacent layers in minimized. (The Hamming distance between the
communities of layers t and t + 1 is simply the number of nodes for which s(t)i �= s(t+1)

i .)
At this point the community structures for each isolated layer have been found and are
best-matched, maximizing the first term on the right hand-side of Eq. (5). Finally, we
sweep through each node in each layer in a random order, adjusting its membership to
the community that locally optimizes Eq. (5). Here we perform a total of 100 such sweeps.
We note that finding community structure both in the isolated layers as well as in the

layered multiplex includes a stochastic element. Therefore, the results presented in the
main text represent the best outcome of 500 realization of maximizing the modularity in
the multiplex. We find that the result for each realization is locally stable, i.e., changing
the community membership of any one single node in a single layer decreases the overall
multiplex modularity Qω.
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