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SYNCHRONIZATION OF HETEROGENEOUS OSCILLATORS
UNDER NETWORK MODIFICATIONS: PERTURBATION AND

OPTIMIZATION OF THE SYNCHRONY ALIGNMENT FUNCTION∗

DANE TAYLOR† , PER SEBASTIAN SKARDAL‡ , AND JIE SUN§

Abstract. Synchronization is central to many complex systems in engineering physics (e.g., the
power grid, Josephson junction circuits, and electrochemical oscillators) and biology (e.g., neuronal,
circadian, and cardiac rhythms). Despite these widespread applications—for which proper function-
ality depends sensitively on the extent of synchronization—there remains a lack of understanding for
how systems can best evolve and adapt to enhance or inhibit synchronization. We study how network
modifications affect the synchronization properties of network-coupled dynamical systems that have
heterogeneous node dynamics (e.g., phase oscillators with nonidentical frequencies), which is often
the case for real-world systems. Our approach relies on a synchrony alignment function (SAF) that
quantifies the interplay between heterogeneity of the network and of the oscillators and provides an
objective measure for a system’s ability to synchronize. We conduct a spectral perturbation analysis
of the SAF for structural network modifications including the addition and removal of edges, which
subsequently ranks the edges according to their importance to synchronization. Based on this anal-
ysis, we develop gradient-descent algorithms to efficiently solve optimization problems that aim to
maximize phase synchronization via network modifications. We support these and other results with
numerical experiments.

Key words. synchronization, network-coupled oscillators, Kuramoto model, complex networks,
synchrony alignment function, optimization
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1. Introduction. The study of synchronization is a multidisciplinary pursuit
[17, 40, 3] aimed at understanding how dynamics occurring for individual oscillators
(which can represent a wide array of phenomena ranging from populations of firing
neurons to generators in a power grid [13, 34, 45, 51]) can combine so that the system
exhibits self-organized, collective behavior. For numerous systems, proper functional-
ity requires an appropriate amount of synchronization. The power grid, for example,
must provide electricity following regional specifications (e.g., alternating current at
120 volts and 60 Hertz in the United States) and a breakdown of synchronization can
lead to costly blackouts [38, 50, 59, 31]. Other technologies in which synchroniza-
tion plays a crucial role include Josephson junctions circuits [64, 46], physical infras-
tructure [57], electrochemical oscillators [23], synthetic biological oscillators [41], and
distributed sensor networks [35, 48, 37, 36]. Synchronization is also ubiquitous in bi-
ological systems [66], where applications include coordinated neuronal activity in the
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brain [28, 49], cardiac rhythms of the heart [30, 22], circadian rhythms governing sleep
cycles [47], gene regulation [26], and intestinal activity [15, 2]. Excess synchronization
in the brain, for example, has been linked to tremors and seizures [49, 65].

Given these widespread applications, it is important to develop theory to con-
trol, engineer, and optimize the synchronization properties of complex systems—
particularly heterogeneous systems. In this research, we explore what we believe
to be one of the most fundamental pursuits in this direction, understanding the ef-
fect of a network modification such as the addition or removal of an edge or set
of edges on phase synchronization. This fundamental topic has been previously
studied for complete (perfect) synchronization of identical oscillators [5, 29, 11, 20]
(i.e., based on the master stability function [39]) and nonidentical oscillators in the
weak synchronization regime [43, 29, 63, 60] (i.e., the onset of synchronization [42,
44]). We develop theory for phase synchronization of nonidentical oscillators in the
strong synchronization regime, thereby filling an important gap in the established
literature.

Our approach relies on a synchrony alignment function (SAF) [52] that quantifies
the interplay between heterogeneity in the network and heterogeneity of the oscillators
and provides insight into a network’s ability to synchronize. We showed in [52] that
minimization of the SAF generally yields a maximization of phase synchronization,
and we developed greedy Monte Carlo algorithms to optimize the phase synchroniza-
tion of networks under various constraints. See Figure 1 for a numerical experiment
highlighting the effectiveness of this approach. Because this approach is based on a
mathematical analysis, it is much more reliable than—yet in agreement with—known
heuristics for enhancing synchronization such as implementing negative correlations
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Fig. 1. Phase synchronization depends crucially on the alignment of heterogeneous oscillator
dynamics (i.e., as indicated by their natural frequencies {ωn}) with the heterogeneity of the network
structure (which is manifest in the eigenvalues and eigenvectors of the network Laplacian matrix
L). (a), (b) Phase-locked oscillators {θn} (shown here embedded on the unit circle) for states of
strong (r ≈ 1) and weak (r ≈ 0) phase synchronization, respectively. Here, r is the Kuramoto
order parameter given by (2.3). These simulations reflect phase synchronization of the Kuramoto
model ( (2.1) and H(θ) = sin(θ)) with coupling strength K = 0.8 and network coupling given by the
Erdős–Rényi model [14] with N = 500 nodes, mean degree 4, and minimum degree of dmin = 2.
The only difference between the systems studied in panels (a) and (b) is how the natural frequencies
align with the network structure; panels (a) and (b) correspond to maximizing and minimizing
phase synchronization, respectively (in the notation introduced in section 3.1, these correspond to

ωn = v
(N)
n and ωn = v

(2)
n , respectively, where v(m) is the eigenvector corresponding to the mth

smallest eigenvalue of the network Laplacian). (c) Dependence of r on K for these two systems.
The vertical dashed line indicates the value of K used to produce panels (a) and (b). See section 3.4
for further discussion of the simulation.
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between the frequencies of neighboring oscillators [9, 10, 52] or incorporating positive
correlations between the oscillators’ degrees and natural frequency magnitudes [9, 52].
In addition to optimization, the SAF can be used to explore fundamental limitations
on phase synchronization for systems with frustrated coupling—a phenomenon re-
ferred to as the erosion of synchronization [56, 54]. In continuing to develop this
theoretical framework, we recently generalized the SAF to directed networks [53].

Here, we conduct a spectral perturbation analysis of the SAF to analyze the ef-
fect on phase synchronization due to structural network modifications. This analysis
ranks the edges (and potential edges) according to their importance to synchroniza-
tion. Importantly, this ranking (i.e., centrality measure [61]) takes into account the
full system—that is, both the particular network structure and the oscillators’ (po-
tentially) heterogeneous natural frequencies, and is akin to other rankings that are
specific to a particular class of dynamics [43, 18, 55]. Moreover, we study a class of op-
timization problem in which the goal is to maximally enhance phase synchronization
through the addition and removal of a fixed number of edges. Using these rankings,
we develop efficient gradient-descent algorithms to yield approximate solutions. We
support these and other findings with numerical experiments.

The remainder of this paper is organized as follows. In section 2, we introduce
the oscillator models that we study and order parameters to quantify phase synchro-
nization. In section 3, we present the SAF, derive its upper and lower bounds, and
describe two pedagogical network examples. In section 4, we present a spectral per-
turbation analysis of the SAF for a system undergoing a network modification. In
section 5, we present the ranking of edges according to their importance to phase
synchronization. In section 6, we develop gradient-descent algorithms to efficiently
enhance synchronization. We provide a discussion in section 7.

2. Oscillator models for phase synchronization. We define in section 2.1
two related models that exhibit phase synchronization, the nonlinear Kuramoto phase-
reduction model [25] and the linear heterogeneous Laplacian dynamics (HLD). As
we showed in [52], the linear HLD approximates the synchronization of nonlinear
systems in the regime of strong phase synchronization. To quantify the extent of
phase synchronization of both systems, in section 2.2 we define two order parameters,
the Kuramoto order parameter r and variance order parameter R, and show that they
are approximately equal in the strong synchronization regime.

2.1. Oscillator models. We first define Kuramoto’s model for weakly coupled
limit-cycle oscillators.

Definition 2.1 (Kuramoto phase-reduction model [25]). Consider N phase os-
cillators in which θn ∈ [0, 2π) is the phase of oscillator n, ω̂n ∈ R is the natural
frequency of oscillator n, matrix Ânm encodes the network coupling of oscillators, and
Hnm : [0, 2π) → R is an interaction-specific, 2π-periodic coupling function that is
differentiable at 0. The Kuramoto phase-reduction model [19] is given by the system
of first-order nonlinear differential equations

dθn
dt

= ω̂n +K

N∑
m=1

ÂnmHnm(θm − θn), n ∈ {1, . . . , N}.(2.1)

Kuramoto derived (2.1) as a phase-reduction model [19] to describe the synchro-
nization of weakly interacting limit-cycle oscillators (i.e., the coupling is sufficiently
weak so that the limit cycles are not destroyed). Often, it is assumed that the oscilla-
tor interactions follow an identical functional form, Hnm(θ) = H(θ). Under the choice
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H(θ) = sin(θ), which represents the first-order term of a Fourier expansion for an odd
function H(θ), (2.1) is widely referred to simply as the “Kuramoto model,” and it is
one of the most paradigmatic nonlinear systems for the study of synchronization. It
has been used to study, for example, the power grid [13, 34, 51], animal movements
[32], clapping audiences [62], and many more applications [1, 3, 40].

We also study synchronization according to the following linear system.

Definition 2.2 (heterogeneous Laplacian dynamics). Consider N oscillators with
phases {θn} and natural frequencies {ωn} that are coupled by a network given with
adjacency matrix A, where Anm encodes the impact of oscillator m on oscillator n.
Letting Lnm = −Anm + δnm

∑
mAnm define the combinatorial Laplacian matrix cor-

responding to A, the HLD is given for n ∈ {1, . . . , N} by

dθn
dt

= ωn −K
N∑
m=1

Lnmθm,(2.2)

which can be written in matrix form by dθ/dt = ω −KLθ.

In previous research [52, 53], we showed in the regime of strong phase synchro-
nization that the dynamics of (2.1) can be approximated by (2.2). In particular, if
one defines ωn = ω̂n +K

∑
m ÂnmHnm(0) and Anm = ÂnmH

′
nm(0), then (2.2) gives

the linearization of (2.1) around the synchronization manifold [52, 53]. For example,
phase-locked solutions of (2.2) approximate phase-locked solutions of (2.1). In addi-
tion to providing insight into the synchronization of nonlinear systems, we note that
(2.2) has many applications itself including consensus algorithms for sensor networks
[35, 48, 37], where it is often assumed that ωn = ω for each n.

2.2. Quantifying phase synchronization. Many notions of synchronization
have been studied, each capturing different physical characteristics of real-world sys-
tems. For identical oscillators (i.e., those in which ω̂n = ω̂ or ωn = ω for every n), one
often studies whether the oscillators obtain perfect phase synchronization, whereby all
phases converge so that limt→∞ |θn(t)− θm(t)| = 0. For systems with heterogeneous
dynamics, such as when {ωn} or {ω̂n} are nonidentical (which is typical in real-world
scenarios), this notion of synchronization is too restrictive [58]. Here, we study states
in which the phase oscillators are phase-locked and the oscillators achieve strong phase
synchronization. That is, for any oscillators n and m the phase difference θn(t)−θm(t)
is assumed to relax to a small, constant value |θn(t)−θm(t)| � 1. We note that phase
locking implies perfect frequency synchronization so that dθn/dt = dθm/dt = Ω for
any pair of nodes n and m, where Ω = N−1

∑
n ωn [55] is the collective frequency for

undirected networks.
Because phase-locked oscillators need not converge—instead, they cluster around

some central phase, or a mean field—it is important to measure (quantify) the extent
of phase synchronization. To this end, we study two measures of phase synchroniza-
tion, the Kuramoto order parameter, r, and the variance order parameter, R, to be
defined below. We note that r is the most common for (2.1); however, for analytical
purposes, it is advantageous to measure phase synchronization based on R. In prin-
ciple, either order parameter (r or R) can be applied to either system (that is, (2.1)
or (2.2)), and as we shall show, the order parameters are approximately equal in the
strong synchronization regime.

Definition 2.3 (Kuramoto order parameter [25]). Given a system of coupled
oscillators with phases {θn} (e.g., (2.1) or (2.2)), the Kuramoto order parameter r



1988 DANE TAYLOR, PER SEBASTIAN SKARDAL, AND JIE SUN

and mean field ψ are found by mapping the phases onto the unit circle and calculating
the centroid,

reiψ =
1

N

N∑
n=1

eiθn ,(2.3)

where r ≥ 0 and ψ ∈ [0, 2π).

Remark 2.1. By definition, the value r ∈ [0, 1]. Importantly, r ≈ 1 indicates
strong phase synchronization, whereas r ≈ 0 typically indicates weak (or a lack of)
phase synchronization. See Figures 1(a) and (b) for illustrations of these two cases.

Definition 2.4 (variance order parameter). Given a system of coupled oscillators
with phases {θn} (e.g., (2.1) or (2.2)), we define

R = 1− σ2
θ/2,(2.4)

where σ2
θ = N−1

∑
n(θn−θ)2 = N−1||θ−θ1||22 is the variance of phases and the mean

phase θ = N−1
∑
n θn defines a mean field.

Order parameters r and R both limit to unity for perfect synchronization, and
“strong synchronization” is defined as the regime in which r ≈ R ≈ 1. We now
establish that these order parameters are approximately equal in this regime through
the following bounds.

Proposition 2.5 (equivalence of order parameters). Assume that the infinite
sequence {‖θ − ψ1‖kk/k!} for k ∈ {2, 4, . . . } monotonically converges to zero so that

lim
k→∞

‖θ − ψ1‖kk
k!

→ 0,(2.5)

where || · ||p denotes the p-norm, and

‖θ − ψ‖22
2!

≥ ‖θ − ψ‖
3
3

3!
≥ · · · ≥‖θ − ψ‖

k
k

k!
> · · · ;(2.6)

then (2.4) and (2.3) satisfy the following bounds:

R− |θ − ψ|
2

2
≤ r ≤ R+

||θ − ψ1||44
24N

.(2.7)

Moreover, the difference between the two mean fields, ψ and θ, is bounded by

|θ − ψ| ≤ ||θ − ψ1||33
6N

.(2.8)

Proof. See Appendix A for the proof.

As we show in Appendix A, the variance order parameter R captures the leading
order term of an expansion of r near r = 1, and the upper and lower bounds in

(2.3) come from the next terms in the expansion. Both |θ−ψ|
2

2 and
||θ−ψ1||44

24N become
vanishingly small in the strong synchronization regime, implying that r ≈ R is a valid
and accurate approximation in this regime.
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3. The synchrony alignment function. We now present a derivation of the
SAF, which quantifies the ability for a heterogeneous system to synchronize by measur-
ing the alignment of the heterogeneity of the nodal dynamics (e.g., oscillators’ natural
frequencies) with that of the network (as measured through the spectral properties
of the Laplacian matrix). In section 3.1, we present the SAF and its connection to
phase synchronization. In section 3.2, we develop upper and lower bounds on the
SAF. In section 3.3, we study these bounds for two pedagogical network examples. In
section 3.4, we describe a numerical experiment to highlight the applicability of using
SAF for optimizing phase synchronization.

3.1. Phase synchronization and the SAF. A main advantage of order pa-
rameter R versus r for HLD systems is that R can be solved exactly in terms of the
SAF. Herein, we obtain a solution θ∗ for the phase-locked state of HLD systems given
by (2.2). Using this solution, we obtain an analytical expression for R, which can be
succinctly expressed in terms of the SAF.

We first present a solution to the phase-locked state of HLD systems.

Theorem 3.1 (phase-locked state of HLD [52]). Consider the HLD given by
(2.2), for which we assume L describes a connected, undirected network, and let

L† =
∑N
n=2 λnv

(n)v(n)T denote the Moore–Penrose pseudoinverse [7] of the Lapla-
cian matrix L. Then the equilibrium (i.e., phase-locked) solution is given by

θ∗ = K−1L†ω + θ1,(3.1)

and the variance order parameter R is given by

R = 1− J(ω, L)/2K2,(3.2)

where J(ω, L) is the SAF defined below.

Proof. See Appendix B for the proof.

Definition 3.2 (Synchrony alignment function for undirected networks [52]). Let
ω denote a vector encoding oscillators’ natural frequencies and consider an undirected
network with Laplacian L having eigenvalues 0 = λ1 < λ2 ≤ λ3 ≤ · · · ≤ λN and

corresponding eigenvectors {v(n)}. Let L† =
∑N
n=2 λnv

(n)v(n)T denote the Moore–
Penrose pseudoinverse [7] of L. We define the SAF by

J(ω, L) = N−1||L†ω||22 =
1

N

N∑
n=2

(ωTv(n))2

λ2
n

.(3.3)

Remark 3.1. Given that the eigenvectors {v(n)} of L form an orthonormal basis
for RN and that the terms in the summation of (3.3) are proportional to 1/λ2

n, the
SAF will be smaller (larger) if the frequency vector ω is more strongly aligned with
eigenvectors corresponding to large (small) eigenvalues.

3.2. Bounding the SAF. Equation (3.2) highlights for HLD systems that R
can be solved in terms of the SAF, which is advantageous for the optimization of
phase synchronization through tuning R (which approximates r in the strong syn-
chronization regime). We now develop upper and lower bounds on the SAF and
use them to solve the optimization problems of maximizing and minimizing R for a
fixed network and natural frequencies with mean ω =

∑
n ωn and specified variance

σ2
ω = N−1

∑
n(ωn − ω)2.
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Proposition 3.3 (bounding the SAF [52]). Consider the SAF given by (3.3),
where the oscillators have natural frequencies with variance σ2

ω and L denotes the
Laplacian of an undirected, connected network. The SAF satisfies

σ2
ω

Nλ2
N

≤ J(ω, L) ≤ σ2
ω

Nλ2
2

.(3.4)

Proof. Recall that the eigenvectors {v(n)} form an orthonormal basis for RN .
It follows that the frequency vector can be expressed as ω =

∑
n αnv

(n), where
components αn are given by αn = ωTv(n). After substituting this into (3.3), we

find J(ω, L) = N−1
∑N
n=2 α

2
n/λ

2
n. Note also that {αn} must satisfy the constraint

σ2
ω =

∑N
n=2 α

2
n. We obtain the left-hand inequality by using λ−2

N ≤ λ−2
n for any n.

We obtain the right-hand inequality by using λ−2
2 ≥ λ−2

n for any n.

Corollary 3.4. The maximization and minimization of (3.3) for fixed L over
the space of natural frequencies {ω : ω =

∑
n ωn and N−1

∑
n(ωn − ω)2 = σ2

ω} have
the solutions ω = ω ± σωv(2) and ω = ω ± σωv(N), respectively.

Proof. Substitution of ω = ω ± σωv
(2) into (3.3) recovers the upper bound,

whereas substitution of ω = ω ± σωv(N) into (3.3) recovers the lower bound.

Corollary 3.5. Considering the system in (2.2), the maximization and mini-
mization of R given by (2.4) over the space of natural frequencies {ω : ω =

∑
n ωn and

N−1
∑
n(ωn − ω)2 = σ2

ω} for fixed L have the solutions ω = ω ± σωv(N) and ω =
ω ± σωv(2), respectively.

Proof. From (3.2), we can see that R is a linear function of J(ω, L) so that
argmaxωR = argminωJ(ω, L) and argminωR = argmaxωJ(ω, L).

Remark 3.2. Given the equivalence relation defined in (2.7), the maximization of
R approximates the maximization of r, which is expected to be accurate in the regime
of strong synchronization.

3.3. SAF for pedagogical network examples. To provide intuition toward
synchrony optimization with the SAF, in this section we study the maximization and
minimization of R using the SAF for two pedagogical networks—an undirected chain
and a star network.

We first consider an undirected chain, which is shown in Figures 2(a) and (b) and
is a network consisting of sequentially linked nodes with end nodes indexed n = 1 and
N . The Laplacian matrix for a chain takes the form

L(chain) =


1 −1 . . . 0 0
−1 2 . . . 0 0
...

...
. . .

...
...

0 0 . . . 2 −1
0 0 . . . −1 1

(3.5)

and has eigenvalues

λn = 4 sin2

(
π(n− 1)

2N

)
(3.6)

and corresponding eigenvectors {v(n)} with entries

v(n)
m =

{ 1√
N
, n = 1,√

2
N cos

(
π(n−1)(2m−1)

2N

)
, n ≥ 2.

(3.7)
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Fig. 2. Pedagogical network examples including (a)–(c) a chain network with N = 9 nodes
and (d)–(e) a star network with N = 13. The nodes’ colors indicate the optimal natural frequency
ωm for each node m that either maximizes R (i.e., ω = v(N)), which is shown in panels (a) and
(d), or minimizes R (i.e., ω = v(2)), which is shown in panels (b) and (e). Panel (c) depicts the
eigenvectors {v(n)} for the chain.

We depict the eigenvectors {v(n)} for n ≥ 2 in Figure 2(c). It follows that the SAF
obtains a minimum value

min
‖ω‖=1

J(ω, L(chain)) =
1

Nλ2
N

=
1

16N sin4(π(N − 1)/2N)
(3.8)

when ω = v(N) and a maximum value

max
‖ω‖=1

J(ω, L(chain)) =
1

Nλ2
2

=
1

16N sin4(π/2N)
(3.9)

when ω = v(2). Recall that the maximization of R corresponds to minimization of
the SAF, and vice versa.

We next consider the star network shown in Figures 2(d) and (e) in which there
is a central hub node with degree d1 = N − 1, and it is connected to leaf nodes of
degree dn = 1 for n ≥ 2. The network Laplacian matrix is given by

L(star) =


N − 1 −1 −1 . . . −1
−1 1 0 . . . 0
−1 0 1 . . . 0
...

...
...

. . .
...

−1 0 0 . . . 1

(3.10)

and has eigenvalues

λn =

 0, n = 1,
1, n ∈ {2, . . . , N − 1},
N, n = N.

(3.11)

The corresponding eigenvectors are given by

v(1) =
1√
N

[1, . . . , 1]T ,

v(N) =
1√

N2 −N
[N − 1,−1, . . . ,−1]T ,(3.12)
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and the remaining eigenvectors {v(n)} form an orthonormal basis for the subspace,

RN \ span{v(1),v(N)}. In particular, they must be orthonormal and satisfy v
(n)
1 = 0

and 0 =
∑
m v

(n)
m . It follows that SAF obtains a minimum value

min
‖ω‖=1

J(ω, L(star)) =
1

Nλ2
N

=
1

N3
(3.13)

when ω = v(N) and a maximum value

max
‖ω‖=1

J(ω, L(star)) =
1

Nλ2
2

=
1

N
(3.14)

when ω = v(2).
In Figure 2, we illustrate (a)–(c) the chain network with N = 9 nodes and (d)–

(e) the star network with N = 13 nodes. We indicate the natural frequency vec-
tor ω by node color, and we choose ω to either (a), (d) maximize R by setting
ω = v(N)—thereby maximizing phase synchronization—or (b), (e) minimize R by
setting ω = v(2). In panel (c), we plot the eigenvectors {v(n)} for the chain network
given by (3.7), and we point out that expanding ω onto the basis {v(n)} for a chain
resembles a discrete cosine transform. In general, v(N) and v(2) can be respectively
construed as high- and low-frequency eigenvectors due to their oscillatory behavior.
We point out that high-frequency eigenvectors are also well known to be prone to lo-
calization onto nodes with large degree (cf. p. 26 of [61]), and this phenomenon can be
observed to occur for the hub in the star network (e.g., see Figure 2(d) and (3.12)).
Because synchronization is enhanced by aligning ω with the high-frequency vector
v(N), properties of v(N) reveal intuitive properties that enhance synchronization. In
particular, synchronization is enhanced by implementing negative correlation between
the frequencies of neighboring nodes (e.g., see Figure 2(a)), as well as by a positive
correlation between |ωm| and node degree, dm (e.g., see Figure 2(d)). We note that
these two types of correlations were previously studied for synchrony optimization for
random networks [52, 53].

3.4. Numerical experiment: Effectiveness of heterogeneity alignment.
The analysis presented in section 3 has been developed for the strong synchronization
regime in which r ≈ R ≈ 1. Importantly, as we showed in [52], the SAF provides
a theoretical framework to optimize phase synchronization of systems with diverse
properties, including a wide range of values for the coupling strength K. That is, by
optimizing a system for the r ≈ R ≈ 1 regime, one inherently widens the parameter
space in which the r ≈ R ≈ 1 approximation is valid. Moreover, we illustrated the
effectiveness of this approach with networks having diverse properties including net-
works that are both small and large as well as both heterogeneous and homogeneous.
In fact, the only assumption is that the network must be connected (see [53] for a
generalization of the SAF for directed networks).

We briefly support this approach with a numerical experiment in which we sim-
ulated (2.1) with H(θ) = sin(θ) for an undirected, random network with N = 500
nodes and mean degree 4, which we generated using the Erdős–Rényi model [14].
We enforced it to be connected by requiring that the nodes have minimum degree
dmin = 2. For this network, we simulated oscillators with natural frequencies ω given
by either (a) v(N), the eigenvector that corresponds to the largest eigenvalue λN , or
(b) v(2), the eigenvector (i.e., Fiedler vector [16]) that corresponds to the smallest
nonzero eigenvalue λ2. As shown in [52] and Corollary 3.5, these choices maximize
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and minimize R, respectively. We present results for this experiment in Figure 1,
where panels (a) and (b) depict phase-locked states at K = 0.8 for these two choices
of natural frequencies. In panel (c), we depict r-versus-K synchronization profiles for
these two systems.

4. Perturbation analysis of the SAF. In this section, we develop a pertur-
bation analysis for how the SAF (see (3.3)) is affected by structural network modifica-
tions. This analysis is built upon classical matrix perturbation theory. In section 4.1,
we present classical results for the perturbation of simple eigenvalues and eigenvectors
of a symmetric matrix. In section 4.2, we analyze general perturbations in which the
Laplacian matrix L undergoes a symmetric perturbation. In section 4.3, we study
the addition and removal of edges. In section 4.4, we support the accuracy of the
first-order approximation with a numerical experiment.

4.1. Classical spectral perturbation results [4]. We begin by presenting
a well-known result that describes the first-order perturbation of eigenvalues and
eigenvectors of a symmetric matrix L.

Theorem 4.1 (perturbation of simple eigenvalues and their eigenvectors [4]). Let
L be a symmetric matrix with simple eigenvalues {λn} and normalized eigenvectors
{v(n)}. Consider a fixed symmetric perturbation matrix ∆L, and let L(ε) = L+ ε∆L.
Denote the eigenvalues and eigenvectors of L(ε) by λn(ε) and v(n)(ε), respectively, for
n = 1, 2, . . . , N . It follows that

λn(ε) = λn + ελ′(0) +O(ε2),

v(n)(ε) = v(n) + εv(n)′(0) +O(ε2),(4.1)

and the derivatives with respect to ε at ε = 0 are given by

λ′n(0) = (v(n))T∆Lv(n),

v(n)′(0) =
∑
m 6=n

(v(m))T∆Lv(n)

λn − λm
v(m).(4.2)

Proof. See [4] for the proof.

Remark 4.1. Note for n = 1 that λ1(ε) = 0 and v(1)(ε) = N−1/21 for any ε since
the perturbation ∆L has the same null space as L, which is span(1).

Due to continuity, the approximations in (4.1) are accurate when the perturba-
tions are small. However, the regime for which such approximation is valid (i.e., how
small ε needs to be) generally depends on L, ε, and the perturbation matrix ∆L.

4.2. General network perturbations. We now present a first-order expansion
of the SAF that is analogous to the expansions given by (4.1).

Theorem 4.2 (perturbation of the SAF under a network modification). Let
J(ω, L) denote the SAF given by (3.3) for natural frequencies ω and symmetric net-
work Laplacian L, and let J(ω, L(ε)) denote the SAF for the network after it undergoes
a symmetric modification ε∆L. Assume the eigenvalues of L and L(ε) = L + ε∆L
are simple and that the original and perturbed networks are both connected. Then the
first-order expansion in ε for the perturbed SAF is given by

J(ω, L(ε)) = J(ω, L) + εJ ′(0) +O(ε2),(4.3)
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where

J ′(0) =
2

N

N∑
n=2

(
ωTv(n)

λ3
n

)( N∑
m=2

[ωTv(m)][(v(m))T∆Lv(n)]

(1− λm/λn)− δnm

)
.(4.4)

Proof. See Appendix C for the proof.

Remark 4.2. Due to continuity, (4.3) is accurate when the perturbation is small,
i.e., |∆J | � J . Because (4.3) relies on (4.1), one heuristic to ensure accuracy is
that we require (4.1) to be accurate for every eigenvalue, which is expected when
ε(v(n))T∆Lv(n)/λn � 1 for every n = 2, 3, . . . , N . (Recall that λ1 is always zero.)
This suggests ε/λ2 � 1, and we provide numerical support for this heuristic in sec-
tion 4.4. However, we conjecture that this heuristic may be too strong (i.e., sufficient
but not necessary). We consider ε/λ� 1 to be a reasonable heuristic in many situa-
tions, where λ = N−1

∑
n λn.

Remark 4.3. The computation of (4.3) requires O(MN + N2) multiplications,
where M is the number of nonzero entries in ∆L. In contrast, direct computation
of the new SAF requires solving N − 1 eigenvalues and eigenvectors, which typically
involves O(N3) multiplications in practice, and computing (3.3) involves O(N2) mul-
tiplications. Therefore, for large networks and sparse ∆L (i.e., M � O(N2)), the
perturbation result is much more efficient to compute, and in particular, it is O(N2)
versus O(N3).

4.3. Edge additions and removals. Equation (4.3) gives a first-order approx-
imation to the change in the SAF due to any symmetric perturbation ε∆L of the
Laplacian L. We now provide a more specific result for the addition and removal of
undirected, unweighted edges.

Corollary 4.3 (perturbation of the SAF under edge modifications). Consider
the SAF given by (3.3) and the perturbation of undirected edge (p, q) (e.g., Apq 7→
Apq ± ε and Apq 7→ Apq ± ε) and define

Qpq =
2

N

N∑
n=2

(
ωTv(n)

λ3
n

)( N∑
m=1

[ωTv(m)][(v
(m)
p − v(m)

q )(v
(n)
p − v(n)

q )]

(1−λm/λn)− δnm

)
;(4.5)

then (4.3) has the simplified form

J(ω, L(ε)) = J(ω, L)± εQpq +O(ε2),(4.6)

where + and − correspond to edge addition and subtraction, respectively.

Proof. See Appendix D for the proof.

Corollary 4.4 (perturbation of the SAF under subgraph rewiring). Consider
the SAF given by (3.3) and a network in which a set of edges E(+) ⊆ {1, . . . , N} ×
{1, . . . , N} are added and a set of edges E(−) ⊆ {1, . . . , N}× {1, . . . , N} are removed;
then (4.3) has the simplified form

J(ω, L(ε)) = J(ω, L) +
∑

(p,q)∈E(+)

εQpq −
∑

(p,q)∈E(−)

εQpq +O(ε2).(4.7)

Proof. See Appendix E for the proof.
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Fig. 3. Approximation accuracy of (4.6) for the addition of 50 randomly selected edges. (a),
(b) Scatter plots of the first-order prediction Qpq versus actual change ∆J to SAF after we add an
edge to scale-free networks, which we constructed using the configuration model [6] with exponent
γ = 2.5 and either (a) N = 100 and dmin = 5 or (b) N = 250 and dmin = 25. By varying ε,
we show results for several choices of ε/λ2. (c) We plot the mean approximation error versus ε/λ2
for networks of different size N and minimum degree dmin. Results indicate the mean across 50
randomly selected edge additions. The arrows indicate the error when ε = 1, which vanishes with
growing λ2.

4.4. Numerical experiment: Validation of the first-order approxima-
tion. We now present a numerical experiment to illustrate the accuracy of (4.3) and
(4.6) by comparing predicted and observed values of the SAF upon edge additions.
In particular, we considered a system given by (2.2) in which the natural frequencies
{ωn} were randomly drawn from a normal distribution, and we constructed undi-
rected, scale-free networks using the configuration model [6]. We generated networks
with degrees {di} following the distribution P (d) ∝ d−γ with γ = 2.5, and either (a)
N = 100 and dmin = 5 or (b) N = 250 and dmin = 25. We considered single-edge
additions for each system, and for each new edge (p, q), we compared the observed
change to the SAF, ∆J = J(ω, L(ε)) − J(ω, L), and the first-order approximation
Qpq given by (4.5) and (4.6).

We plot these results in Figure 3, and we describe the perturbation size in terms
of the ratio ε/λ2 (see Remark 4.2). In panels (a) and (b), we plot predicted versus
true values of ∆J for various values of ε for two scale-free networks. Results indicate
50 randomly selected edge additions. In panel (c), we plot the mean approximation
error—that is, the mean fractional error, |εQpq−∆J |/|∆J |, across 50 edge additions—
as a function of ε/λ2, for several networks of different size and minimum degree.
The arrows indicate the approximation error when ε = 1 (i.e., the addition of an
undirected edge). Our first observation is that the approximation error vanishes with
growing network size and density (i.e., increasing dmin). For example, the mean
error is approximately 2% for the network with N = 500 and dmin = 50, whereas
it is approximately 40% for the network with N = 100 and dmin = 5. Our second
observation is that even when the mean approximation error is somewhat large (e.g.,
40%), (4.5) still captures the correct magnitude of the perturbation of J , and this is
significant because ∆J can vary by several orders of magnitude for the different edge
perturbations (see panels (a) and (b)).

5. Ranking edges via perturbation to the SAF. In this section, we use our
perturbation analysis as a centrality measure [61] to rank the edges and potential edges
according to their importance to the SAF. This ranking is akin to other rankings that
are specific to a particular class of dynamics, including PageRank (which is important
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to random walks [18] and collective behavior [55]) and dynamical importance [43]
(which is important to dynamics ranging from epidemic spreading to synchronization).
For the ranking that we introduce here, the top-ranked edge is the one that yields
the minimal SAF and therefore the maximal R upon its removal. Similarly, the top-
ranked potential edge is one that yields the minimal SAF and therefore the maximal
R upon its addition. Importantly, this approach takes into account both the structure
and the dynamics of the system—that is, both the particular network structure and
the oscillators’ heterogeneous natural frequencies.

This section is organized as follows. In section 5.1, we rank the edges according
to their importance to the SAF (and thus phase synchronization). In section 5.2,
we define a class of optimization problem that maximizes phase synchronization with
edge modifications. In section 5.3, we identify the top-ranked potential edges that
can be added to the pedagogical chain network.

5.1. Ranking edges according to the SAF. We first introduce some nota-
tion. Let G(V, E) define a network with a set of nodes V = {1, . . . , N} and a set of
undirected edges, E ⊆ V × V. We disallow self-edges so that {(n, n)} ∩ E = ∅. For
a given set of edges E , we define a set of complementary edges (i.e., potential edges)
PE = V ×V \ (E ∪ {(n, n)}). The sets E and PE define the edges that can potentially
be removed and added, respectively.

We now introduce the rankings.

Definition 5.1 (SAF-induced ranking of edges). Given a connected network G =
(V, E) with symmetric Laplacian matrix L and a frequency vector ω, we rank each edge
(p, q) ∈ E according to the first-order approximation for the perturbation of the SAF
that is induced by its removal, ∆J ≈ −Qpq. Specifically, we define

X(p, q) = 1 + |E ′|, where E ′ = {(n,m) ∈ E : Qnm > Qpq}(5.1)

so that X(p, q) ∈ {1, . . . , |E|} defines the rank of each edge (p, q) ∈ E.

Definition 5.2 (SAF-induced ranking of potential edges). Given a connected
network G = (V, E) with symmetric Laplacian matrix L and a frequency vector ω, we
rank each potential edge (i, j) ∈ PE according to the first-order approximation for the
perturbation of the SAF that is induced by its addition, ∆J ≈ Qpq. We define

Y (p, q) = 1 + |PE ′|, where PE ′ = {(n,m) ∈ PE : Qnm < Qpq}(5.2)

so that Y (p, q) ∈ {1, . . . , |PE|} defines the rank of each potential edge (p, q) ∈ PE.

We note that it is generally possible for more than one edge to correspond to
a given value Qnm, and in this situation the rankings {X(n,m)} of edges E and
{Y (n,m)} of potential edges PE can lead to ties. That is, multiple edges will have an
identical rank, and the next-ranked edge will have a rank that takes into account the
number of edges that are tied. For some applications (e.g., the algorithms we develop
in the following section), it can be necessary that there are no ties, and in this case we
break the tie by randomly assigning an appropriate rank to the edges that correspond
to an identical Qnm value.

5.2. Optimizing phase synchrony with edge modifications. We will use
the rankings {X(n,m)} and E and {Y (n,m)} to efficiently solve the following opti-
mization problem.

Definition 5.3 (maximal phase synchrony with edge modifications). Let R(ω, L)
denote the variance order parameter given by (3.2) of the phase-locked solution of
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(2.2) for natural frequencies ω and network Laplacian L. Through the removal of
T (−) edges and the addition of T (+) new edges, we wish to solve

max
∆L∈D(T (−),T (+))

R(ω, L+ ∆L),(5.3)

where

D(T (−),T (+)) =

∆L : ∆L =
∑

(p,q)∈E(+)

∆L(pq) −
∑

(p,q)∈E(−)

∆L(pq)

(5.4)

is the ensemble of appropriate perturbations to the Laplacian L that can be obtained
by removing T (−) edges, E(−) ⊆ E, and adding T (+) new edges, E(+) ⊆ PE, and

∆L
(pq)
ij =

 1, (i, j) ∈ {(p, p), (q, q)},
−1, (i, j) ∈ {(p, q), (q, p)},

0 otherwise
(5.5)

gives the change in L due to the addition of an edge (p, q).

Because R can be solved in terms of the SAF for HLD system (see (3.2)), (5.3)
is equivalent to

min
∆L∈D(T (−),T (+))

J(ω, L+ ∆L).(5.6)

Both (5.3) and (5.6) can be solved with an exhaustive search if N , T (−) and T (+) are
very small. However, this approach is infeasible for practical situations in which the
network is large or more than a few edges are modified, and one must instead search
for approximate solutions that can be computed efficiently.

5.3. SAF-based edge ranking for chain network. Before continuing, we
present a numerical experiment to highlight that the rankings introduced in sec-
tion 5.1 take into account both the network structure and oscillator dynamics (i.e.,
their natural frequencies {ωn}). That is, depending on the particular system it is
possible for the rankings to be dominated by either the network structure or natu-
ral frequencies. We illustrate this phenomenon by studying the ranking of potential
new edges for the chain network that was described in section 3.3 as a pedagogical
network for the SAF. In this study, we computed Qpq for all possible edge additions
(p, q) ∈ PE for two choices of natural frequencies: (a) {ωn} are drawn independently
from a normal distribution with unit variance, and (b) {ωn} are identical to those in
(a) except we define ω5 = 10 for oscillator n = 5. The motivation for setting ω5 = 10
is that this oscillator becomes an outlier in that its natural frequency is much larger
than any other oscillator (i.e., its magnitude is 10 times larger than the standard
deviation of the other oscillators).

In Figure 4(a) and 4(a), we depict the values {Qpq} for these two choices for
ω. In panels (c) and (d), respectively, we indicate by dashed curves the edges that
correspond to the five top-ranked potential edges, Y (p, q) ∈ {1, . . . , 5} given by (5.2),
for the Qpq values shown in panels (a) and (b). Note in panel (c) that the top-ranked
potential edges connect together the ends of chain, which significantly changes the
topology of the network and can be measured, for example, via the network diameter
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Fig. 4. Perturbation Qpq given by (4.5) with ε = 1 for potential edges (p, q) ∈ PE for the chain
network with N = 9 nodes and two choices for ω: (a) {ωn} are independently drawn from a normal
distribution with unit variance, and (b) {ωn} are the same as those in (a) except we create an outlier
oscillator by setting ω5 = 10. We indicate by dashed curves in panels (c) and (d), respectively, the
five top-ranked potential edges, Y (p, q) ∈ {1, . . . , 5} given by (5.2), for the Qpq values shown in
panels (a) and (b). Node color indicates ωn.

(which decreases from 8 to 4). In contrast, in the presence of the outlier oscillator,
node n = 5, the top-rank edges connect to the outlier or its neighbors to mitigate
its disruptive effect on synchronization. In the following section, we present formal
algorithms that use the rankings of edges and potential edges to solve the optimization
problem defined in section 5.2.

6. Gradient-descent algorithms for synchrony optimization. In [52], we
developed accept/reject (i.e., Monte Carlo) rewiring algorithms to approximately min-
imize the SAF—thereby maximizing phase synchronization. That is, we developed
a process in which we iteratively propose an edge rewire (which we selected uni-
formly at random), compute the new SAF after the rewire, and then accept or reject
the proposed rewiring based on whether the SAF decreases. Although we showed
that this approach is effective for optimizing the synchronization properties of sev-
eral types of networks, it is important to develop more efficient algorithms to address
practical applications. We now leverage the results of sections 4 and 5 to develop
gradient-descent algorithms that efficiently identify network modifications that opti-
mally enhance phase synchronization.

This section is organized as follows. In section 6.1, we develop gradient-descent
algorithms based on the rankings to efficiently solve these optimization problems. In
section 6.2, we support these results with numerical experiments. In section 6.3, we
provide an extended study of synchrony optimization under nonideal scenarios.

6.1. Gradient-descent algorithms. We now describe two algorithms that can
be used to approximately solve the class of optimization problem defined in section 5.2.
The first algorithm is formally presented in Algorithm 1, which we now describe.
It consists of two steps. First, we remove the T (−) edges that have lowest rank,
E(−) = {(n,m) ∈ E : X(n,m) ≥ |E| − T (−)}. Next, we add the T (+) potential edges
that have highest rank, E(+) = {(n,m) ∈ PE : Y (n,m) ≤ T (+)}. To implement
this algorithm, we assume there are no tied rankings so that X(n,m) 6= X(p, q) and
Y (n,m) 6= Y (p, q) whenever (n,m) 6= (p, q).

We note that Algorithm 1 is a one-step gradient-descent algorithm since the gra-
dient of the SAF (i.e., its first-order approximation) due to the subgraph rewiring
is given by (4.7). In particular, the selections of edges E(+) and E(−) according to
Algorithm 1 correspond to the direction of the largest gradient. Also, due to (3.2),
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Algorithm 1. Rank-based modifications without updating.

Require: Network with edges E , potential edges PE , natural frequency vector ω,
and numbers of edge additions, T (+), and removals, T (−)

Ensure: Set of edges to be added, E(+), and removed, E(−)

1: Rank edges E and potential edges PE according to (5.1) and (5.2)
2: Define E(+) as the top-ranked edges, E(+) = {(p, q) : Xpq ≥ |E| − T (+)}
3: Define E(−) as the lowest-ranked edges, E(−) = {(p, q) : Ypq ≤ T (−)}

Algorithm 2. Rank-based modifications with updating.

Require: Network with edges E , potential edges PE , natural frequency vector ω,
and numbers of edge additions, T (+), and removals, T (−)

Ensure: Set of edges to be added, E(+), and removed, E(−)

1: Initialize sets of edges, Ê = E , and potential edges, P̂E = PE
2: Initialize the sets of edges to be added, E(+) = ∅, and removed, E(−) = ∅
3: for t ∈ {1, . . . ,max(T (−), T (+))} do
4: if t ≤ T (−) then
5: Identify lowest-ranked edge (p∗, q∗) ∈ Ê such that Xpq = |Ê |
6: Add lowest-ranked edge to removal set, E(−) = E(−) ∪ {(p∗, q∗)}
7: Update the set of edges Ê = Ê \ {(p∗, q∗)}
8: end if
9: if t ≤ T (+) then

10: Identify top-ranked potential edge (p∗, q∗) ∈ P̂E such that Ypq = 1
11: Add top-ranked potential edge to addition set, E(+) = E(+) ∪ {(p∗, q∗)}
12: Update the set of potential edges P̂E = P̂E \ {(p∗, q∗)}
13: end if
14: end for

the gradient of the SAF equals the negative gradient of R for the phase-locked state
of the system given by (2.2). However, we also note that (4.7) is an approximation
to the actual change ∆J that will occur to the SAF, and therefore Algorithm 1 only
approximately solves the class of optimization problem given by (5.3). In fact, the
solution error grows with the error of the first-order approximation (see Remark 4.2).
Importantly, the accuracy of (4.7) decreases with an increasing number of edge ma-
nipulations, |E(−)|+ |E(+)|, and therefore we expect the performance of Algorithm 1
to become worse as this number increases. To obtain better approximate solutions to
the optimization problem given by (5.3) with large T (−) or T (+), we now introduce a
second algorithm.

We present in Algorithm 2 another algorithm that utilizes the rankings of edges
and potential edges according to the SAF. The main difference from Algorithm 1 is
that in Algorithm 2, the edge modifications are made sequentially rather than simul-
taneously. That is, after each edge modification, the eigenvalues and eigenvectors
of the resulting network Laplacian matrix are computed. In this way, it is a mul-
tistep gradient-descent algorithm. In particular, we first remove the lowest-ranked
edge and add the top-ranked potential edge. Then we compute the new rankings
after the edge rewire. Next, according to these new rankings, we again remove
the lowest-ranked edge, add the top-ranked potential edge, and compute the new
rankings. We repeat this process until T (−) edges are removed and T (+) edges are
added.
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The main benefit of Algorithm 2 is that the error of the first-order approximation
for subgraph rewiring (see (4.7)) remains small by keeping the perturbations small
(i.e., only one rewire is made at a time). We note that it is also possible to update
the rankings between the step of edge removal and edge addition to make the pertur-
bations even smaller, but we do not explore this option. We find that Algorithm 2
yields improved approximate solutions for the optimization problem given by (5.3);
however, it does so at an increased computational cost. In particular, whereas the
matrix {Qpq} is calculated only once for Algorithm 1, it must be recalculated after
each of the rewires for Algorithm 2. For some applications, we expect that will be
beneficial to modify Algorithm 2 so that the matrix {Qpq} is updated after a few
(and not every) rewire, and we leave this direction open for future work. Moreover,
Algorithm 2 implements a 1-to-1 modification strategy in which we remove an edge,
add an edge, and repeat; however, one could also explore different strategies for the
ordering in which edges are removed and added (e.g., one could first remove all edges
E(−) and then add the new edges E(+), or vice versa). Therefore, although we focus
on two algorithms, we stress that the results presented in sections 3 and 4 provide a
mathematical foundation that can serve as a starting point for developing even further
optimization algorithms for phase synchronization in oscillator networks.

6.2. Numerical experiment: Enhancing phase synchronization with
edge modifications. We now support Algorithms 1 and 2 with numerical exper-
iments. We constructed an initial system given by (2.2) with natural frequencies
{ωn} drawn from a normal distribution, and we randomly assigned them to nodes
in a scale-free network with N = 50 nodes, exponent γ = 2.5, and minimum degree
dmin = 10, which we constructed using the configuration model [6]. We conducted
three experiments for the class of optimization problem defined by (5.3):

(a) We studied the effect of edge additions and no edge removals by setting T (−) =
0 and considering various T (+).

(b) We studied the effect of edge removals and no edge additions by setting T (+) =
0 and considering various T (−).

(c) We studied the effect of rewiring T edges by setting T (−) = T (+) = T and
considering various T .

In Figures 5(a), (b), and (c), we plot the linear order parameter R given by (3.2)
versus T (+), T (−), and T for the solutions that were obtained by Algorithms 1 and
2 for these respective optimization problems. Note that Algorithm 2 provides better
solutions than Algorithm 1; however, Algorithm 1 performs nearly as well when the
number of modifications is small. Interestingly, we find that depending on the edge
choice, both edge addition and removal can possibly increase or decrease R. By
comparing panel (b) to (a), however, one can observe for this experiment that edge
addition is much more effective than edge removal for the increase of R. Therefore,
the enhanced synchronization that can be observed in panel (c) is mostly due to the
edges that were added rather than the edges that were removed.

To gauge the effectiveness of Algorithms 1 and 2 for enhancing phase synchroniza-
tion, we compare them to two other strategies for modifying a network. First, we de-
fine the “Random” strategy to indicate the situation in which the appropriate number
of edges are removed and/or added uniformly at random. Second, we define “Strategy
λ2” to indicate the selection of edges so as to maximize the eigenvalue λ2 per step,
which is often referred to as the network’s algebraic connectivity [16]. The motivation
for comparing to this approach is that λ2 is often tuned to control the synchronization
of network-coupled dynamical systems with identical oscillators [5, 50, 27, 31, 34]. To
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Fig. 5. Maximizing phase synchronization with optimal edge modifications. In panels (a), (b),
and (c), we illustrate the effectiveness of Algorithms 1 and 2 for the class of optimization problem
defined in (5.3). In particular, we study (a) edge addition by setting T (−) = 0 and allowing T (+)

to vary, (b) edge removal by setting T (+) = 0 and allowing T (−) to vary, (c) edge rewiring by
setting T (−) = T (+) = T and allowing T to vary. We compare Algorithms 1 and 2 to two other
edge modification algorithms: Strategy Random corresponds to when the edges are added or removed
uniformly at random, and Strategy λ2 corresponds to when the edges are added or removed so as to
maximize eigenvalue λ2, which is the network’s algebraic connectivity [16]. In all panels, the initial
network is scale-free with N = 50 nodes, exponent γ = 2.5, and minimum degree dmin = 10. The
coupling strength is K = 0.02 and the values of R are given by (3.2).

efficiently implement Strategy λ2, we use the first-order approximation for the per-
turbation of λ2 due to a network modification as given by (4.2) with n = 2 and
∆L = ∆L(pq) given by (5.5). Note that Algorithms 1 and 2 both significantly out-
perform these baseline strategies, which do not take into account the heterogeneous
dynamics (i.e., natural frequencies {ωn}) of the network-coupled dynamical system.

6.3. Numerical experiment: Optimization in nonideal scenarios. Before
concluding, we present an extended investigation in which we study the performance
of Algorithm 2 in the following nonideal situations:

(a) when a fraction of the nodes are unavailable in that their edges cannot be
perturbed;

(b) when there is misinformation about the edges that are present in the network;
(c) when there is misinformation about the natural frequencies.

We present results for these respective experiments in Figures 6(a), (b), and (c). Un-
less otherwise specified, the natural frequencies are drawn from a normal distribution
with unit variance, K = 0.02, and the network contains N = 50 nodes and is con-
structed by the configuration model [6] with node degrees generated according to a
power-law distribution with γ = 2.5, dmin = 10.

In the first study, we investigated a constrained optimization problem in which
new edges can only be added to a subset of the nodes—that is, a fraction of the
nodes are unavailable for modification. In particular, we select uniformly at random
a set of nodes and remove all edges adjacency to them from the set of potential
edges PE . We then modify the optimization problem in section 5.2 and algorithms
of section 6.1 based on this reduced set of potential edges. In Figure 6(a), we plot
the dependence of R given by (3.2) after adding edges according to Algorithm 2 as
a function of the fraction of nodes that are unavailable for modification. Note that
phase synchronization can be effectively optimized even when a significant fraction of
nodes are unavailable to receive new edges.
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Fig. 6. Performance of Algorithm 2 for nonideal scenarios of synchrony optimization. (a) De-
pendence of R for a constrained optimization problem in which the edges adjacent to some fraction
of the nodes are unavailable and cannot be modified. (b) Dependence of R when there is misinfor-
mation about the network due to a fraction of the edges being rewired. (c) Dependence of R when
the natural frequencies have been subjected to Gaussian noise with variance η2. In all panels, curves
and error bars indicate the mean and standard error across 10 simulations.

In the second study, we investigated the effect of misinformation about the net-
work on the performance of synchrony optimization. That is, rather than implement-
ing Algorithm 2 using the true network, we used a misinformed network in which a
fraction of the edges have been rewired so that there is some discrepancy between the
actual network Laplacian L and the one used in the gradient descent algorithm. To
construct a misinformed network, we implemented an edge rewiring process in which
we iteratively removed an edge and created a new edge uniformly at random from
the potential edges. In Figure 6(b), we plot the dependence of R given by (3.2) after
adding edges according to Algorithm 2 as a function of the fraction of edges that
are rewired. Note that because matrix spectra are relatively robust to perturbations
when the eigenvalues are well-spaced [12], we observe that phase synchrony can still
be significantly enhanced even with considerable misinformation about the network
structure.

Finally, in the third study we investigated the effect on algorithm performance
when there is misinformation about the natural frequencies. That is, rather than
implement Algorithm 2 using the true natural frequencies, we added to the frequencies
{ωn} Gaussian noise with variance η2. In Figure 6(c), we plot the effect on R for edge
additions via Algorithm 2 as a function of η2. Note that the algorithm performs well
provided that η2 is smaller than the variance of the natural frequencies, which are
normally distributed with unit variance, σ2

ω = 1.

7. Discussion. Complex systems exhibiting synchronization are widespread,
and for many systems—ranging from the biological rhythms [66] that govern activity
in our brains, hearts, and other vital organs, to macroscopic systems such as power
grids—it is essential that a precise amount of synchronization is present in order to
retain proper functionality. For example, a lack of synchronization is well-known to
drive blackouts in power grids [31, 34, 51, 50, 5], and many neurological tremors are
linked to excessive synchronization between neurons [49, 65].

Here, we explored how to tune and control phase synchronization for network-
coupled dynamical systems using network modifications such as adding and/or re-
moving edges. Our analysis is based on recent research [52] in which we developed an
SAF to measure the interplay between oscillators’ heterogeneous natural frequencies
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and the structural heterogeneity of the network. The SAF is an objective measure
for the ability for synchronization to occur for a system with heterogeneous dynamics
(e.g., nonidentical natural frequencies {ωn}). Its optimization offers a mathemati-
cal framework to design synchrony-optimized systems. Importantly, this approach
take into account the actual heterogeneity of the node’s dynamics and is comple-
mentary to previous research that either lacks or neglects this type of heterogeneity
[21, 20, 33].

In this research,1 we provided the SAF with a more rigorous footing and con-
ducted a spectral perturbation analysis. We derived a first-order expansion that
allowed us to approximate how the SAF is effected by network modifications, and
this approach is much more computationally efficient than directly recomputing the
SAF for the modified system. Specifically, when only a few edges are modified the
approximation is O(N2) versus O(N3) for recomputing the SAF, where N is the
number of oscillators. By focusing on the addition and removal of edges, we ob-
tained a ranking for the edges (and potential edges) that orders them according to
their importance to the SAF and, therefore, phase synchronization. Importantly,
these rankings take into account both the network structure and the heterogeneous
oscillator dynamics. Relying on these rankings, we developed gradient-descent al-
gorithms to efficiently minimize the SAF, which simultaneously maximizes a linear
order parameter R that approximates the Kuramoto order parameter r. These re-
sults complement previous work [52] where we designed synchrony optimized net-
works using accept/reject (i.e., Monte Carlo) algorithms. Importantly, here we study
a different optimization problem: maximizing phase synchronization using a speci-
fied number of edge additions and removals. We showed with numerical experiments
(see Figure 5) that these algorithms significantly outperform other baseline strate-
gies, such as random rewiring or tuning the algebraic connectivity λ2, which are
naive in that they neglect the heterogeneity of oscillator dynamics (i.e., the natural
frequencies {ωn}).

The theory that we developed here allows us to decide, quantitatively, the extent
to which a particular set of connections promote or inhibit phase synchronization
and can be used to control, engineer, and optimize the synchronization properties
of complex systems. Our work also provides a mathematical framework with which
further optimization techniques can be developed and applied to oscillator networks.
It would be interesting to combine the synchrony alignment framework with more
advanced optimization techniques such as simulated annealing [24] and convex opti-
mization [8]. In particular, (by design) gradient-descent algorithms find local optima,
not global optima. As previously explored for the optimization of identical oscillators
[20], this shortcoming can likely be overcome using, for example, simulated annealing.
It would also be interesting to explore the utility of the SAF for optimizing other
aspects of synchronization such as the critical coupling strength at which the phase-
locked state appears/disappears, which relates to the quantity max(i,j)∈E |θ∗i −θ∗j | [13].
Synchrony optimization via the SAF minimizes the variance of steady-state phases,
and we are currently exploring its utility for tuning the maximum difference. Finally,
it is worth pointing out the rich set of open problems that remain to be tackled, in-
cluding the dependence of the SAF on various network properties such as the scaling
with N and mean degree, degree correlations, clustering, community structure, and
so on.

1Note that we have made available several MATLAB scripts and a demo to accompany this
research at https://github.com/taylordr/SAF optimization.

https://github.com/taylordr/SAF_optimization
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Appendix A. Proof to Proposition 2.5.

Proof. We begin with the upper bound. We will first obtain a relation between
‖θ − ψ1‖22 and ‖θ − θ1‖22. We find

‖θ − ψ1‖22 = ||θ − θ1 + (θ − ψ)1||22
= 〈θ − θ1 + (θ − ψ)1,θ − θ1 + (θ − ψ)1〉
= ‖θ − θ1‖22 + 2〈θ − θ1, (θ − ψ)1〉+ ‖(θ − ψ)1‖22
= Nσ2

θ +N |θ − ψ|2.(A.1)

Here, the last line uses that the second term vanishes since 〈θ− θ1,1〉 = 0. It follows
that

‖θ − ψ1‖22 ≥ ‖θ − θ1‖22 = Nσ2
θ .(A.2)

Next, we note that the Kuramoto order parameter is equivalent to the system of
equations

0 = N−1
N∑
n=1

sin(θn − ψ),

r = N−1
N∑
n=1

cos(θn − ψ).(A.3)

We Taylor expand the cosine functions in (A.3) around 0, isolate the first two terms,
and use (A.1) to obtain

r = 1− ||θ − ψ1||22
2N

+

∞∑
k=2

(−1)k||θ − ψ1||2k2k
(2k)!N

= 1− ‖θ − θ1‖
2
2 +N |θ − ψ|2

2N
+

∞∑
k=2

(−1)k||θ − ψ1||2k2k
(2k)!N

= R− |θ − ψ|
2

2
+

∞∑
k=2

(−1)k||θ − ψ1||2k2k
(2k)!N

.(A.4)

Given that the terms in the summation oscillate in sign, our assumption of monotone
convergence implies that the summation is upper bounded by the first term, ||θ −
ψ1||44/(4!N). Combining this bound with (A.2) recovers the upper bound in (2.7). We
next prove the lower bound. Monotone convergence also implies that the summation
is positive, which gives the lower bound

r ≥ R− |θ − ψ|
2

2
.(A.5)

To bound the difference between the mean fields, ψ and θ, we Taylor expand the sine
functions in (A.3), isolate the first term, and rearrange to obtain

θ − ψ =

∞∑
k=1

(−1)k+1

(2k + 1)!N

N∑
n=1

(θn − ψ)2k+1.(A.6)
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Note that terms in the summation oscillate in sign so that terms k = 1, 3, . . . have the
same sign as θ − ψ. Under our assumption of monotone convergence, the magnitude
of the summation is bounded by the magnitude of the first term. We neglect the
remaining terms and take the absolute value of both sides to obtain (2.8).

Appendix B. Proof to Theorem 3.1.

Proof. In the state of phase-locked synchronization, dθn/dt = Ω for every oscilla-
tor so that (2.2) becomes

Ω1 = ω −KLθ∗.(B.1)

The Moore–Penrose inverse L† =
∑N
n=2 λ

−1
n v

(n)v(n)> is defined so that L†L†L = L
and L†LL† = L†. Recall that the eigenvectors {v(n)} of L define an orthonormal basis,
and our assumption of a connected undirected network implies 0 = λ1 < λ2 · · · ≤ λN .
We multiply both sides by K−1L† to obtain a general solution of the form

θ∗ = K−1L†ω −K−1L†(Ω1) + cv(1),(B.2)

where v(1) = N−1/21 is the eigenvector corresponding to the trivial eigenvalue λ1 = 0
and c ∈ R is a constant that accounts for the projection of θ∗ onto the nullspace,
null(L†) = null(L) = span(v(1)). Because 1 ∈ null(L†), L†(Ω1) = 0 and the second
term vanishes. To solve for c, we multiply both sides of (B.2) by N−11T to obtain
c = N1/2θ (i.e., cv(1) = θ1). To complete the proof, we use (3.1) to obtain

R = 1− σ2
θ/2

= 1− 1

2N
||θ∗ − θ1||2

= 1− 1

2N
||K−1L†ω||2

= 1− J(ω, L)/2K2.(B.3)

Appendix C. Proof to Theorem 4.2.

Proof. We define

F (ε) = J(ω, L+ ε∆L) =
1

N

N∑
n=2

fn(ε)

gn(ε)
,(C.1)

where fn(ε) = [ωTv(n)(ε)]2 and gn(ε) = λ2
n(ε), and we seek a solution of the form

F (ε) = F (0) + εF ′(0) +O(ε2).(C.2)

Here, we use F ′(ε) to denote the derivative with respect to ε, F ′(ε) = dF
dε . Using the

quotient rule, we find

F ′(ε) =
1

N

N∑
n=2

f ′n(ε)gn(ε)− fn(ε)g′n(ε)

g2
n(ε)

,(C.3)

where f ′n(ε) = 2[ωTv(n)(ε)][ωTv(n)′(ε)] and g′n(ε) = 2λn(ε)λ′n(ε). Evaluation of this
expression at ε = 0 yields

F ′(0) =
1

N

N∑
n=2

2[ωTv(n)][ωTv(n)′]λ2
n

λ4
n

− [ωTv(n)]2 [2λnλ
′
n]

λ4
n

,(C.4)
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where we have dropped the argument ε when ε = 0 to simplify our presentation.

Recall that λ′n = (v(n))T∆Lv(n) and v(n)′ =
∑
m 6=n

(v(m))T ∆Lv(n)

λn−λm
v(m) are well-known

perturbation results given in (4.2). We substitute these results into (C.4) and combine
terms to obtain

F ′(0) =
2

N

N∑
n=2

(
ωTv(n)

λ3
n

)( N∑
m=1

[ωTv(m)][(v(m))T∆Lv(n)]

(1− λm

λn
)− δnm

)
.(C.5)

Appendix D. Proof to Corollary 4.3.

Proof. We first note that ε = 1 for the modification of an unweighted edge.
Given a Laplacian matrix L, the new Laplacian matrix after adding or removing an
undirected edge (p, q) has the form L′ = L+ ∆L(pq) or L′ = L−∆L(pq), respectively,

where ∆L
(pq)
ij is given by (5.5) Using (5.5), it is straightforward to show

(v(m))T∆L(pq)v(n) = (v(m)
p − v(m)

q )(v(n)
p − v(n)

q ).(D.1)

We substitute this result into (4.3) to complete the proof.

Appendix E. Proof to Corollary 4.4.

Proof. Due to linearity, it follows that

∆L =
∑

(p,q)∈E(+)

∆L(pq) −
∑

(p,q)∈E(−)

∆L(pq).(E.1)

Thus

(v(m))T∆Lv(n) =
∑

(p,q)∈E(+)

(v(m)
p − v(m)

q )(v(n)
p − v(n)

q )

−
∑

(p,q)∈E(−)

(v(m)
p − v(m)

q )(v(n)
p − v(n)

q ).(E.2)

We substitute this result into (4.3) and simplify to recover (4.7).
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