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Diffusion dynamics and synchronizability of hierarchical products of networks

Per Sebastian Skardal*

Department of Mathematics, Trinity College, Hartford, Connecticut 06106, USA
(Received 10 April 2017; revised manuscript received 16 July 2017; published 4 October 2017)

The hierarchical product of networks represents a natural tool for building large networks out of two smaller
subnetworks: a primary subnetwork and a secondary subnetwork. Here we study the dynamics of diffusion and
synchronization processes on hierarchical products. We apply techniques previously used for approximating
the eigenvalues of the adjacency matrix to the Laplacian matrix, allowing us to quantify the effects that the
primary and secondary subnetworks have on diffusion and synchronization in terms of a coupling parameter
that weighs the secondary subnetwork relative to the primary subnetwork. Diffusion processes are separated
into two regimes: for small coupling the diffusion rate is determined by the structure of the secondary network,
scaling with the coupling parameter, while for large coupling it is determined by the primary network and
saturates. Synchronization, on the other hand, is separated into three regimes, for both small and large coupling
hierarchical products have poor synchronization properties, but is optimized at an intermediate value. Moreover,
the critical coupling value that optimizes synchronization is shaped by the relative connectivities of the primary
and secondary subnetworks, compensating for significant differences between the two subnetworks.

DOI: 10.1103/PhysRevE.96.042302

I. INTRODUCTION

The underlying structures that dictate the patterns of
interactions that take place throughout nature and society are
often described by complex networks [1]. Examples of such
networks include electrical power grids [2], faculty hiring
networks [3], gene regulatory networks [4], and the structure of
academic institutions [5]. Many large networks are comprised
of smaller subnetwork structures, for example, motifs [6],
communities [7], layers [8], self-similar structures [9], or other
subnetwork structures [10]. In many such cases the properties
of the larger network depend on properties of these smaller
structures [11]. Moreover, the collective organization of these
smaller subnetwork structures often has a strong effect on the
properties of many dynamical processes such as diffusion [12],
synchronization [13] and epidemic spreading [14].

Recently, Barrière et al. introduced the hierarchical prod-
uct [15,16] as a tool for building a large network using two
smaller subnetworks. The hierarchical product is a general-
ization of the Cartesian product [17], combining subnetworks
in a less regular manner, resulting in a more disordered and
heterogeneous structure—an important characteristic of many
real-world networks [18]. Since its introduction, several prop-
erties of hierarchical products have been studied, including
properties such as radius and diameter, clustering coefficient,
and degree distribution [19]. Recently, we provided an asymp-
totic analysis for the full spectrum of the adjacency matrix of
the hierarchical product [20]. Here we apply these results in
order to study the dynamics that take place on hierarchical
products, particularly diffusion and synchronization.

Diffusion and synchronization represent two classical and
well-studied classes of dynamical processes on networks. Dif-
fusion has proven to be a particularly versatile tool in network
science, identifying structural properties [21,22] and serving
as a mathematical model for other relaxation processes [23–
25]. Synchronization dynamics are also strongly intertwined
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with the structures on which they evolve [26], revealing
topological properties of the underlying networks [27,28]. The
long-term dynamics of both diffusion and synchronization
dynamics are determined by the eigenvalue spectrum of
the network’s associated Laplacian matrix. In this work we
apply techniques previously used to describe the eigenvalue
spectrum of the adjacency matrix of hierarchical products to
the Laplacian matrix in order to study the long-term diffusion
and synchronization dynamics in this context. Our results
allow us to extract the contributions that the two different
subnetworks of the hierarchical product have on the long-term
macroscopic dynamics with respect to a coupling parameter
that weighs the secondary subnetwork relative to the primary
subnetwork. In the case of diffusion, two regimes emerge. For
small coupling the diffusion rate is slow, increasing along
with the coupling, and is determined by the structure of
the secondary subnetwork. For large coupling the diffusion
rate saturates and is determined by the structure of the
primary subnetwork. Thus a transition in both the dynamics
and the contributions from the two subnetworks occurs as
the coupling passes through this intermediate range. In the
case of synchronization, three regimes emerge. For both
small and large coupling the hierarchical product has poor
synchronization properties, owing to a large deviation in a
large gap between eigenvalues of the Laplacian that results in
one subnetwork being weighted significantly more than the
other. Synchronization properties are instead optimized at an
intermediate, critical coupling value. Interestingly, this critical
coupling value highlights the difference in overall connectivity
in the primary and secondary subnetworks. Specifically, the
critical coupling value is tuned to compensate for either the
primary or secondary subnetwork having significantly weaker
connectivity than the other. More broadly, the phenomena
described in this paper identify the roles that primary and
secondary subnetworks play in shaping large-scale dynamics
in hierarchical products and which substructure of promotes
vs hinders diffusion and synchronization.

The remainder of this paper is organized as follows.
In Sec. II we define the hierarchical product and present
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FIG. 1. Hierarchical product. Illustration of the hierarchical
product G1({1,4}) � G2 of two subgraphs G1 and G2.

asymptotic results describing the eigenvalue spectrum of
the associated Laplacian matrix. In Sec. III we study the
long-term behavior of diffusion on hierarchical products. We
characterize the behavior of the smallest nontrivial eigenvalue,
which dictates the diffusion rate and time scale. Using these
results we identify two different regimes where diffusion
processes behave differently. In Sec. IV we study the long-
term behavior of synchronization on hierarchical products.
Here we characterize both the largest and smallest nontrivial
eigenvalues, which determine the synchronizability ratio. This
allows us to identify regions of poor synchronization properties
for small and large coupling, and optimal synchronization
properties at an intermediate, critical coupling value. In Sec. V
we conclude with a discussion of our results.

II. HIERARCHICAL PRODUCT

A. Coupling matrices

The hierarchical product represents a tool for building a
large network from two smaller subnetworks. Here we will
consider the hierarchical product of a primary and secondary
subnetwork, denoted G1 and G2, respectively, each consisting
of N1 and N2 nodes. We will assume that both networks are
undirected and binary (or unweighted) so that the adjacency
network A1 and A2 have entries aij = aji = 1 if a link exists
between nodes i and j , and otherwise aij = aji = 0. These
properties can be generalized: in a directed network aij and
aji need not be equal and in a weighted network aij may
take on values aside from zero and one. The hierarchical
product of G1 and G2, denoted G1(U ) � G2, is a network
of N = N1 · N2 nodes that consists of N2 copies of G1 that
are each connected to one another through the nodes in the
root set U via the topology of G2. In Fig. 1 the hierarchical
product is illustrated using an example with subnetworks G1

and G2 with N1 = 5 and N2 = 4 nodes, respectively. As a
root set we use U = {1,4}, indicating that the four copies
of G1 are each connected by G2 through nodes 1 and 4, so
that in total G1(U ) � G2 has N = 20 nodes. The hierarchical
product can be further generalized to include the product of an
arbitrary number of subnetworks [16]; however, such cases can
be defined recursively, so we focus on hierarchical products of
two subnetworks.

The goal of this work is to determine the effects that the two
different subnetworks that make up a hierarchical product have

on the long-term dynamics of diffusion and synchronization
processes. To this end, we introduce a coupling parameter,
denoted α, that weighs the contribution of the secondary
subnetwork G2 in comparison to the primary subnetwork G1.
We incorporate this coupling parameter into the adjacency
matrix of the hierarchical product, which is given by

Aα = I2 ⊗ A1 + αA2 ⊗ D1, (1)

where ⊗ denotes the Kronecker product, I2 is the N2 × N2

identity matrix, and D1 is the N1 × N1 diagonal matrix
whose ith diagonal entry is equal to one if vertex i is in
the root set U and zero otherwise. Thus α < 1 and α > 1
correspond to the links of the secondary subnetwork being
weighted weaker and stronger, respectively, than the links
of the primary subnetwork. While the spectral properties of
Eq. (1) were studied in Ref. [20], in this work we are interested
in the Laplacian matrix due to the role it plays in dynamical
processes, specifically diffusion and synchronization. For
a network with adjacency matrix A, the Laplacian L has
entries defined lij = δij (

∑N
j=1 aij ) − aij = δij ki − aij , where

ki denotes the nodal degree. In the case of a hierarchical
product with adjacency matrix as in Eq. (1), the Laplacian
matrix is given by

Lα = I2 ⊗ L1 + αL2 ⊗ D1, (2)

where L1 and L2 are the Laplacian matrices of networks G1

and G2, respectively. The eigenvalue spectrum of the Laplacian
matrix L of any connected and undirected network has several
important properties. First, since every row sums to zero there
exists a trivial eigenvalue λ1 = 0 whose associated eigenvector
is constant, w1 ∝ 1 = [1, . . . ,1]T . All other eigenvalues are
real and positive, so they can be ordered 0 = λ1 < λ2 � · · · �
λN . Finally, the eigenvectors are orthogonal and can therefore
be normalized to form an orthonormal basis for RN .

B. Eigenvalues

The long-term dynamics of both diffusion and synchro-
nization processes depend on the eigenvalues of the associated
Laplacian matrix. Thus, for a full understanding of the
long-term dynamics on the hierarchical product, we require
a characterization of the eigenvalues associated with Eq. (2).
In a previous publication we provided an asymptotic analysis
for the eigenvalue spectrum of the adjacency matrix of the
hierarchical product, i.e., Eq. (1) [20]. Here we apply the
same methodology to the case of the Laplacian. Our goal is
to classify the eigenvalues of Lα in terms of the eigenvalues
and eigenvectors of the Laplacian of its subnetworks L1 and
L2, as well as the coupling parameter α and the root set
encapsulated in the matrix D1. We will denote the eigenvalues
of L1 and L2 as νi and μi , respectively, and the associated
eigenvectors vi and ui , respectively. We seek the eigenvalues,
denoted λ, of Lα . Before classifying them, we illustrate the
general behavior of the eigenvalues of the hierarchical product
as a function of the coupling parameter α in Fig. 2, using the
network illustrated in Fig. 1 as an example. Broadly speaking,
these eigenvalues split into two groups for both small and
large α. For small α one group of eigenvalues are themselves
small, scaling approximately as α and the other remains
approximately constant, on the order of one. For large α one
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FIG. 2. Laplacian eigenvalues. The full spectrum of nontrivial
eigenvalues for the Laplacian matrix Lα as a function of the coupling
parameter α for the hierarchical product illustrated in Fig. 1.

group of eigenvalues also remains approximately constant, on
the order of one, but the other group is itself large, also scaling
approximately as α. When α is itself on the order of one these
groups coalesce in a complicated arrangement.

The classification of the eigenvalues λ then begins with
the analysis of a new set of matrices. Specifically, λ is an
eigenvalue of Lα if and only if it is also an eigenvalue of one
of the matrices given by

Lα(μi) = L1 + αμiD1, (3)

where Lα(μi) is one of the N2 possible N1 × N1 matrix
constructed via a linear combination of L1 and D1, where
D1 is scaled by one of the N2 eigenvalues μi of L2 [15].
In total, there are N2 such matrices Lα(μi), each of which
have N1 eigenvalues, resulting in the full spectrum of N1 · N2

eigenvalues of Lα . Thus the eigenvalue problem of Lα is
reduced to the set of smaller eigenvalue problems for the
collection of Lα(μi).

While the collection of eigenvalues of Eq. (3) can be
found perturbatively as in Ref. [20], a specific subset deserves
particular attention here. Recall that the Laplacian of a
connected network has precisely one zero eigenvalue. Thus
L2 has one zero eigenvalue μ1 = 0. Inserting this into Eq. (3)
yields, simply,

Lα(μ1 = 0) = L1. (4)

Equation (4) implies then that precisely N1 of the eigenvalues
of Lα are given by the eigenvalues νi of L1, and that these
eigenvalues remain constant regardless of the value of α.
Exactly one of these eigenvalues corresponds to the zero
eigenvalue ν1 = 0 of L1, with the other N1 − 1 being finite.

As for the remaining N1(N2 − 1) eigenvalues of Lα , we
apply a perturbative analysis for the limits of small and large
coupling. Here we present the results and leave the details for
the interested reader in the Appendix. In the case of small
coupling, i.e., α � 1, the eigenvalues are given, to first order
in α, by

λ(α) = νj + αμiv
jT D1v

j , (5)

which represents the contributions of the two subnetworks via
νj and μi (j = 1, . . . ,N1, i = 2, . . . ,N2) to the eigenvalue
spectrum. It should be noted that using μ1 = 0 in Eq. (5)
recovers the constant eigenvalues from Eq. (4); however, we
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FIG. 3. Laplacian eigenvalues. Approximate (dashed blue and
dot-dashed red) and actual (solid black) eigenvalues for the Laplacian
matrix Lα for the hierarchical product illustrated in Fig. 1 for (a) small
and (b) large α.

consider this a separate case since the eigenvalues from Eq. (4)
are exact, while those in Eq. (5) are approximations.

In the limit of large coupling, i.e., α � 1, the analysis
becomes more complicated with the N1(N2 − 1) eigenvalues
splitting into two distinct groups due to the degeneracy of D1.
The first group yields n(N2 − 1) eigenvalues, where n is the
size of the root set and the number of nonzero entries of D1,
and are given by

λ(α) = αμi + ν∅
j , (6)

where ν∅
j is an eigenvalue of the n × n matrix L∅

1 constructed
by removing all rows and columns of L1 corresponding to
zero diagonal entries of D1. The remaining (N1 − n)(N2 − 1)
eigenvalues are then given by

λ(α) = ν0
j , (7)

where ν0
j is an eigenvalue of the (N1 − n) × (N1 − n) matrix

L0
1 constructed by removing all rows and columns of L1

corresponding to nonzero diagonal entries of D1. In Figs. 3(a)
and 3(b) we compare the analytical approximations (dashed
blue and dot-dashed red curves) for the eigenvalues of Lα to
the actual values (solid black) for the example hierarchical
product illustrated in Fig. 1 for small and large α. In both
cases the approximations accurately describe the behavior of
the eigenvalues for sufficiently small and large α, with the
approximations breaking down when α is approximately of
order one.

III. DIFFUSION

We now turn our attention to the long-term dynamics of the
diffusion process on hierarchical products. Given an adjacency
matrix with entries aij , diffusion is governed by the following
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equations:

ẋi =
N∑

j=1

aij (xj − xi), (8)

which can be rewritten in vector form as

ẋ = −Lx, (9)

where x is the state vector of the process and L is the
Laplacian. We note here that we focus on the specific case of
diffusion related to heat transfer and relaxation dynamics, in
which case we use the combinatorial Laplacian L = D − A,
where D = diag(n1 . . . ,kN ). In the case of diffusion related
to random walk processes, the symmetric or asymmetric
versions of the normalized Laplacian, L = I − D−1/2AD−1/2

or L = I − D−1A, may be used. We note that in either
case the methodology for approximating eigenvalues may
be preserved, but in the asymmetric case the emergence of
complex eigenvalues may require more care when applying
these results.

Assuming that the underlying network is connected, the
dynamics of Eqs. (8) and (9) relax to the steady state
x1 = · · · = xN = x∞ in the limit t → ∞. This relaxation is
exponential, specifically with

‖x(t) − x∞‖ ∝∼ e−λ2t , (10)

i.e., the rate of diffusion is given by smallest nontrivial
eigenvalue λ2 and the time scale of diffusion is given by
its inverse λ−1

2 . Therefore, we seek specifically the smallest
nontrivial eigenvalue λ2 from our approximations above. In
the small coupling regime, α � 1, the full set of eigenvalues
is given by the collection of N1 eigenvalues of L1 along with
the N1(N2 − 1) eigenvalues in Eq. (5). Since the nontrivial
eigenvalues of L1 are all of order one, the smallest nontrivial
eigenvalue is given by using ν1 = 0 and μ2 in Eq. (5), resulting
in

λ2(α) = αμ2v
1T D1v

1 = αμ2n

N1
, (11)

where we have used that v1 = 1/
√

N1. In the large coupling
regime, α � 1, the full set of eigenvalues is given, again,
by the collection of N1 eigenvalues of L1, along with those
given in Eqs. (6) and (7). Inspecting all possible combinations,
the smallest nontrivial eigenvalue is then given by either the
smallest nontrivial eigenvalue of L1, or the smallest eigenvalue
of L0, i.e.,

λ2(α) = min
(
ν2,ν

0
1

)
. (12)

In general, it is impossible to determine a priori which
eigenvalue in Eq. (12) in smallest; as we shall see below,
different combinations of different subnetwork structures yield
different outcomes.

We first compare the predictions of our approximations
to direct simulation results. In Fig. 4 we plot our theoretical
prediction of the diffusion rate (dashed black), i.e., Eqs. (11)
and (12) for the small and large coupling regimes, respectively,
to the diffusion rate observed from simulations (blue circles) on
the hierarchical product illustrated in Fig. 1. Simulated results
are computed by fitting the simulations after a significant tran-
sient to an exponential. The diffusion time scale is plotted in the
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FIG. 4. Diffusion dynamics. The diffusion rate computed directly
from simulations (blue circles) and our approximations for λ2 (dashed
black) as a function of α for the hierarchical product illustrated in
Fig. 1. Inset: diffusion time scale.

inset. The two different dynamical behaviors, corresponding
to small and large coupling, are observed and are well captured
by the predictions. Specifically, in the small coupling regime
the diffusion rate is very slow, and scales with the coupling
parameter α, which can be observed directly from Eq. (11).
Moreover, Eq. (11) reveals that the long-time diffusion dynam-
ics in the small coupling regime is completely determined by
the structure of the secondary subnetwork via the eigenvalue
μ2 and the size of the root set via the fraction n/N1.

In contrast to the small coupling regime, in the large
coupling regime, the diffusion rate saturates to the order one
value given in Eq. (12). Moreover, Eq. (12) reveals that in
this regime the long-time diffusion dynamics in the large
coupling regime are completely determined by the structure
of the primary subnetwork via the eigenvalue ν2, and possibly
in combination with the root set via the eigenvalue ν0

1 . This
highlights a transition between small and large coupling from
two perspectives. First, the rate of diffusion itself is increasing,
scaling with α, for small coupling, and saturates to a constant
value for large α. Second, the role that the components of the
hierarchical product play in this behavior changes; for small
α dynamics are dictated by the secondary subnetwork and for
large α dynamics are dictated by the primary subnetwork.

Next we investigate in more detail the large coupling
regime, specifically the determination of λ2 as ν2 or ν0

1
in Eq. (12). In both cases we note that the structure of
the secondary subnetwork is irrelevant—only the primary
subnetwork and the root set determine these quantities.
However, in which case λ2 is determined by choice in unclear.
To better understand these quantities, we compare them in
Fig. 5, plotting ν2 (blue circles) and ν0

1 (red triangles) computed
from a collection of 1000 realizations of Erdős-Rényi (ER) net-
works [29] of size N = 100 constructed with link probability
p = 0.1 as a function of different root set fractions n/N1,
where nodes in the root sets are randomly chosen. Results
represent the average over 1000 networks, with the standard
deviation denoted by dashed curves. As the root set fraction
increases the value ν2 remains constant (as should be expected
for a set network model) and ν0

1 increases from zero. Thus,
for small n/N1, we have ν0

1 < ν2, indicating that λ2 = ν0
1 ,

but for large enough n/N1 we have ν2 < ν0
1 , indicating that

λ2 = ν2. For the network model chosen here we find that this
transition occurs at n/N1 ≈ 0.3487, which is illustrated with
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FIG. 5. Large coupling: diffusion rate and root set fraction I. For
ER networks of size N1 = 100 with link probability p = 0.1, the
quantities ν2 (blue circles) and ν0

1 (red triangles) as a function of the
root set fraction n/N1. Results represent an average with standard
deviation indicated by dashed curves. The transition from λ2 = ν0

1 to
λ2 = ν2 occurs at n/N1 ≈ 0.3487.

the vertical dot-dashed line. Physically, this suggests that for
a small enough root set the diffusion rate is determined by a
combination of the structure of the primary subnetwork and
the root set itself, but for a large enough root set the diffusion
rate is determined solely by the primary subnetwork.

Given that the size of the root set plays a role in whether
λ2 is given by ν2 or ν0

1 , it is natural to ask whether the
particular locations of the root set also play a role. In other
words, does the behavior of ν2 and ν0

1 depend significantly
on which nodes belong to the root set, in addition to the
size of it? The ER model used in Fig. 5 yields relatively
homogeneous networks where nodes have by-and-large very
similar structural properties. To investigate this new question
we then use the Barabasi Albert (BA) model [30], which yields
much more heterogeneous networks. Specifically, we consider
BA networks of size N = 100 with minimum degree k0 = 3,
but choose the root set in three different ways. In Fig. 6 we plot
the average behavior of ν2 (blue circles) and ν0

1 (red triangles)
as a function of the root set fraction n/N1, choosing the root
set to contain (a) the highest degree nodes in the network, (b)
randomly selected nodes, and (c) the lowest degree nodes in
the network. The generic behavior is similar in the sense that
ν2 remains constant and ν0

1 increases with n/N1. However, the
critical root set fraction at which the transition from λ2 = ν0

1
to λ2 = ν2 occurs is different. Specifically, when the root
set consists of the highest degree nodes in the network this
transition occurs quite early, at n/N1 ≈ 0.1630. Conversely,
when the root set consists of the lowest degree nodes in the
network this transition occurs quite late, at n/N1 ≈ 0.3843.
When the root set consists of randomly chosen nodes this
transition occurs in between, at n/N1 ≈ 0.3375. Thus, when
the root set consists of lower degree nodes, it plays a role in
determining the diffusion rate for a larger range of root set
fractions than when it consists of higher degree nodes.

IV. SYNCHRONIZATION

Next we turn to synchronization on hierarchical products.
Specifically, we consider synchronization of identical, chaotic
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FIG. 6. Large coupling: diffusion rate and root set fraction II.
For BA networks of size N1 = 100 with minimum degree k0 = 3, the
quantities ν2 (blue circles) and ν0

1 (red triangles) as a function of the
root set fraction n/N1 for root sets chosen (a) with the highest degree
nodes (b) randomly and (c) with the lowest degree nodes. Results
represent an average with standard deviation indicated by dashed
curves. For the three cases the transition from λ2 = ν0

1 to λ2 = ν2

occurs at n/N1 ≈ 0.1630, 0.3375, and 0.3843, respectively.

dynamical systems, whose dynamics are governed by

ẋi = F(xi) + K

N∑

j=1

aij [H(xj ) − H(xi)], (13)

where xi is the state vector of node i, F(x) is the (assumed
chaotic) vector field describing the internal dynamics of each
node, K is the global coupling strength, and H(x) is the
coupling function. The dynamics of Eq. (13) are typically
treated by studying the stability of the synchronized state
x1(t) = · · · = xN (t), which can be determined using the
master stability function (MSF) approach [26]. In particular,
the synchronized state is linear stable if all the nontrivial
eigenvalues of the Laplacian matrix scaled by the coupling
strength K fall within an appropriately defined region of
stability. (For the sake of brevity, we forgo a discussion of
further technical details and refer the interested reader to
the original work in Ref. [26].) While the region of stability
depends on the particular dynamical system F and the coupling
function H in Eq. (13), in many cases the region of stability
is a finite interval, denoted [γl,γu] [31]. Synchronization can
then be achieved if a coupling K can be chosen such that Kλi

for i = 2, . . . ,N falls within the interval. This is true if and
only if the eigenvalues satisfy

R =̇ λN

λ2
<

γu

γl

, (14)

where R is the synchronizability ratio of the network. In
particular, the smaller the synchronizability ratio R a given
network has, the more synchronizable it is.
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FIG. 7. Synchronizability. (a) Actual (solid black) and approx-
imate (dashed blue and dot-dashed red, respectively) eigenvalues
λN and λ2 as a function of coupling α for the hierarchical product
illustrated in Fig. 1. (b) Actual (solid black) and approximate (dashed
blue) synchronizability ratio R = λN/λ2 as a function of coupling α.

The synchronizability of a given hierarchical product then
requires both the smallest and largest nontrivial eigenvalues, λ2

and λN . Since we characterized in detail the smallest nontrivial
eigenvalue in the previous section, we now turn to the largest.
In the small coupling regime we refer back to Eq. (5). Note
that these eigenvalues are always larger than the corresponding
constant eigenvalues of L1 since αμiv

jT D1v
j > 0. Thus

the maximum is obtained by choosing j = N1 and i = N2,
yielding

λN (α) = νN1 + αμN2v
N1T D1v

N1 . (15)

In the large coupling regime, we find that the largest eigenvalue
is given by Eq. (6), using i = N2 and j = n, yielding

λN (α) = αμN2 + ν∅
n . (16)

In Figs. 7(a) and 7(b) we demonstrate how the synchroniz-
ability of the hierarchical product illustrated in Fig. 1 behaves
as a function of the coupling parameters, first plotting the
separate behaviors of the actual (solid black) approximate
(dashed blue and dot-dashed red) values of λN and λ2 in
panel (a), then in panel (b) the actual (solid black) and
approximate (dashed blue) synchronizability ratio R = λn/λ2.
Specifically, we see in panel (b) that for both very large and
very small α the synchronizability ratio is large, indicating that
the hierarchical product has poor synchronization properties.
This is due to the large gap between λ2 and λN which can
be observed directly in panel (a), and can be physically
attributed to one of the two subnetworks being weighted
much heavier than the other. Instead, the hierarchical product
displays the best synchronizability ratio for intermediate
values of α, suggesting that hierarchical products have the
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FIG. 8. Optimal synchronizability. The actual (blue circles) and
approximated (red triangles) optimal synchronizability ratio Rmin

achievable as a function of the root set fraction n/N1. Results
represent an average over 1000 hierarchical products constructed
using ER networks of sizes N1 = 100 and N2 = 20 with link
probabilities p = 0.1 and 0.5.

best synchronization properties when the two subnetworks are
weighted roughly equally.

Next we investigate the role that the two different sub-
networks and the root set play in determining the sychro-
nizability of the hierarchical product. First we consider the
synchronizability itself—specifically the optimal (minimal)
synchronizability attainable for a given hierarchical product.
We find that this quantity depends primarily on the size of
the root set. In Fig. 8 we plot the actual (blue circles) and
approximate (red triangles) optimal synchronizability ratio
Rmin vs the root set fraction n/N1 found for hierarchical
products constructed using ER networks of size N1 = 50 and
N2 = 20 using link probabilities p = 0.2 and 0.5, respectively.
(These probabilities are chosen to attain a rough balance
of the mean degree.) Results represent an average over 100
networks, with standard deviation denoted by dashed curves.
In general we see that the larger the root set fraction, the
more synchronizable the hierarchical product can be when
α is properly tuned. Thus the more pathways built into the
hierarchical product via the root set, the more favorable the
synchronization properties.

A more interesting question, however, is at what coupling
value αc is the synchronizability of a hierarchical product
optimized? We find that this critical coupling value does
not depend significantly on the root set itself, but rather the
contrast between the primary and secondary subnetworks.
In fact, the answer to this question sheds light on the role
of the primary and secondary networks in relation to one
another. We consider hierarchical products constructed from
ER networks, both of size N1 = N2 = 50, for each subnetwork
choosing the link probabilities randomly to allow the mean
degrees for the subnetworks, denoted 〈k〉1 and 〈k〉2, to vary
between 5 and 45. Using the mean degree of each subnetwork
as a proxy for overall connectivity, we then compare the
critical coupling values αc to the connectivity ratio 〈k〉1/〈k〉2,
plotting in Fig. 9 from 100 different networks the actual (blue
circles) and approximated (red triangles) results. Figure 9
shows a positive, roughly power-law relationship between
αc and 〈k〉1/〈k〉2. This suggests that, to achieve optimal
synchronizability, the coupling should be tuned to balance
the connectivity properties of the primary and secondary
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FIG. 9. Critical coupling. The actual (blue circles) and approx-
imated (red triangles) critical coupling parameter αc that optimized
synchronizability ratio, R = Rmin, as a function of the connectivity
ratio 〈k〉1/〈k〉2. 100 networks were constructed using N1 = N2 = 50
with mean degrees determined randomly such that they fall between
5 and 45. Results fall roughly around the power-law relationship
αc ∝ (〈k〉1/〈k〉2)β (dashed black) for β ≈ 1.18.

subnetworks. If the ratio 〈k〉1/〈k〉2 is large (i.e., larger than
one), indicating that the primary subnetwork is more strongly
connected than the secondary subnetwork, then the coupling
should be increased to strengthen the secondary subnetwork
in compensation. On the other hand, if the ratio 〈k〉1/〈k〉2

is small (i.e., less than one), indicating that the primary
subnetwork is connected more weakly than the secondary
subnetworks, then the coupling should be decreased to weaken
the secondary subnetwork in compensation. Moreover, we find
that the results fall roughly around the power-law relationship
αc ∝ (〈k〉1/〈k〉2)β for β ≈ 1.18, as illustrated with the dashed
black curve.

V. DISCUSSION

In this paper we have studied the long-term dynamics
of diffusion and synchronization processes on hierarchical
products. We have applied the methodology from previous
work [20] characterizing the eigenvalues of the adjacency
matrix of hierarchical products to the eigenvalues of the
Laplacian matrix, allowing us to make analytical predictions
for both diffusion and synchronization dynamics. In particular,
this has allowed us to identify the roles that the primary
and secondary subnetworks play in shaping the long-term
dynamics in relation to a coupling parameter that weighs
the contribution of the secondary subnetwork relative to the
primary subnetwork. More generally, our results explore the
effects that different substructure of networks play in shaping
large-scale dynamics by either promoting or inhibiting these
processes.

In the case of diffusion, we have identified two regimes
corresponding to small and large coupling. In the small
coupling regime the diffusion rate is slow, scaling with the
coupling itself, and is completely determined by the structure
of the secondary subnetwork. In the large coupling regime the
diffusion rate saturates to a constant value which is determined
by the structure of the primary subnetwork, as well as possibly
the size of the root set and its structure. Thus there is a transition
that occurs as coupling is varied through intermediate values,
both in terms of the long-term dynamical behavior, as well

as the roles that the different structures that make up the
hierarchical product play in shaping those dynamics.

In the case of synchronization, we find that the synchro-
nization properties of hierarchical products are poor in both
the small and large coupling regimes, but are optimized at an
intermediate critical coupling value that minimizes the syn-
chronizability ratio. In general, the optimal synchronizability
ratio that a hierarchical product can attain, assuming α can be
properly tuned, improves as the size of the root set increases.
However, a more interesting phenomenon occurs with the crit-
ical coupling parameter that optimizes synchronization, which
highlights the difference in overall connectivity between the
primary and secondary subnetworks. Specifically, the critical
coupling value is tuned to compensate for this difference, either
strengthening or weakening the secondary subnetwork to bring
its connectivity closer to that of the primary subnetwork.

Throughout this work we have focused on the case of
undirected subnetworks, resulting in an undirected hierar-
chical product. In the case of directed subnetworks it is
straightforward to see that the resulting hierarchical product
also becomes directed. In principle, the techniques used here
to calculate eigenvalues may be preserved; however, the
emergence of complex eigenvalues may require some care
when applying these results. This is also true when working
with the asymmetric normalized Laplacian matrix for random
walks, even in the case of undirected networks.

The class of networks investigated here, i.e., the hierarchical
product [15,16], represents a relatively wide subset of possible
generalizations of classical graph products [17]. In general,
graph products represent natural ways of building larger
networks from two or more smaller subnetworks where the
macroscopic properties of the large network can be understood
in terms of the properties of the smaller subnetworks that
comprise it. The general notion of a network consisting of
smaller substructures remains a central theme in physics and
mathematics, with examples including multilayer and multi-
plex networks [32–35], modular networks [13,14], hierarchical
and hierarchical modular networks [36–39], and networks of
networks [40,41]. Many of these cases share commonalities;
for example, the behavior of the Laplacian eigenvalues we
observe in hierarchical products (e.g., see Figs. 2 and 4)
reflects the behavior of Laplacian eigenvalues in multiplex
networks [12,42]. Given this overlap in phenomenological
behavior, we hypothesize that understanding the macroscopic
structural properties of hierarchical products is not only
important in the context of graph products, but also more
generally for wider classes of networks. To date, a handful of
studies have investigated the overall structure of hierarchical
products [19,20]; little work has focused on behavior of
dynamical processes taking place on hierarchical products.

Finally, we emphasize that the contributions of this paper,
i.e., the description of the long-term diffusion and synchro-
nization dynamics on hierarchical products, fit within the
broader question of how various structures and organizations
in complex networks dictate large-scale dynamical processes.
Specifically, the findings presented here can be interpreted as
investigating how different components and substructures of a
given network, and their relative strengths, function in shaping
the dynamics that occur across the whole network. This broad
question has been investigated for various kinds of networks
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(e.g., see those listed above); here we study this broad question
in the context of a graph product. In particular, the long-term
behaviors of both diffusion and synchronization dynamics
identify the role of the secondary subnetwork as a connector
in comparison to the more central primary subnetwork, as well
as the role that nodes in the root set play in facilitating these
connections. Therefore, the coupling parameter modifies the
relative strengths of the overall connectivity within the primary
subnetworks compared to the connectivity between different
subnetworks. Specifically, it is the secondary subnetwork
structure that is responsible for the smaller eigenvalues in
the small coupling regime, whereas in the large coupling
regime the primary subnetwork is responsible for the smaller
eigenvalues. More broadly, the transitions that we observe
in the dynamics can be interpreted as a shift in which
these connectivities become the effective bottleneck for the
dynamics and the primary hinderance for diffusion or spread
of consensus (i.e., synchronization) throughout the network.

APPENDIX: EIGENVALUE PERTURBATION ANALYSIS

Here we present the perturbative analysis for the eigen-
values of the Laplacian Lα in Eq. (2), which are in turn
given by the eigenvalues of Eq. (3). We consider here
the N1(N2 − 1) eigenvalues corresponding to inserting the
nonzero eigenvalues μ2, . . . ,μN2 into Eq. (3). Beginning with
the limit of small coupling, α � 1, we proceed perturbatively
as in Ref. [20]; we make the common notational change ε = α

such that ε � 1 is a small parameter and study the eigenvalues
of

Lε(μi) = L1 + εμiD1. (A1)

In the limit ε → 0+ we recover the spectrum of L1, i.e.,
eigenvalues νi and eigenvectors vi , and therefore we propose
a perturbative ansatz of the form

λj (ε) = νj + ελ̂j + O(ε2), (A2)

wj (ε) = vj + εŵj + O(ε2), (A3)

and seek the coefficient λ̂j of the first-order correction, i.e.,
searching for the leading order behavior of the Taylor series
for λj (ε) and wj (ε). Inserting Eqs. (A1), (A2), and (A3)
into the eigenvalue equation Lε(μi)wj (ε) = λj (ε)wj (ε) and
collecting the leading order terms at O(ε), we obtain

μiD1v
j + L1ŵ

j = λ̂jv
j + νj ŵ

j . (A4)

Left-multiplying Eq. (A4) by vjT and noting that the term on
the left-hand side vjL1ŵ

j = νjv
j ŵj cancels with the right-

hand side, we obtain

λ̂j = μiv
jT D1v

j . (A5)

We note that terms similar to the right-hand side in Eq. (A5)
appear often in perturbative analyses, and are akin to the
first order correction to the energy of a Hamiltonian [43].
Substituting back ε = α, we have that the eigenvalues of
Lα(μi) to leading order are given by

λj (α) = νj + αμiv
jT D1v

j , (A6)

giving the expression presented in Eq. (5) in the main text.

Next we consider the limit of large coupling, α � 1, now
letting ε = α−1 be a small parameter. We again proceed
perturbatively, noting that now

α−1Lε(μi) = μiD1 + εL1, (A7)

so that after finding the eigenvalues of the right-hand side of
Eq. (A7) for μ2, . . . ,μN2 , we then multiply by α to obtain
the final eigenvalues. As in Ref. [20], the perturbative analysis
for large coupling then becomes more complicated than that
for small coupling due to the fact that when ε = 0 the right-
hand side of Eq. (A7) reduces to the matrix μiD1, which is
degenerate. Specifically, D1 has precisely n eigenvalues equal
to one and (N1 − n) eigenvalues equal to zero, where n is the
number of nonzero entries of D1, i.e., the size of the roots
set U . We will refer to the eigenspaces associated with the
one and zero eigenvalues of D1 as the nontrivial and trivial
eigenspaces. (Note that the trivial eigenspace is precisely the
null space.) Specifically, the nontrivial eigenspace of D1 is the
span of all vectors whose entries are zero where the diagonal
entries of D1 are zero, and the trivial eigenspace of D1 is the
span of all vectors whose entries are zero where the diagonal
entries of D1 are nonzero. This requires us to consider two
subcases of our asymptotic analysis: one for the nontrivial
eigenspace which will yield n eigenvalues and another for the
trivial eigenspace which will yield N1 − n eigenvalues.

We begin with the nontrivial eigenspace of D1 and propose
a perturbative ansatz of the form

λ̃j (ε) = μi + ελ̂j + O(ε2), (A8)

wj (ε) = x + εŵj + O(ε2), (A9)

where the vector x is in the nontrivial null space of D1,
i.e., D1x = x. Inserting Eqs. (A7), (A8), and (A9) into
the eigenvalue equation α−1Lε(μi)wj (ε) = λ̃j (ε)wj (ε) and
collecting the leading order terms at O(ε), we obtain

μiD1ŵ
j + L1x = λ̂j x + μiŵ

j . (A10)

Next, the entries of x that correspond to zeros in the diagonal
of D1 (i.e., nodes that do not belong to the root set U ) are
zero, so we eliminate these (N1 − n) entries from Eq. (A10)
and obtain the following n-dimensional vector equation:

μiŵ
∅ + L∅

1 x∅ = λ̂j x∅ + μiŵ
∅,

→ L∅
1 x∅ = λ̂j x∅, (A11)

where L∅
1 is the n × n matrix obtained by keeping the rows

and columns of L1 corresponding to nonzero diagonal entries
of D1 and similarly ŵj∅ and x∅ are the n-dimensional vectors
obtained by keeping the same entries of ŵj and x. Thus λ̂j is
one of the n eigenvalues of the matrix L∅

1, which we will denote
ν∅

j . Inserting this back into Eq. (A8), replacing ε = α−1, and
multiplying by α, the n eigenvalues of Lα(μi) corresponding
to the nontrivial eigenspace of D1 to leading order are given
by

λj (α) = αμi + ν∅
j . (A12)
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Turning our attention to the trivial eigenspace of D1, we
introduce a new perturbative anstaz:

λ̃j (ε) = 0 + ελ̂j + O(ε2), (A13)

wj (ε) = y + εŵj + O(ε2), (A14)

where the vector y is now in the null space of D1, i.e., D1 y = 0.
Inserting Eqs. (A7), (A13), and (A14) into the eigenvalue
equation α−1Lε(μi)wj (ε) = λ̃j (ε)wj (ε) and collecting the
leading order terms at O(ε), we obtain

μiD1ŵ
j + L1 y = λ̂j y. (A15)

Similar to Eq. (A10), several vector entries in Eq. (A15) are
zero: this time all entries of y that correspond to ones in the
diagonal of D1 (i.e., nodes that are in the root set U ) are zero.

We therefore eliminate these n entries from Eq. (A15) to obtain
the following (N1 − n)-dimensional vector equation:

L0
1 y0 = λ̂j y0, (A16)

where L0
1 is the (N1 − n) × (N1 − n) matrix obtained by

keeping the rows and columns of L1 corresponding to zero
diagonal entries of D1 and similarly y0 is the (N1 − n)-
dimensional vector obtained by keeping the same entries of
y. Thus λ̂j is an eigenvalue of the matrix L0

1, which we
will denote ν0

j . Inserting this back into Eq. (A13), replacing
ε = α−1, and multiplying by α, the (N1 − n) eigenvalues of
Lα(μi) corresponding to the trivial eigenspace of D1 to leading
order are given by

λj (α) = ν0
j . (A17)

Equations (A12) and (A17) give those expressions presented
in Eqs. (6) and (7) in the main text.
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