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A wide range of natural and engineered phenomena rely on large networks of interacting units to reach a
dynamical consensus state where the system collectively operates. Here we study the dynamics of self-organizing
systems and show that for generic directed networks the collective frequency of the ensemble is not the same as the
mean of the individuals’ natural frequencies. Specifically, we show that the collective frequency equals a weighted
average of the natural frequencies, where the weights are given by an outflow centrality measure that is equivalent
to a reverse PageRank centrality. Our findings uncover an intricate dependence of the collective frequency on both
the structural directedness and dynamical heterogeneity of the network, and also reveal an unexplored connection
between synchronization and PageRank, which opens the possibility of applying PageRank optimization to
synchronization. Finally, we demonstrate the presence of collective frequency variation in real-world networks
by considering the UK and Scandinavian power grids.

DOI: 10.1103/PhysRevE.93.042314

I. INTRODUCTION

The emergence of synchronization in ensembles of dy-
namical units is a universal phenomenon that is vital to the
functionality of many natural and manmade systems [1–3]. In
addition to the ability of the individuals that make up such
systems to operate in unison, in many instances the particular
frequency or velocity with which they evolve is crucial. For
example, the sources and loads that make up power grids
must reach consensus to avoid power failures, but reaching
a common frequency alone is not enough; the system is most
efficient near a certain reference frequency of approximately
50–60 Hz and may fail if the collective dynamics are too
far from this range [4,5]. In a wide variety of disciplines,
from biology and neuroscience to mechanical and electrical
engineering, there are vital systems whose functionality is
jeopardized if the collective frequency or velocity differs too
much from a given reference frequency; examples include
brain dynamics, cardiac excitation, consensus networks, and
coordination of muscle movements in the digestive track [6–9].
In the case of cardiac excitation, for instance, rapid oscillations
can give rise to dynamical instabilities that often precede
ventricular fibrillation and eventually heart failure.

In the majority of works studying the dynamics of net-
work synchronization, it is often assumed that the collective
frequency of the synchronized state is precisely the mean
natural frequency of the individual units [2,3,10]. In other
words, the synchronized state reaches an oscillation frequency
that is equal to the unweighted average of the oscillation
frequencies of the individual elements when acting in isolation,
i.e., uncoupled. In this article we study the collective frequency
of self-organizing systems of oscillators and show that it is
not in general equal to the mean of the individuals’ natural
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frequencies. We find that collective frequency variation is a
consequence of the directedness of network and heterogeneity
of the dynamics. For networks lacking either, e.g., undirected
networks or identical oscillators, we find that that the collective
frequency does recover the mean oscillator frequency [11,12].
Importantly, systems with directed connections and noniden-
tical agents are ubiquitous [1], and therefore collective fre-
quency variation is a fundamental—yet unexplored—property
of real-world self-organizing systems [13,14].

To investigate this phenomenon, we consider the general
linearized dynamics of N coupled units xi for i = 1, . . . ,N ,
given by

ẋi = ωi − K

N∑
j=1

Lijxj , (1)

where ωi is the natural frequency of oscillator i, K is the global
coupling strength, and L is the network Laplacian matrix. The
entries of L are defined Lij = δij k

in
i − Aij , where Aij is the

network adjacency matrix and kin
i = ∑N

j=1 Aij is the in-degree
of node i. We also define the out-degree of node i, kout

i =∑N
j=1 Aji . We assume the network encoded by A to be strongly

connected [15]. In principle, our analysis allows the network
to be directed and weighted, although unless otherwise noted
we will focus on the case of unweighted edges: Aij = 1 if a
directed link j → i exists, and otherwise Aij = 0. We note that
there are several ways to define a Laplacian matrix for directed
networks [16]; we study a version that is appropriate for the
dynamics of interest. These linearized dynamics represent a
versatile description of a wide range of dynamical processes on
networks [17,18]. For instance, Eq. (1) can be obtained from
linearizing self-organizing systems around the synchronized
manifold, for instance, the Kuramoto model, which serves
as a model for a wide range of synchronization phenomena,
including power grid dynamics [19,20], as well as other
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systems with more general coupling which are utilized in mod-
eling excitable- and reaction-diffusion-type systems [21–23].
This linear relaxation has been found to accurately capture the
dynamics of the system, provided that initial conditions are
within the basin of attraction of the synchronized state [24]. In
the case of a network of coupled oscillators, this tends to be
particularly robust, capturing the dynamics, provided that the
overall coupling is not too small in comparison to the spread
in the natural frequencies (which we illustrate in Sec. V).

We study the frequency-synchronized state, given by
ẋ1 = · · · = ẋN , and quantify the collective frequency variation
by examining � − 〈ω〉, where � denotes the collective fre-
quency of the synchronized population and 〈ω〉 = N−1 ∑

i ωi

is the mean natural frequency. We call this difference the
collective frequency variation. We show that under the generic
conditions which are present in most practical applications,
when the frequencies ωi are nonidentical and the in- and
out-degrees kin

i and kout
i are not perfectly balanced, then

� − 〈ω〉 �= 0. However, when the in- and out-degrees match
for each node in the network, kin

i = kout
i , then the collective

frequency variation vanishes, i.e., � = 〈ω〉, for any choice of
frequencies. We calculate the collective frequency variation
directly from Eq. (1) and show that � − 〈ω〉 is given by a
weighted average of the natural frequency vector, where the
weights correspond to entries of the first-left-singular vector
u1 of L that is associated with the trivial singular value σ1 = 0.
We find that u1 represents an outflow centrality measure, and
in fact the entries of u1 are often well approximated by the
out-to-in-degree ratio, ui ∝∼ kout

i /kin
i . Interestingly, the first-

left-singular-vector centrality is a reverse analog of Google’s
PageRank centrality [25], which provides a cornerstone to
Google’s ranking of webpages and favors nodes with strong
inflow [26]. These findings reveal an interesting and surprising
link between synchronization dynamics and PageRank, paving
a path for theoretical exploration and the possibility of apply-
ing well-established PageRank methods to synchronization.
We will also demonstrate the presence of collective frequency
variation in real-world UK and Scandinavian power grid
networks. However, we emphasize that our findings fit in a
much broader and more interdisciplinary framework.

The remainder of this article is organized as follows. In
Sec. II we derive the collective frequency variation of a
network. In Sec. III we study the range of possible collective
frequency variation for a given network structure. In Sec. IV
we show that the weights that contribute to the collective
frequency admit a centrality that is the reverse analog of
Google’s PageRank centrality. In Sec. V we study collective
frequency variation in the power grid as a real example. In
Sec. VI we conclude with a discussion of our results.

II. DERIVATION OF COLLECTIVE
FREQUENCY VARIATION

We begin by writing Eq. (1) in vector form,

ẋ = ω − KLx. (2)

Our aim is to calculate the collective frequency of the
synchronized population, and therefore we propose the ansatz

x(t) = x∗ + �1t, (3)

where x∗ is a vector encoding the steady-state value of each
xi in an appropriate rotating frame, 1 = [1, . . . ,1]T , and �

is the collective frequency. To proceed, we will utilize the
pseudoinverse L† of the Laplacian matrix, which satisfies
LL†L = L and L†LL† = L† [27]. In the undirected case,
L† can be found using the eigenvalue decomposition of L,
whereas in the more general case of a directed network, L† is
formulated in terms of the singular value decomposition (SVD)
of L. In particular, if L = U�V T = ∑N

j=2 σj ujvjT , where
σj � 0 are the singular values which are ordered 0 = σ1 <

σ2 � · · · � σN and make up the diagonal entries of �, and uj

and vjT are the corresponding left and right singular vectors
that make up the columns of U and V , respectively, then the
pseudoinverse is given by L† = V �†UT = ∑N

j=2 σ−1
j vj ujT .

An important distinction between L and L† is that while L

maps all constant vectors to zero since its rows sum to zero,
this is not generally true of L†, whose null space is nontrivial.
Furthermore, the sets of singular vectors {uj }Nj=1 and {vj }Nj=1
(appropriately normalized) each form an orthonormal basis for
RN .

Proceeding with the analysis, we insert Eq. (3) into Eq. (2)
and rearrange to obtain

ω − �1 = KLx∗. (4)

Left-multiplying by LL† and using that LL†L = L, we find

LL†(ω − �1) = KLx∗. (5)

Equations (4) and (5) thus imply that

(I − LL†)ω = �(I − LL†)1. (6)

Next, since σ1 = 0, the matrix I − LL† can be simplified to
u1u1T . Finally, we left-multiply Eq. (6) by 1, rearrange, and
subtract 〈ω〉 from the right- and left-hand sides to obtain

� − 〈ω〉 = 〈u1,ω − 〈ω〉1〉
〈u1,1〉 , (7)

where 〈a,b〉 = aT y = ∑
i aibi denotes the inner product.

This result is in good agreement with previous research on
consensus systems. In particular, by differentiating Eq. (2)
with respect to time, using the initial condition ẋ(0) = ω −
KLx(0), and noting that the first-left-singular vector and first
left eigenvector are equal, we find that our derivation of Eq. (7)
provides a complementary derivation of Eq. (23) in Ref. [28].

Equation (7) gives the collective frequency variation � −
〈ω〉 of a synchronized population as the projection of the
natural frequency vector ω − 〈ω〉1 (shifted to have zero
mean) onto the first-left-singular vector u1. The physical
interpretation of Eq. (7) is that the collective frequency
variation is a weighted average of the natural frequencies,
wherein the weights are proportional to the entries of u1. Thus,
nodes with large entries in u1 contribute more to the collective
frequency variation than those with small entries, allowing for
nonzero values of � − 〈ω〉 provided that the entries of u1 are
not identical. Furthermore, we can formulate the full range of
collective frequencies for a given network as the maximum of
|� − 〈ω〉| over all choices of ω with some fixed variance. As
we will show below, the first-left-singular vector u1 induces a
centrality measure for the network that is related to the outflow
of each node. Interestingly, we will show that this centrality
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FIG. 1. Collective frequency variation. (a, b) Two networks of size N = 8 with 16 links. In (b), the in- and out-degrees match at each node,
in particular, kin

i = kout
i = 2. In (a) this balance is broken, so kin

i �= kout
i . Each node’s area is proportional to the ratio kout

i /kin
i , which represents

a mean field approximation to the first-left-singular vector u1 of the Laplacian matrix L. (c) The density P (�) of collective frequencies �

observed in networks (a) and (b) (solid blue and dashed red, respectively) for different permutations of a normally distributed frequency vector
ω with mean 〈ω〉 = 0 and variance σ 2 = 1. We find � to relate closely to the alignment of ω with vector u1, which represents an outflow
centrality.

is analogous to a “reverse” PageRank. In fact, it is equivalent
to Google’s PageRank centrality for the network obtained by
reversing the direction of each link in the original network.

III. RANGE OF COLLECTIVE FREQUENCY VARIATION

We demonstrate our main result, Eq. (7), with a simple
example using two small networks of size N = 8, which
are illustrated in Figs. 1(a) and 1(b). Both networks contain
16 links, yielding a mean in- and out-degree of 〈k〉 = 2;
however, in network (a) the links are made randomly so
the in- and out-degrees at each node are not necessarily
equal, while network (b) is balanced so that the links are
made to satisfy kin

i = kout
i = 2 for all i, but is still directed.

For visual distinction, each node’s area is proportional to
the out-to-in-degree ratio kout

i /kin
i . Next, we draw a set of

normally distributed natural frequencies with mean 〈ω〉 = 0
and variance σ 2 = 1 and calculate for each network the
collective frequency variation � − 〈ω〉 using Eq. (7) for 104

different permutations of these frequencies. In Fig. 1(c) we
plot the observed density P (� − 〈ω〉) for networks (a) and (b)
(solid blue and dashed red, respectively). In the generic case,
network (a), where in- and out-degrees are not necessarily
equal at each node, we observe a wide range of collective
frequencies, while for network (b), where the balance kin

i =
kout
i is maintained, the collective frequency is zero in each

case, resulting in a δ function P (� − 〈ω〉) = δ(� − 〈ω〉).
This example highlights two important properties. First, the
collective frequency variation is intimately linked with the
directedness of a network: once the balance kin

i = kout
i is

broken, a nonzero value of � − 〈ω〉 should be expected.
Second, the precise value of � − 〈ω〉 depends not only on the
network and set of natural frequencies but the arrangement of
natural frequencies (dynamical heterogeneity) on the network.
Therefore, for a fixed network and set of oscillator frequencies,
depending on how the oscillators are assigned on the network,
the system’s collective frequency may either be faster or slower
than the mean frequency.

A natural question to ask of a given network is: What
is the range of possible collective frequency variations?
We formalize this by considering for a given network, the
magnitude of the maximum collective frequency variation

across all frequency vectors with fixed variance σ 2, i.e.,
maxvar(ω)=σ 2 |� − 〈ω〉|. Inspecting Eq. (7), it is straightforward
to see that the collective frequency variation is maximized
when the shifted natural frequency vector ω − 〈ω〉1 is aligned
with the first-left-singular vector u1. Thus the choices of ω

that maximize |� − 〈ω〉| with mean 〈ω〉 and variance σ 2 are
precisely

ωmax = ±
√

Nσ
u1 − 〈u1〉1

‖u1 − 〈u1〉1‖ + 〈ω〉1, (8)

where 〈u1〉 = N−1 ∑
i u

1
i and the + and – symbols correspond

to maximizing and minimizing � − 〈ω〉, respectively (that is,
assuming u1

i > 0 for each i). This yields a collective frequency
variation range of

max
var(ω)=σ 2

|� − 〈ω〉| = σ
√

1 − N〈u1〉2/
√

N〈u1〉2. (9)

To investigate how the range of collective frequency
variation depends on network structure, we consider a variety
of Erdős-Rényi [29] (ER) and scale-free (SF) networks. ER
networks are constructed using a link probability p that
describes the probability of directed link j → i existing. SF
networks are built using the configuration model [30] for target
in- and out-degrees drawn from the distribution P (k) ∝ k−γ

for k � k0, where k0 is an enforced minimum degree. The
mean degree for ER and SF networks can be tuned according
to 〈k〉 = (N − 1)p and 〈k〉 = (γ − 1)k0/(γ − 2), respectively.
In our experiment, we fix γ = 3 and construct networks of
size N = 200 with various mean degrees and compute the
collective frequency range according to Eq. (9) with σ 2 = 1.
In Figs. 2(a) and 2(b), we plot the results for over 1000
ER and SF network realizations, respectively; we denote the
mean and standard deviations using the symbols and dashed
curves, respectively. For both network families, the collective
frequency variation range tends to increase as the networks
become more sparse. The central difference we observe is
that both the mean collective frequency variation range and
its standard deviation tend to be larger for SF networks than
for ER networks. This suggests that structural heterogeneity
has an amplifying effect on the range of collective frequency
variation for a network—however, this effect can be mitigated
on average by saturating the network structure: as the average
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FIG. 2. Range of collective frequency variation. For (a) ER and
(b) SF networks of size N = 200 and various mean degrees, the
collective frequency variation range maxvar(ω)=σ 2 |� − 〈ω〉| for σ 2=1.

connectivity increases, the range of collective frequency
variation diminishes.

To better understand the role of network structure in deter-
mining collective frequency variation, we ask the following:
For which network structures is the collective frequency
variation exactly zero? That is, which network structures yield
� − 〈ω〉 = 0 regardless of the choice of ω? From Eq. (7), it
follows that � − 〈ω〉 = 0 for any ω whenever the entries of u1

are all identical, i.e., u1 ∝ 1. We note that since L = Din − A,
where Din = diag(kin

1 , . . . ,kin
N ), and σ1 = 0, then u1 must

satisfy u1 = D−1
in AT u1, or equivalently, u1 is the leading

right eigenvector of D−1
in AT . At each entry, we must have

ui = ∑N
j=1 Ajiuj/kin

i , and therefore by inserting u1 = c1
(for any c �= 0) it is easy to see then that u1 ∝ 1 implies
that the network must be degree-balanced, i.e., kin

i = kout
i

for all i. The converse follows from a simple application of
the Perron-Frobenius theorem [31]. Specifically, u1 ∝ 1 is a
solution of the leading right eigenvalue equation for D−1

in AT ,
and the Perron-Frobenius theorem implies that it is in fact
the unique solution, provided that the network is strongly
connected. Therefore, any given network generically has zero
collective frequency variation if and only if kin

i = kout
i for all i.

IV. SINGULAR VECTOR CENTRALITY
AND GOOGLE’S PAGERANK

Given the nonuniformity of each oscillator’s contribution
to a network’s collective frequency variation, we now turn
our attention to the properties of the first-left-singular vector
u1, which dictates the contribution of each oscillator to the
collective frequency variation. First, we note that the entries
u1

i are positive, and thus u1 induces a centrality measure for
the network. The positiveness of the entries follows from
applying the Perron-Frobenius theorem [31] to the irreducible
and non-negative matrix D−1

in AT and noting that u1 is the
leading right eigenvector of the matrix. The role of u1

as the leading right eigenvector of D−1
in AT also elucidates

its structural properties. In particular, Google’s PageRank
centrality, which tends to favor nodes with strong inflow, is
given by the leading right eigenvector v of the matrix M =
(q/N )11T + (1 − q)D−1

outA, where Dout = (kout
1 , . . . ,kout

N ) and
q ∈ [0,1) is a damping factor [26]. Formally the PageRank of
a network represents the steady state of a Markovian random
walk on the network. When the damping factor is set to zero
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FIG. 3. First-left-singular-vector centrality and PageRank. (a)
Entries u1

i of the first-left-singular vector vs the out-to-in-degree ratio
kout

i /kin
i for an ER network of size N = 200 and p = 0.1. (b) The

relationship between PageRank entries vi (damped and undamped
cases are plotted with red triangles and blue dots, respectively) and
first-left-singular-vector entries for the same network. The expected
inverse relationship u1

i vi ≈ const. is plotted as a black curve.

and each directed link is reversed, the matrix M from which
PageRank is calculated is equal to D−1

in AT (for which u1 is the
leading right eigenvector). Thus the centrality induced by the
first-left-singular vector represents a reverse PageRank, i.e.,
the steady state of a Markovian random walk on the network
with each link reversed.

To provide further insight into the structure of u1, we
consider instead D−1

in ÃT , where Ãij = kin
i kout

j /N〈k〉 is the
mean-field counterpart to A. In particular, the correspond-
ing mean-field approximation of u1, which satisfies ũ1 =
D−1

in ÃT ũ1, is precisely

ũ1
i = ckout

i /kin
i , (10)

where c = [
∑

j (kout
j /kin

j )2]−1/2 is a normalizing factor. Thus
the centrality induced by u1 can be approximated by the out-
to-in-degree ratio kout

i /kin
i —a local indicator of the outflow at

a given node. In Fig. 3(a), we plot the entries u1
i vs kout

i /kin
i

for an ER network of size N = 200 with p = 0.2, and we
denote the mean-field approximation given by Eq. (10) with
a dashed black line. In Fig. 3(b), we compare the centrality
induced by u1 to PageRank centrality induced by v; we plot
the entries vi vs u1

i for both a damped case (q = 0.15) and
the undamped case (q = 0) in red triangles and blue dots,
respectively. The black curve indicates an approximate inverse
relationship between the entries of v and u1. Specifically, we
use an approximation similar to the derivation of ũ1 to find
ṽ ∝ kin

i /kout
i , which implies that the mean field approximations

satisfy

ũ1
i ṽi =

⎛
⎜⎝

√√√√√ N∑
j=1

(
kout
j

kin
j

)2
√√√√√ N∑

j=1

(
kin
j

kout
j

)2
⎞
⎟⎠

−1

, (11)

where the right-hand side is a constant. The strong agreement
between Eq. (11) and the actual entries of u1 and v illustrates
the strong and opposite relationship between the centrality
induced by the first-left-singular vector u1 and PageRank v.

This relationship between synchronization and PageRank
that is revealed by the collective frequency variation of a
network represents a new direction for network analysis
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FIG. 4. Collective frequency variation in power grid networks. (a, b) Course-grain representations of the UK and Scandinavian power grids,
respectively. (c) Collective frequency variation � − 〈ω〉 as observed from direct simulations of the power grid model given by Eq. (12) on the
UK and Scandinavian power grid networks compared to the theoretical prediction of Eq. (7) given Eq. (13) in 50 000 realizations. Parameters
Pi and Ci are drawn from a bimodal normal distribution and a γ distribution with mean 1, respectively, as described in the text. (d) Distribution
of collective frequency variation found for each network.

and, immediately, the potential for applying PageRank-based
techniques to self-organizing networks. PageRank and random
walker dynamics remains one of the most popular topics
of research connecting various disciplines and has a rich
literature [32]. Specifically, various algorithms and techniques
exist for analysis and optimization which might be applied
to manipulate a network’s collective frequency variation.
For instance, given the inverse relationship between the
first-left-singular-vector centrality and PageRank, we expect
that increasing (decreasing) a node’s PageRank corresponds
to decreasing (increasing) its contribution to the collective
frequency variation.

V. POWER GRID DYNAMICS

The power grid represents a prime example of a network
of self-organizing dynamical systems whose functionality
we rely on everyday—without robust synchronization near a
specified range (∼ 50–60 Hz), our power supply is jeopardized.
Power grids [33] are widely modeled using the following
system of second-order differential equations:

Hiθ̈i + Ciθ̇i = Pi + K

N∑
j=1

Aij sin(θj − θi − αij ), (12)

where θi represents the mechanical phase of oscillator i, Hi and
Ci represent the inertial and damping constants, respectively,
Pi represents the generated or consumed power of oscillator
i, K is the global coupling strength, and αij is a phase-lag
parameter for the interaction between oscillators i and j .
Although the adjacency matrix A is taken to be undirected,
the presence of heterogeneity in the damping coefficients
yields an effective directedness in the network coupling.
Specifically, dividing Eq. (12) through by Ci and linearizing
around the synchronized state θ̇1 = · · · = θ̇N , where we expect
θ1 ≈ · · · ≈ θN , yields the system

H̃i θ̈i + θ̇i = ω̃i − K

N∑
j=1

L̃ij θj , (13)

where the new Laplacian L̃ is defined L̃ij = δij k̃
in
i − Ã,

where Ãij = Aij cos αij /Ci , k̃in
i = ∑

j Ãij , H̃i = Hi/Ci , and

ω̃i = (Pi − K
∑

j Aij sin αij )/Ci . Note in particular that the
effective coupling matrices are directed, i.e., L̃T �= L̃ and
ÃT �= Ã. Different power grid models treat the inertial term in
Eq. (12) differently [33]. In certain models the inertial term Hi

depends on the role of oscillator i: if oscillator i is a source,
or power generator, Hi is nonzero, but if it is a load, or power
consumer, Hi is zero and thus the equation for oscillator i

is a first-order differential equation. Some models treat all
Hi’s as nonzero, resulting in a full system of second-order
differential equations, and others treat all Hi’s as zero, resulting
in a full system of first-order differential equations. We note
that regardless of the treatment of the inertial terms, in the
synchronized state θ̈i holds for all i, and therefore the collective
frequency of the synchronized state is preserved, and thus
Eq. (7) holds.

To demonstrate the presence of collective frequency varia-
tion in a real-world setting, we consider the power grid model
in Eq. (12) on empirical power grids. Specifically, we consider
course-grain versions of the UK and Scandinavian power
grids [4,34,35], which we illustrate in Figs. 4(a) and 4(b),
respectively, and which consist of N = 119 and 236 nodes
and M = 165 and 320 links, respectively. It is well known
that in real-world power grids the power Pi of sources and
loads are positive and negative with respect to their mean, and
damping coefficients are all positive, and with an appropriate
rescaling of time can be set to have a mean [36]. Therefore, we
draw each Pi from the bimodal normal distribution h(P ) =
(e−(P−P0)2/2σ 2 + e−(P+P0)2/2σ 2

)/2
√

2πσ 2 and each Ci from
the γ distribution g(C) = ααCα−1e−αC/�(α). For simplicity,
inertial coefficients Hi and phase lags αij are all set to zero.
We simulate Eq. (12) using K = 3, P0 = √

3, σ = 1/2, and
α = 4 on both the UK and Scandinavian power grid networks,
calculating the collective frequency variation � − 〈ω〉 from
direct observation, and compare to the theoretical prediction
of Eq. (7) given Eq. (13) in Fig. 4(c) for 50 000 realizations
of the parameters Pi and Ci . The dashed black curve (which
is almost completely covered) underscores perfect agreement.
In Fig. 4(d) we plot the distribution of collective frequencies
found in the 50 000 trials on each network, demonstrating
that collective frequency variation can be a significant effect
in important, real-world networks such as power grids.
Furthermore, our numerical exploration indicates that by
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appropriately adding and/or deleting links, the collective fre-
quency variation can be either amplified or mitigated, suggest-
ing that the collective frequency variation could be tuned with
a collection of judiciously chosen perturbations to the network
structure.

VI. DISCUSSION

In this article, we have studied the collective frequency
of self-organizing systems in general directed networks. In
particular, we have shown that in generic directed networks
the collective frequency variation is nonzero and is given by
a weighted average of the natural frequencies. In other words,
the collective frequency of the synchronized state is not equal
to the mean of the oscillators’ individual natural frequencies.
The weights that determine the collective frequency variation
are associated with the left singular vector u1 of the Laplacian
matrix L corresponding to the singular value σ 1 = 0. This
formalism allows us to define and calculate the full range of
collective frequency variations possible for any given network.
We have shown that the only networks with generically zero
collective frequency variation are degree-balanced networks
in which the in- and out-degrees match for every node (i.e.,
kin
i = kout

i ).
We have found that the first-left-singular vector in fact

induces a centrality measure on the network. This centrality
is intimately linked with the directedness of the network and
measures an effective outflow at each node. Interestingly, we
have found that this centrality is a reverse analog of PageRank
centrality [25]; PageRank is a cornerstone to Google’s ranking
of webpages and is well known to quantify the inflow at each
node [26]. Moreover, we have shown that the mean field ap-
proximations to the first-left-singular-vector centrality and the
PageRank centrality are precisely the inverse of one another.

We believe that these results will have significant im-
pact on the study of self-organizing processes on networks,
since in many application the collective dynamics of the
synchronized state, i.e., the collective frequency, plays an
important role in the functionality of the system. As a prime
example we have considered the dynamics of two real-world
power grids—a particularly important complex network of
oscillators (i.e., sources and loads) that governs the flow
of energy [37]. In particular, power grids must synchronize
to avoid power failures but must also evolve close enough

to a reference frequency of approximately 50–60 Hz [36].
We have demonstrated that, despite the fact that power grid
networks are structurally undirected, dynamical heterogeneity
yields an effectively directed network structure and therefore
allows significant collective frequency variation. However, we
emphasize that our results have broader applications than
just power grid dynamics. In fact, the collective frequency
of an ensemble plays a crucial roll in the functionality of
a wide range of systems from disciplines including biology,
neuroscience, and engineering. Examples of systems whose
functionality can be compromised if the collective frequency
differs too much from a given reference include oscillations
of brain waves, propagation of activity through cardiac tissue,
consensus in sensor networks, and the coordination of muscle
contractions in the digestive track [8,9,38,39].

Moreover, these results demonstrate a novel relationship
between a widely used topological quantity used to rank
the importance of nodes and the dynamical process of
synchronization. The implications point towards a new method
of ranking nodes using synchronization—a notion consistent
with other findings where synchronization can be utilized to
uncover topological properties of networks [40]. A particularly
interesting finding is the link between the synchronization
dynamics of a network ensemble and the role of PageRank
in determining each oscillator’s contribution to the collective
frequency. This link opens the possibility for analysis and
optimization of the synchronization properties of networks
using PageRank—a topic with a large body of literature
and well-established algorithms for optimization [32]. In
particular, we expect that pre-existing methods for optimizing
PageRank in networks can be applied to manipulate the
collective frequency of generic various oscillator networks.
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