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Spectral properties of the hierarchical product of graphs

Per Sebastian Skardal* and Kirsti Wash†

Department of Mathematics, Trinity College, Hartford, Connecticut 06106, USA
(Received 13 June 2016; published 15 November 2016)

The hierarchical product of two graphs represents a natural way to build a larger graph out of two smaller
graphs with less regular and therefore more heterogeneous structure than the Cartesian product. Here we study
the eigenvalue spectrum of the adjacency matrix of the hierarchical product of two graphs. Introducing a coupling
parameter describing the relative contribution of each of the two smaller graphs, we perform an asymptotic analysis
for the full spectrum of eigenvalues of the adjacency matrix of the hierarchical product. Specifically, we derive
the exact limit points for each eigenvalue in the limits of small and large coupling, as well as the leading-order
relaxation to these values in terms of the eigenvalues and eigenvectors of the two smaller graphs. Given its
central roll in the structural and dynamical properties of networks, we study in detail the Perron-Frobenius, or
largest, eigenvalue. Finally, as an example application we use our theory to predict the epidemic threshold of the
susceptible-infected-susceptible model on a hierarchical product of two graphs.

DOI: 10.1103/PhysRevE.94.052311

I. INTRODUCTION

Graphs and networks represent fundamental structures that
describe the patterns of interactions throughout nature and
society [1], examples of which include electrical power grids
[2], faculty hiring networks [3], protein-protein interaction
networks [4], and the neurons in the brain [5]. Large graphs
and networks are often composed of several smaller pieces,
for example motifs [6], communities or modules [7,8], layers
[9], or self-similar subnetwork structures [10]. Moreover,
the macroscopic properties of such large graphs are often
determined by the agglomeration of properties of these smaller
structures [11,12]. One natural way to construct a graph from
two or more smaller graphs is by the well-known Cartesian
product [13]. Recently, Barrière et al. introduced a general-
ization of the Cartesian product known as the hierarchical
product [14,15], which captures connectivity characteristics
that are less regular and therefore more heterogeneous than
those found in the Cartesian product.

A great deal of research has shown that both structural and
dynamical properties of a given graph or network are deter-
mined by the eigenvalue spectrum of its associated coupling
matrices [1]. We consider here a graph’s adjacency matrix:
an N × N matrix A whose entries correspond to edges such
that Aij = 1 if vertices i and j are connected, and otherwise
Aij = 0. Structurally, the eigenvalues of A can be used to
identify community structures in the network [16] and measure
the large-scale connectivity of a graph [17]. The spectrum of
the adjacency matrix also determines critical transition points
in dynamical processes ranging from branching processes [5]
and epidemic spreading [18] to synchronization [19].

In this work we study the eigenvalue spectrum of the
adjacency matrix of the hierarchical product of two graphs
along with the contribution from each of the eigenvalue
spectrums of the underlying graphs. Using a combination
of exact analytical results and perturbation theory, we derive
analytical approximations for the full spectrum of eigenvalues
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of the hierarchical product as a function of the eigenvalues and
eigenvectors of the two underlying networks and a coupling
parameter that tunes their interactions. Due to the central role
of the Perron-Frobenius (PF) eigenvalue [20], i.e., the largest
eigenvalue, of the adjacency matrix in several applications
[21,22], we study in detail the behavior of the PF eigenvalue.
We observe that the PF eigenvalue tends to be minimized
roughly when the coupling parameter is tuned to equally
balance the contribution of the two underlying graphs—a result
that is supported by our analysis. Moreover, we investigate
the role of the root set in connecting the hierarchical product
and its impact on the PF eigenvalue. Finally, as an example
application we consider the susceptible-infected-susceptible
(SIS) epidemic spreading model [23] on the hierarchical
product of two graphs and use our theory to generate accurate
predictions for the epidemic threshold between persistent
infection and extinction of the epidemic.

The remainder of this paper is organized as follows. In
Sec. II we define the hierarchical product of two graphs and
discuss the overall behavior of the eigenvalue spectrum of the
adjacency matrix as a function of the coupling parameter. In
Sec. III we present a perturbation theory for the approximation
of the eigenvalues of the adjacency matrix of the hierarchical
product corresponding to limits when the coupling parameter
is both small and large. In Sec. IV we investigate in detail the
behavior of the PF eigenvalue and the effect of the root set in
connecting the hierarchical product. In Sec. V we present an
example application of our theory in epidemic spreading on a
network. Finally, In Sec. VI we conclude with a discussion of
our results.

II. THE HIERARCHICAL PRODUCT

The mathematical structure underlying any network is a
graph G consisting of a set V (G) of vertices (sometimes
called nodes) and a set E(G) of edges (sometimes called links)
connecting the vertices. We consider here the hierarchical
product of two graphs, G1 and G2, defined as follows.

Definition 1. Given graphs G1 and G2 and any subset U

of vertices in G1 referred to as the root set, the hierarchical
product, denoted G1(U ) � G2, is the graph G with vertex set
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FIG. 1. Illustration of the hierarchical product G of two subgraphs
G1 and G2 using the root set U = {1,4}.

V (G) = V (G1) × V (G2), whereby any two vertices (x1,y1)
and (x2,y2) of V (G) are adjacent if either y1 = y2 and x1x2 ∈
E(G1) or x1 = x2, x1 ∈ U , and y1y2 ∈ E(G2).

Letting N1 and N2 denote the order of the graphs G1 and
G2, respectively, then the hierarchical product G1(U ) � G2 is
of order N = N1 × N2. The hierarchical product can thus be
understood intuitively as N2 copies of the graph G1, which are
themselves connected at the vertices included in the root set U

via the graph G2. In Fig. 1 we illustrate the generic structure
of a hierarchical product with an illustrative example of the
roles of two graphs G1 and G2 of order N1 = 5 and N2 = 4,
respectively, and root set U = {1,4} in G1. We note that the
hierarchical product can be further generalized to include the
product of an arbitrary number of graphs [15]. However, as
such hierarchical products can be defined recursively, we focus
on hierarchical products of two graphs.

Next, we introduce a coupling parameter to weigh the
contributions of the graphs G1 and G2 to the hierarchical
product G = G1(U ) � G2. Denoting the coupling parameter
α > 0, we weigh the links G owing to G1 and G2 by the
sigmoidal functions (1 + α)−1 and α(1 + α)−1, respectively.
Thus for α < 1 the graph G1 is weighted more heavily than
G2, for α > 1 the graph G2 is weighted more heavily than G1,
and for α = 1 the graphs G1 and G2 are weighted equally.
To express the adjacency matrix of the hierarchical product
we utilize the Kronecker product. Specifically, denoting the
adjacency matrix with coupling α as Aα , we have that

Aα = (I2 ⊗ A1 + αA2 ⊗ D1)/(1 + α), (1)

where A1 and A2 are the adjacency matrices associated to
graphs G1 and G2, I2 is the N2 × N2 identity matrix, and D1

is the N1 × N1 diagonal matrix whose ith diagonal entry is
equal to one if vertex i is in the root set U and zero otherwise.
Thus, D1 encodes the connections between the graphs G1 and
G2 as defined by the root set U . For simplicity we focus on the
case where G1 and G2 are both undirected and unweighted,
and thus A1 and A2 are symmetric and binary; however, these
assumptions can be easily relaxed to generalize the results
presented below.

Before proceeding to the analysis we use the example in
Fig. 1 to investigate the generic behavior of the eigenvalue
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FIG. 2. The eigenvalue spectrum of the hierarchical product
defined in Fig. 1 as a function of the coupling parameter α.

spectrum of the hierarchical product. In Fig. 2 we plot the
eigenvalues of the adjacency matrix Aα as a function of
the coupling parameter α (computed numerically). First, we
note that the eigenvalues vary smoothly as a function of α.
Second, there are two different limiting behaviors as α is made
very small and very large, respectively, with a complicated
entanglement of eigenvalues in between where α is roughly of
order one. In this particular example these limiting behaviors
each consist of five limiting values to which all the eigenvalues
approach, but in general the number of limiting values for small
and large α need not match. Third, focusing our attention on
the PF, or largest, eigenvalue, we observe that it attains a global
minimum when α is of order one, i.e., when the contribution
of G1 and G2 are roughly balanced. In the remainder of this
paper we will present an asymptotic analysis for the behavior
of the full spectrum of eigenvalues in the limits of both large
and small α, which will recover the exact limiting values of
each eigenvalue well as the leading-order relaxation to these
values. Moreover, our asymptotic analysis predicts the dip we
observe in the PF eigenvalue and can be used to accurately
predict dynamical behavior on hierarchical products.

III. ASYMPTOTIC ANALYSIS

Our asymptotic analysis of the eigenvalue spectrum of
the adjacency matrix Aα stems from an exact result for the
eigenvalues spectrum of any matrix of the form in Eq. (1). In
particular, we have the following:

Theorem 2. [14] Let {μi}N2
i=1 be the collection of N2

eigenvalues of A2, and define

Aα(μi) = (A1 + αμiD1)/(1 + α) (2)

for each i = 1, . . . ,N2. Then λ is an eigenvalue of Aα as
defined in Eq. (1) if and only if it is an eigenvalue of Aα(μi)
for some i = 1, . . . ,N2.

In particular, Theorem 2 expresses the eigenvalues of
Aα as the collection of eigenvalues of each smaller matrix
Aα(μi). Since N2 such smaller matrices exist, each with
N1 eigenvalues, we thus recover the full spectrum of N =
N1 × N2 eigenvalues of the original adjacency matrix.

Next we perform the asymptotic analysis for the eigenvalues
of Aα via the collection of matrices Aα(μi), first in the limit
of small α, then in the limit of large α. In particular, we will
show that in both cases the full spectrum is determined by
the eigenvalues and eigenvectors of A1 and A2, the entries
of D1, and the parameter α. In the analysis below we will
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denote the eigenvalues and eigenvectors of A1 as {νi}N1
i=1 and

{vi}N1
i=1, respectively, and the eigenvalues and eigenvectors of

A2 as {μi}N2
i=1 and {ui}N2

i=1, respectively. Moreover, since A1

and A2 are both symmetric the sets of eigenvectors {vi}N1
i=1 and

{ui}N2
i=1 can be appropriately normalized to form orthonormal

bases forRN1 andRN2 [24], respectively, such that viT vj = δij

and uiT uj = δij .

A. Perturbation Theory: Small α

We begin by considering the case where the coupling
parameter α is small. Proceeding perturbatively, we let ε = α

such that ε � 1 is a small parameter and let

Ãε(μi) = A1 + εμiD1, (3)

such that Aε(μi) = (1 + ε)−1Ãε(μi). We then search for
the eigenvalues of the matrix Ãε(μi) since its eigenvalues,
denoted {λ̃j (ε)}N1

j=1, can be scaled by (1 + ε)−1 to obtain the

eigenvalues of Aε(μi), denoted {λj (ε)}N1
j=1. We also denote

the eigenvectors [of both Aε(μi) and Ãε(μi)] as {wj (ε)}N1
j=1.

In the limit ε → 0+, it is clear to see that the spectrum of
Ãα(μi) is simply that of A1, i.e., λ̃j (0) = νi and wj (0) = vj .
For 0 < ε � 1, we then propose the following perturbative
ansatz for the eigenvalues and eigenvectors:

λ̃j (ε) = νj + ελ̂j + O(ε2), (4)

wj (ε) = vj + εŵj + O(ε2). (5)

Inserting Eqs. (3), (4), and (5) into the eigenvalue equation
Ãε(μi)wj (ε) = λ̃j (ε)wj (ε) and collecting the leading order
terms at O(ε), we obtain

μiD1v
j + A1ŵ

j = λ̂jv
j + νj ŵ

j . (6)

Left-multiplying Eq. (6) by vjT and noting that the term on the
left-hand side vjA1ŵ

j = νjv
j ŵj cancels with the right-hand

side, we obtain

λ̂j = μiv
jT D1v

j . (7)

Multiplying by (1 + ε)−1 to recover λ(ε) and substituting back
ε = α, we have that the eigenvalues of Aα(μi) to leading order
are given by

λj (α) = νj + αμiv
jT D1v

j

1 + α
. (8)

The full spectrum of eigenvalues of Aα is then the collection
of all eigenvalues λj (α) for j = 1, . . . ,N1 given in Eq. (8)
evaluated at each μi for i = 1, . . . ,N2.

By considering the limit α → 0+ of Eq. (8) we recover the
exact limiting values of the eigenvalues of Aα for small α. In
particular, in this limit we have that λj (0) = νj , and therefore
the spectrum of Aα contains N2 copies each of the eigenvalues
νj of A1. Moreover, the first-order correction describing the
relaxation toward these limiting values is determined by the
term μiv

jT D1v
j , i.e., the action of D1 on the j th eigenvector

of A1 scaled by the eigenvalues of A2. Using the example
illustrated in Fig. 1, we compare our asymptotic approximation
for the eigenvalues of the adjacency matrix Aα to its actual
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FIG. 3. Asymptotic approximation: small α. Asymptotic approx-
imation [Eq. (8)] (dashed blue) vs. numerically calculated eigenvalues
(solid black) of the adjacency matrix for the hierarchical product
illustrated in Fig. 1 for small values of the coupling parameter α.

eigenvalues, plotting in Fig. 3 the approximation (dashed blue)
and the numerically calculated eigenvalues (solid black) for
α < 1. We observe a strong agreement between the numerical
and approximate eigenvalues α, which only loses accuracy
when α becomes roughly order one, where the asymptotic
analysis is expected to break down.

B. Perturbation Theory: Large α

Next we consider the case where the coupling parameter α

is large. We again proceed perturbatively, now letting ε = α−1

such that ε � 1 is a small parameter and let

Ãε(μi) = μiD1 + εA1, (9)

such that Aε(μi) = ε−1(1 + ε−1)−1Ãε(μi). Similarly, we
search for the eigenvalues λ̃j (ε) of Ãε(μi), which we use to
recover the eigenvalues of Aε(μi) after scaling by ε−1(1 +
ε−1)−1. We first point out that for ε = 0 the matrix Ã0(μi)
reduces to μiD1, which is highly degenerate. Specifically, if
the root set U contains n connecting vertices, then D1 has n

eigenvalues equal to one and (N1 − n) eigenvalues equal to
zero. Moreover, the nontrivial eigenspace of D1 is precisely
the span of all vectors whose entries are zero where the
diagonal entries of D1 are zero, and the trivial eigenspace
(i.e., the nullspace) of D1 is precisely the span of all vectors
whose entries are zero where the diagonal entries of D1 are
nonzero. Due to this dichotomy, the asymptotic analysis of
the eigenvalues of Ãε(μi) splits into two cases: one for the n

eigenvalues associated with the nontrivial eigenspace of D1

and another for the (N1 − n) eigenvalues associated with the
nullspace of D1.

We begin with the nontrivial eigenspace of D1, proposing
the perturbative ansatz

λ̃j (ε) = μi + ελ̂j + O(ε2), (10)

wj (ε) = x + εŵj + O(ε2), (11)

where the vector x is in the nontrivial nullspace of D1,
i.e., D1x = x. Inserting Eqs. (9), (10), and (11) into the
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eigenvalue equation Ãε(μi)wj (ε) = λ̃j (ε)wj (ε) and collect-
ing the leading order terms at O(ε), we obtain

μiD1ŵ
j + A1x = λ̂j x + μiŵ

j . (12)

Inspecting Eq. (12) and noting that for each diagonal entry
of D1 that is zero, the corresponding entry of the left-hand
side is zero, we find that so must the corresponding entries on
the right-hand side. Eliminating these entries, we obtain the
n-dimensional vector equation

μiŵ
∅ + A∅

1 x∅ = λ̂j x∅ + μiŵ
∅, (13)

→ A∅
1 x∅ = λ̂j x∅, (14)

where A∅
1 is the n × n matrix obtained by keeping the rows

and columns of A1 corresponding to nonzero diagonal entries
of D1 and similarly ŵj∅0 and x∅ are the n-dimensional vectors
obtained by keeping the entries of ŵj and x corresponding to
nonzero entries of D1. Thus, λ̂j is given by the j th eigenvalue
of the matrix A∅

1, denoted ν∅
j . Thus, the n eigenvalues of Aα(μi)

corresponding to the nonzero eigenspace of D1 to leading order
are given by

λj (α) = αμi + ν∅
j

1 + α
, (15)

which approaches the value μi in the limit α → ∞.
For the remaining (N1 − n) eigenvalues of Ãε(μi) asso-

ciated with the nullspace of D1, we introduce a different
perturbative anstaz:

λ̃j (ε) = 0 + ελ̂j + O(ε2), (16)

wj (ε) = x + εŵj + O(ε2), (17)

where the vector x is now in the nullspace of D1, i.e., D1x = 0.
Inserting Eqs. (9), (16), and (17) into the eigenvalue equation
Ãε(μi)wj (ε) = λ̃j (ε)wj (ε) and collecting the leading order
terms at O(ε), we obtain

μiD1ŵ
j + A1x = λ̂j x. (18)

Inspecting Eq. (18) and noting for each nonzero diagonal entry
of D1 the corresponding entry of x is zero, we eliminate each
of these entries and find x corresponding to nonzero diagonal
entries of D1 is itself zero. Eliminating these entries, we obtain
the (N1 − n)-dimensional vector equation

A0
1x0 = λ̂j x0, (19)

where A0
1 is the (N1 − n) × (N1 − n) matrix obtained by

keeping the rows and columns of A1 corresponding to zero
diagonal entries of D1 and similarly x0 is the (N1 − n)-
dimensional vector obtained by keeping the entries of x
corresponding to zero entries of D1. Thus, λ̂j is given by the
j th eigenvalue of the matrix A0

1, denoted ν0
j and the (N1 − n)

eigenvalues of Aα(μi) corresponding to the nullspace of D1 to
leading order are given by

λj (α) = ν0
j

1 + α
, (20)

all of which approach zero as α → ∞.
Combining the asymptotic analysis for the spectrum of

Aα(μi) stemming from both the nontrivial eigenspace of D1
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FIG. 4. Asymptotic approximation: large α. Asymptotic approx-
imation [Eqs. (15) and (20)] (dot-dashed red) vs. numerically
calculated eigenvalues (solid black) of the adjacency matrix for
the hierarchical product illustrated in Fig. 1 for large values of the
coupling parameter α.

and the nullspace of D1, we obtain for each μi a collection
of n eigenvalues of the form in Eq. (15) along with (N1 − n)
eigenvalues of the form in Eq. (20). Moreover, in the limit of
large α eigenvalues of the form in Eq. (15) each approach the
limiting value μi while eigenvalues of the form in Eq. (20)
each approach a limiting value of zero, while the relaxation
to these values are determined by the eigenvalues of the
matrices A∅

1 and A0
1, respectively. Thus, assuming that each

eigenvalue μi of A2 is distinct, in total the spectrum of Aα

will have n eigenvalues each that limit to each distinct μi

and N2(N1 − n) eigenvalues that limit to zero. Again using
the example illustrated in Fig. 1, we compare our asymptotic
approximation for the eigenvalues of the adjacency matrix Aα

to its actual eigenvalues, plotting in Fig. 4 the approximation
(dot-dashed red) and the numerically calculated eigenvalues
(solid black) for α > 1. We observe a strong agreement
between the numerical and approximate eigenvalues α, which
only loses accuracy when α becomes roughly order one, where
the asymptotic analysis is expected to break down.

IV. PERRON-FROBENIUS EIGENVALUE

The Perron-Frobenius theorem guarantees that for any
network with nonnegative and irreducible adjacency matrix
A the eigenvalue with largest magnitude is real, positive, and
distinct. We call this largest eigenvalue the Perron-Frobenius
eigenvalue [20] and denote it

� = sup
λi∈σ (A)

λi, (21)

where σ (A) denotes the eigenvalue spectrum of A. In a wide
range of dynamical processes on networks the PF eigenvalue
plays an especially important role in shaping the macroscopic
steady-state behavior [22]. For instance, in the case of the
SIS epidemic model the critical infection rate delineating
the persistence or extinction of the epidemic is proportional to
the inverse of the PF eigenvalue [23]. Another example lies in
the synchronization of large networks of coupled oscillators,
where the critical coupling strength corresponding to the onset
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FIG. 5. PF eigenvalue: asymptotic approximations. For the hi-
erarchical product illustrated in Fig. 1, the PF eigenvalue calculated
numerically (solid black) and given by the asymptotic approximations
for both small and large α in Eqs. (8) and (15) (dashed blue and
dot-dashed red, respectively) as a function of α. Inset: relative error.

of synchronization is also proportional to the inverse of the PF
eigenvalue [19]. Thus, in many cases the PF eigenvalue can be
used as a quantitative measure for the connectivity of a network
[17]. Given its importance, we now focus our attention on the
PF eigenvalue of hierarchical products.

In the respective limits of small and large α, the asymptotic
approximations for the PF eigenvalue are given by Eqs. (8)
and (15), using the largest eigenvalues of A1, A2, and A∅

1, i.e.,
νmax, μmax, and ν∅

max. Using the example illustrated in Fig. 1 we
plot in Fig. 5 the PF eigenvalue of Aα calculated numerically
(solid black) as well as the approximations for small and large
α (dashed blue and dot-dashed red, respectively). Taking the
overall asymptotic approximation as the maximum of the two
approximations for small and large α, we also plot the relative
error of our approximation in the inset. Similar to the results for
the full eigenvalue spectrum, the asymptotic approximations
holds very well, breaking down only when α is roughly of
order one. Moreover, we observe that as α approaches the
order-one regime, the approximations for both small and large
α in fact decrease, guiding the PF eigenvalue to its dip near
α ≈ 1 as was originally observed.

In addition to the overall behavior of the PF eigenvalue, we
also consider the effect of different root sets U that define the
hierarchical product G1(U ) � G2. Recall that the vertices in U

correspond to the nonzero entries of the matrix D1 in Eq. (1).
What then is the result of using different root sets in generating
the hierarchical product of two graphs? In particular, how does
the PF eigenvalue behave depending on whether the root set is
made up of well-connected or poorly connected vertices?

We address this question by studying hierarchical products
constructed from larger graphs generated by the Barabası́-
Albert (BA) model [25]. In particular, the BA model is known
for generating graphs with scale-free degree distributions and
emerging hubs—a relatively small number of vertices with
many edges amid a majority of vertices with only a handful
of edges. Thus, the BA model allows us the possibility to
choose connecting sets made up of either well-connected
or poorly connected vertices. As an illustrative example we
consider the hierarchical products of two BA graphs G1
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FIG. 6. Effect of root sets. The numerically calculated PF
eigenvalue for the hierarchical product of two BA graphs of size
N = 20 with minimum degree k0 = 3 with root sets consisting of
the five vertices in G1 with largest degrees (solid black) and the
five vertices in G2 with smallest degrees (dashed black). Asymptotic
approximations for both cases are plotted in blue and red (sharp
curves).

and G2 both of size N = 20 with minimum degree k0 = 3.
Using root sets U of n = 5 vertices, we create two distinct
hierarchical products by choosing two different root sets:
one consisting of the n vertices with the largest degrees and
another consisting of the n vertices with the smallest degrees.
In Fig. 6 we plot the numerically calculated PF eigenvalues
of the hierarchical products built with the connecting sets of
large degrees (solid black) and small degrees (dashed black),
as well as the asymptotic approximations in blue and red. In
particular, we observe that the dip in the PF eigenvalue is
much more pronounced when the connecting set is made up of
poorly connected nodes. Thus, the connecting set made up of
well-connected nodes preserves a much larger PF eigenvalue
for all α values—especially when α is roughly order one.
However, we note that for both very large and very small α the
choice of the root set has little effect on the PF eigenvalue.

V. APPLICATION: EPIDEMIC SPREADING

As an application of our theory we now consider the SIS
epidemic model on the hierarchical product of two graphs [18].
Given an underlying graph structure, the SIS model consists
of two parameters: an infection rate β and a healing rate
β. Denoting the state of a node i as xi = 1 if it is infected
and xi = 0 if it is healthy, the model evolves as follows. At
each given time step 
t � 1, each healthy node can itself
be infected by any of its infected network neighbors j with
a probability of 
tβAij , while each infected node is healed
and becomes healthy with probability 
tγ . Characterizing
the macroscopic system state using the fraction of infected
nodes, X = N−1 ∑N

i=1 xi , Gómez et al. showed in Ref. [23]
that the critical epidemic threshold that delineates extinction
of the epidemic, i.e., X = 0, from long-time persistence of
the epidemic, i.e., X > 0, is given when the ratio of the
infection rate to the healing rate is equal to the inverse of
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FIG. 7. Epidemic spreading. Epidemic threshold βc/γ for the
SIS model vs. the coupling parameter α as computed directly from
simulation (blue circles) and from our analytical predictions (dashed
black) using the adjacency matrix in Eq. (23). The underlying graph
is a hierarchical product of a BA graph G1 of size N = 100 and a BA
graph G2 of size N = 20, both with minimum degree k0 = 3, and a
connecting set of n = 20 randomly chosen vertices in G1.

the PF eigenvalue, i.e.,

βc = γ

�
. (22)

In other words, if β < γ/� the epidemic will eventually die
out, and if β > γ/� then the epidemic will persist for all time.

To explore the behavior of the SIS model on a hierarchical
product we consider a larger BA graph G1 of size N = 100
and minimum degree k0 = 3 with a smaller BA graph G2 of
size N = 20 and minimum degree k0 = 3. We use a root set
U of n = 20 randomly chosen vertices in G1. Moreover, we
take the larger graph G1 to be fixed and scale the contribution
of the smaller graph G2 by the coupling parameter α. The
physical interpretation of this setup is to consider G1 to be the
primary, fixed graph while G2 represents added transmission
lines along which the epidemic spreads more slowly or quickly
in comparison to G1 depending on the value of α. With this
model setup we obtain a modified adjacency matrix,

Aα = I2 ⊗ A1 + αA2 ⊗ D1, (23)

which is equivalent to that defined in Eq. (1) after removing
the factor (1 + α)−1, and therefore its eigenvalues are also
equivalent up to this rescaling. In Fig. 7 we present the results,
plotting the epidemic threshold βc/γ (in our simulation we
take γ = 1) as observed from direct simulations of the model
in blue circles versus the epidemic threshold as predicted
from our asymptotic analysis of the PF eigenvalue in dashed
black. Recall that any ratio β/γ larger than the epidemic
threshold leads to persistence of the epidemic, while any ratio
smaller than the epidemic threshold leads to extinction of the
epidemic. We note a strong agreement between the simulations
and our analytical predictions, with the largest error near
α ≈ 1 as expected. We also observe a sharp transition in
long-term behavior as a function of the coupling parameter.
In particular, for α � 1 the epidemic threshold remains nearly
constant, indicating that the graph G2 contributes little to the
overall spread of the epidemic. The transition then occurs at

α ≈ 1, after which the epidemic threshold decreases roughly
as a power-law as α increases, indicating that the stronger
contribution of G2 allows for a quicker spread of the epidemic.

VI. DISCUSSION

In this paper we have studied the spectral properties
of the adjacency matrix of the hierarchical graph product
of two smaller graphs. Using a blend of exact analytical
results and an asymptotic analysis we have derived asymptotic
approximations for the full spectrum of eigenvalues in the
small and large limits of a coupling parameter introduced to
weigh the relative contribution of each of the two smaller
graphs. In particular, these asymptotic approximations are
expressed in terms of the eigenvalues and eigenvectors of the
two smaller graphs, simple properties of the roots set matrix,
and the coupling parameter. These asymptotic approximations
yield the exact limiting values of each eigenvalue in the limits
when the coupling parameter is both small and large, as well
as the first-order relaxation to these values.

Given its importance in dynamical phenomena, including
epidemic spreading and synchronization, we have studied
in detail the behavior of the PF, or largest, eigenvalue.
Interestingly, we observe that the PF eigenvalue reaches a
global minimum when the two smaller graphs that make
up the hierarchical product are roughly equally weighted,
corresponding to when the coupling parameter is of order
one. Although our asymptotic approximations are the least
accurate in this regime, they do in fact predict this dip in the PF
eigenvalue, decreasing as the coupling parameter approaches
the order one regime. Moreover, we have investigated the
effect of the choice of the root set on the PF eigenvalue.
Specifically, when the root set is composed of poorly connected
vertices this dip in the PF eigenvalue is accentuated, while
when the root set is composed of well-connected vertices
this dip is less pronounced (albeit still present). Finally, as
an application of our theory, we have studied the dynamics of
the SIS epidemic model on hierarchical products, accurately
predicting the epidemic threshold (i.e., the critical transition
delineating the long-time persistence or extinction of the
epidemic) as a function of the coupling parameter.

The construction of a graph via the hierarchical product
represents a new method for building a large structure G

from smaller structures G1, . . . [14,15]. Compared to the
Cartesian product [13] (of which the hierarchical product
is a generalization) the hierarchical product captures con-
nectivity characteristics that are less uniform and therefore
promotes heterogeneity throughout the graph. Given the role
of the eigenvalue spectra of various connectivity matrices in
determining both dynamical and structural properties of the
underlying graphs, the study of these eigenvalue spectra and
their analytical approximations is an important direction of
research. In this paper we have focused on the eigenvalue
spectrum of the adjacency matrix, and in this way our work
fits in the larger framework of studying the spectral properties
of interconnected and multilayer networks to inform both the
linear and nonlinear dynamical behaviors [26–29]. Important
future work includes the eigenvalue spectra of other coupling
matrices of hierarchical products. One such example with
many physical applications is the eigenvalue spectrum of
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the combinatorial graph Laplacian, which plays an important
role in shaping diffusion processes on graphs [30] as well as
determining a networks’ synchronization properties [31,32].

Another important coupling matrix is the modularity matrix,
which determines the community structures that make up a
graph [33].
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Guilera, S. Gómez, and A. Arenas, Spectral properties of the
Laplacian of multiplex networks, Phys. Rev. E 88, 032807
(2013).
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