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Abstract 
The objective of this article is to make explicit some concrete ways in which an accurate perspec-
tive of what science is contributes significantly to improving science teaching. Effective science 
teaching begins with the recognition that for both practising scientists and students the desire to 
find answers to personally meaningful questions about natural phenomena is the strongest incen-
tive to study science. Instructional methods that nurture and draw upon the curiosity of students 
have the best chance to motivate students to learn science. Teaching in this way entails helping 
students 1) to see the conceptual relevance, utility, and aesthetic dimension of what they are stud-
ying; 2) to appreciate the need for, and power of, rational thinking in problem solving; 3) to un-
dertake their own exploratory projects to investigate some aspect of the physical world that in-
terests them. For science teachers to do this well, they must, themselves, a) be knowledgeable of 
the science they teach, b) keep abreast of advances in their areas of interest, and c) develop their 
own experimental and observational skills so they can teach with confidence based on personal 
experience. 

 
Keywords 
Science Education, Motivation, Inspiration, Self-Direction, Relevance, Aesthetics, Utility, Rational 
Thinking, Curiosity, Exploration, Participation 

 
 

1. How Science Is Perceived Affects How Science Is Taught 
The best teacher is the one who suggests rather than dogmatises,  
and inspires his listener with the wish to teach himself. 

—Bulwer-Lytton (1873) 
The objective of this article is to make explicit some concrete ways in which an accurate perspective of what 
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science is contributes significantly to improving science teaching. The substance of my remarks is based on my 
personal experiences in teaching science (primarily physics, chemistry, environmental sciences) at university 
and college level, as well as participating in the home-schooling of children from their earliest years through the 
end of high school. In effect, I have taught science at all levels from primary school through graduate school. 
Although my concern in this paper focuses on science instruction at college and university level where teachers 
may also be practising scientists, the principal points I wish to make are of general validity to science education 
at any level from primary school upward. 

Starkly put, the major point is this: science is meaningful only to those who are motivated to study it by their 
own curiosity.  

I am a professional physicist, not a philosopher—and in truth must admit to thinking that philosophers (par-
ticularly philosophers of science) have over the past century contributed very little of significance to the 
progress or understanding of science. Nevertheless, an insightful observation can be found in Alan Watt’s self- 
characterisation (Watts, 1970): 

A philosopher…is a sort of intellectual yokel who gapes and stares at what sensible people take for granted, 
a person who cannot get rid of the feeling that the barest facts of everyday life are unbelievably odd. As 
Aristotle put it, the beginning of philosophy is wonder.  

One might add that science, too, begins with wonder, and fostering that wonder should be the paramount task 
of science teachers at all levels of instruction.  

In the sense of curiosity, wonder is the germinal seed of science; there is no science without it, no driving 
force to uncover the underlying causes and unexpected consequences of those “unbelievably odd” facts of either 
everyday life or events beyond our immediate perception. But wonder in the sense of the magical, miraculous, 
and incomprehensible is like a narcotic that destroys curiosity. Herein lies an important distinction between a 
scientist and the philosopher characterised above: wonder may stimulate both, but scientists go beyond “gapes 
and stares”, employing experimental and mathematical resources to understand in a more profound way the sig-
nificance of their observations.  

Children are born with an innate sense of wonder of both kinds (Fraiberg, 1959). As to curiosity, parents of 
young children know how difficult it is to prevent them from investigating their world, so intense is this innate 
drive. I contrast that intensity with the apathy of so many students I have encountered at college and university 
whose level of interest in the workings of the physical world has diminished almost to the point of extinction. 
What has happened to these students along their path from childhood to adulthood to so dull the natural inclina-
tion to explore and understand their environment? The heart of the matter is identified by educator Jerome 
Bruner (Bruner, 1966): 

The will to learn is an intrinsic motive, one that finds both its source and its reward in its own exercise. The 
will to learn becomes a “problem” only under specialized circumstances…where a curriculum is set, stu-
dents confined, and a path fixed. The problem exists not so much in learning itself, but in the fact that what 
the school imposes often fails to enlist the natural energies that sustain spontaneous learning… 

In my view the situation is this: if those who teach science are to accomplish anything, they must stimulate 
that inborn curiosity without which science itself cannot flourish. Moreover, they must do this under the restric-
tive conditions of a fixed curriculum that are often responsible in the first place for the diminution of curiosity. 
Faced with an educational framework over which they may have little control, science teachers can nevertheless 
influence 1) how they perceive science; 2) what they know of science; and 3) how they interact with their stu-
dents.  

There are links between the perception of science and the teaching of it. The point of view that teachers have 
on the meaning, content, method, and significance of science in general, and on their own specific involvement 
in scientific pursuits, all contribute to their effectiveness as teachers. A teacher for whom science is largely a 
technical discipline will provide a different type of instruction than a teacher for whom science is construed as a 
cultural activity. A teacher for whom the primary goal of science is the acquisition of accurate data will provide 
a different type of instruction than a teacher for whom the goal of science is the development of comprehensive 
theories. Attitudinal differences on the part of the instructor, as in the preceding two examples, may produce 
students who are interested in science for different reasons, or whose working styles, should they become scien-
tists, are different. However, differences like these are not in themselves educationally harmful. 
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Far more serious are perspectives that gravely misconstrue the nature of science as a human activity and me-
thod of inquiry. For example:  
• A teacher who sees science in terms of authority figures—the alleged great and wise who pass down their 

knowledge to mere mortals—may well teach science in an authoritarian manner, emphasise and require 
memorisation of material that scientists themselves would generally look up in references, assign problems 
involving needless repetition, discourage student inquiries, and repel with indignation student challenges of 
facts or interpretations.  

• A teacher who sees science as a repository of facts from which the correct conclusions ineluctably flow may 
well communicate to students that personal attributes and human interactions do not matter, that scientific 
progress follows from slavish adherence to prescribed scientific methods and not from creative imagination 
and resourceful use of serendipity.  

In such classrooms a student’s failure to arrive at the right answers could be construed as a sign of mental 
sluggishness and not of a possibly valid (or at least provocative) alternative way of approaching a proposed 
problem.  

Equally pernicious is the polar opposite perspective whereby the content of science is regarded as merely ar-
bitrary and relative, a product of culture open to any and all modifications and interpretations and expressive of 
personal biases arising from politics, gender, and other divisive categories. Such may be the case in the so-called 
social sciences, but it does not describe real sciences like physics, chemistry, geology, and others whose content 
is validated by replicable experiments and observations, and consistency with well-tested theoretical principles. 
A teacher who sees science as a collection of equally valid opinions where “anything goes” (Feyerabend, 1975a) 
and to which anyone irrespective of training and knowledge can contribute cannot possibly communicate to 
students the seriousness of the enterprise, the importance of accuracy and precision in writing, calculating, and 
measurement, or the fact that to do well in science requires personal discipline and persistence.  

In contrast to the foregoing false perspectives, teachers need to realise that  
1) science is a multi-faceted mode of inquiry and not a storehouse of facts; and  
2) although science involves personalities, real scientific discoveries inform about the physical world and not 

about cultural biases. 
They can then create in the classroom an atmosphere in which students are encouraged to think, to experiment, 

to challenge; in short, to engage in the type of creative exploration of which science consists.  

2. What Inspires Scientists Will Inspire Students 
Why should it matter if students (and the adults they become) care little for science? Teachers who do not an-
swer this question satisfactorily early in their science courses lose an opportunity to influence their students’ at-
titudes. For many students who enroll in science courses, the motivation is not so much intrinsic interest as the 
need to fulfill other requirements such as entry to college or admission to medical school. Science teach-
ers—particularly of subjects like physics, which are perceived to be difficult—therefore often face, at least at the 
outset, a captive audience to whom the study of science is an imposition, an obstacle to overcome. If students, 
above all those reluctant to study science in the first place, are to see their science education as a gift and a 
pleasure, they need to know why science is worth studying. 

One answer to the question, which may hardly satisfy a student who dislikes science but which nevertheless is 
a critically important reason from a societal perspective, is this: Science provides methods, principles, and facts 
by which to understand and survive (individually and communally) in the real world.  

A nation whose citizenry is ignorant of modern science, who relies instead on superstition and ancient scrip-
tures that invoke supernatural guidance, cannot possibly make informed collective judgments on matters per-
taining to their vital national interests such as anthropogenic climate change, environmental degradation, dwin-
dling supplies of nonrenewable resources, unsustainable population growth, sensible priorities for medical re-
search, and many other issues. In the US, for example, a study by the US National Science Foundation, released 
at the 2014 Annual Meeting of the American Association for the Advancement of Science (AAAS), reported 
that about one half of Americans did not know or believe that human beings evolved from earlier species of 
animals (Neuman, 2014), and nearly one fourth of Americans did not know that the Earth moved round the Sun 
(O’Neill, 2014). (The more accurate statement that the Earth and Sun together move round a common centre of 
mass, was far too advanced a concept even to be queried by the poll.) A study of science literacy in the US from 
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a few years earlier presented to the AAAS in 2010 reported that just 28% of the population (if the sample was 
representative) improved in science literacy over the preceding two decades (Raloff, 2010). As a nation, the US 
is noted for its scientific and technological achievements, but these were made by a very small fraction of the 
population who became scientists and engineers. If the majority of the citizens of a democratic nation were to 
demonstrate widespread ignorance or denial of basic scientific truths, as reflected in the election of their national 
leaders and legislative representatives, it is hard to imagine how such a nation could long maintain either a high 
standard of living or an effective government.  

To individual students, however, the socio-political ramifications of caring little for science are probably not 
foremost on their minds—and so the answer to the question “Why should it matter?” must be a more directly 
personal one.  

Ask research scientists what it is about their work that fascinates them, impels them to pursue it, and rewards 
them for the countless hours spent at it. What comes across from many such inquiries (e.g. see Sreenivasan, 
(2004); Conover, (2015)), is the sentiment that science is intellectually exciting, a challenge to one’s mental 
skills; that there is beauty to science, whether in an artful experimental solution to a seemingly insurmountable 
problem or in the remarkable predictive power of a set of equations. Scientists find satisfaction in operating dai-
ly with universal laws and principles applicable everywhere irrespective of cultural differences and geographical 
separations. Any research scientist can attest to the fact that facility with scientific facts, principles, and experi-
mental and theoretical methods inspires personal confidence to handle problems outside the laboratory as well.  

Asked why he is a scientist, Nobel Laureate physicist Murray Gell-Mann responded brusquely: “Because I 
goddamn well want to know what makes things tick. Period” (Berland, 1962). About a century before Gell- 
Mann was born, the Scottish physicist James Clerk Maxwell, creator of the unified theory of electricity, mag-
netism, and light, was less crudely saying the same thing by way of the frequent query: “What’s the go o’ that?” 
(Mahon, 2004) Physics, the most fundamental science, has evolved enormously from Maxwell’s time to the 
present, but the primal motivation for why some people become physicists (or scientists in other fields) is large-
ly the same. 

To what extent are the stimuli that fire the imagination and motivate the work of professional scientists expe-
rienced by students in science classes? Apparently not much, how otherwise to account for why many students 
think of science as dull and tedious? According to Gell-Mann, the US educational system trains people to study, 
pass exams, turn in homework, get grades, and please the teacher, but not actually to be or do something (Ber-
land, 1962). The problem is not unique to the US. K. R. Sreenivasan of the International Centre for Theoretical 
Physics in Trieste wrote (Sreenivasan, 2004). 

A paradox of our times is that, while our societies have come to depend on technological advances as never 
before, the interest in basic sciences is diminishing at all levels. … This state of affairs holds true…in de-
veloped as well as developing nations, and deserves our collective attention.  

What passes for science education at university level in the US often takes two forms. On the one hand there 
is instruction that focusses on the quantitative cataloguing, description, and analysis of phenomena with little 
consideration of significance or aesthetic attraction. On the other hand there is science instruction that forgoes 
analytical rigour, resorting instead to heuristic explanations that leave the origin and cogency of major results in 
doubt. In physics the two educational extremes are frequently encountered in introductory courses for physics 
concentrators and non-science majors, respectively. In the former it is not uncommon to have to pace through a 
text of more than a thousand pages in two semesters at the rate of a chapter every one or two class sessions. I 
have rarely found an instructor who enjoys this or who would defend the educational merits of such an approach. 
But it would seem that nothing can be done. So long as the course syllabus calls for coverage of all of physics, 
such a pace is thought to be necessary. It is difficult to see how, under such circumstances, a student could achieve 
anything but the most superficial understanding or experience the intrinsic beauty of the subject. 

The physics instruction for nonscientists is not necessarily marked by a lesser flood of facts; indeed the flow 
may be just as great. But here, in deference to the lesser mathematical abilities or interests of its students, the 
courses frequently dispense with elements of rigour. Demonstrations that rightfully call for differential or 
integral calculus are gone; mathematical connections that unify seemingly disparate ideas are also gone. In their 
stead are qualitative assurances that assertions made by the teacher and textbook are valid. One can understand 
why students may come to believe that no real explanation exists or that they are intellectually incapable of fol-
lowing it. Often an attempt is made to give relevance to the course by appeal to faddish topics at the fringes of 
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plausibility (time travel, “wormholes” through space, multiple universes, and others), even though these topics 
are totally unrepresentative of what most physicists investigate and are not even subject to feasible experimental 
verification. 

Both educational approaches, in my opinion, are bound to fail to motivate students to study science: the first 
because a massive edifice of fact does not engage and sustain students’ curiosity; the second because students 
are not inspired to exercise their intellect on subject matter perceived at the outset as defying understanding. The 
outcome in either case is generally a transient acquisition of unconnected facts and superficial familiarity with 
catchwords and jargon. Nor is this characteristic of physics alone. 

Science teaching is successful, I believe, when students, as active participants and not passive recipients, have 
the desire to learn, understand the significance of what they are learning, and are motivated to further intellectual 
growth after their formal education ends. It is successful when it creates in students the same fascination with 
natural phenomena that is experienced by practising scientists. 

How can one provide such an education? 

3. Motivations to Learn Science 
My comments in the preceding section should not be construed to mean that facts in science are unimportant. On 
the contrary, they are of great importance to scientists. As a physicist who has researched and published in di-
verse areas of atomic, nuclear, optical, statistical, and gravitational physics, I understand firsthand the need for 
broad mastery of phenomenological details and mathematical and experimental techniques in science. But—and 
this point is essential—I acquired such knowledge for specific purposes, namely to solve problems that interest-
ed me. As I matured as a professional physicist, the problems that interested me evolved in complexity, subtlety, 
and diversity, thereby placing greater demands on my need of physical facts and experimental methods. What 
remained with me at any stage of my development was largely what was personally meaningful, the knowledge 
I needed to pursue my own particular interests. I believe this to be true not only for learning science, but for the 
acquisition of knowledge in general. 

Certainly, few who study science are expected to become practising scientists. Nevertheless, the cardinal 
principle of successful science education is the same for all: One expends the effort to learn what is needed to 
answer questions that are personally meaningful. To realise this is to understand that the essential task of a 
science teacher is not so much to teach the virtually unlimited details of the subject, but to create in each student 
an individual need or desire to know. In the course of trying different approaches to teaching physics (Silverman, 
1995) at all levels of instruction over a period of nearly five decades, I have come to recognise three principal 
components to this task: 
• Convey to students an accurate and sympathetic impression of what science entails; in particular provide 

convincing evidence that knowledge of science is an integral part of a civilised, rational culture; 
• Help students to develop an ability to think critically, to arrive at logical conclusions after careful acqui-

sition and evaluation of information, to be open-minded, yet able to discern truth from sophistry; 
• Provide students an opportunity to develop and implement theoretical knowledge and experimental 

skills by direct participation in meaningful scientific research. 
I consider each component in turn. 

3.1. The Cultural Dimension of Science 
Whereas music, art, and literature can transport people away from the banality or stress of their daily lives to a 
more pleasurable (or at least less threatening) realm—science, in the minds of many people, is continually prob-
ing, discovering, reporting, if not also helping to cause, the preponderance of humanity’s anxieties: environ-
mental pollution, climate change, bioterrorism, nuclear terrorism, genetic modifications of the food supply, and 
virtually any other regrettable consequence of technology. Science, however, is not synonymous with technolo-
gy. A science teacher with any hope (in Bruner’s words) to “enlist the natural energies that sustain spontaneous 
learning” of science, must counter this negative image with a more accurate depiction of science as a valuable 
component of human culture. There are several steps to doing this. 

First, there must be some sense of historical perspective illustrating that science has long been a significant 
and beneficial part of human culture. The observations, experiments, laws, and principles of science were ob-
tained by the efforts of specific people to solve specific problems. What were those problems? Of what intellec-
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tual or practical significance was it that they be solved? Who attempted to solve them? What methods were 
tried? What difficulties were encountered? What were the seminal contributions of those to whom discoveries 
are attributed? How, to the extent one can know, did these people arrive at their conclusions? Addressing ques-
tions like these give students a sense of the intellectual struggle and human creativity involved in scientific dis-
covery. Science becomes a human endeavour, a quest for answers, not merely a collection of technical facts. 
This is important because nonscientists (including many science teachers) unfamiliar with the nature of science 
envision the laws of nature as simply being “out there” ready for picking like fruit from a tree. Textbooks often 
foster that image by presenting experiments, data, equations, and conclusions all neatly ordered, devoid of the 
drama of human effort. But this is not how our understanding of the physical world came about, nor how science 
works today.  

Newton’s laws of motion and law of gravity, for example, are among the enduring topics that will forever be a 
part of the introductory physics curriculum. Over the years many a student left glassy eyed from calculating tra-
jectories of falling cannon balls or orbiting satellites doubtless wondered “Why bother?” However, I have per-
sonally found that when students understand more of the circumstances of Newton’s discoveries—that Newton 
addressed “the great unanswered question confronting natural philosophy” of his time (Westfall, 1980), or that 
even Newton had trouble initially with circular motion and centripetal acceleration (since he was, after all, dis-
covering these concepts, not reading them from a textbook)—they look with renewed interest upon the subject. 
Students can be helped to understand that the laws of motion and of gravity are not academic exercises to im-
prove their proficiency in calculation; rather they are a valuable part of humanity’s intellectual heritage, a his-
torical landmark in mankind’s progress away from error, ignorance, and superstition.  

Second, there must be some sense of utility. In an age dominated by technological innovation, a person igno-
rant of basic scientific principles and experimental skills is at a disadvantage not only in seeking gainful em-
ployment, but also in distinguishing what may be true and helpful from what is false and deceptive in the unre-
mitting barrage of advertising and advocacy from every communication medium. People with no scientific 
background are easy prey to the influence of wildly improbable speculation, disingenuous marketing, occultism, 
mysticism, religious extremism, bogus science, and political indoctrination. There is survival value to science, 
and students who understand how science bears on their lives directly and affects their future well-being will 
have greater incentive to study it. 

Third, there must be some sense of beauty. Beyond the mere utilitarian there is an aesthetic dimension of 
science, a “rhythm and a pattern between the phenomena of nature which is not apparent to the eye, but only to 
the eye of analysis” (Feynman, 1965). These aesthetic elements have long been a source of personal pleasure 
and intellectual stimulation for scientists. Consider, for example, physics Nobel Laureate Subrahmanyan Chan-
drasekhar’s response to a consequence of Einstein’s theory of general relativity (Curtin, 1982): 

In my entire scientific life…the most shattering experience has been the realization that an exact solution of 
Einstein’s equations of general relativity…provides the absolutely exact representation of untold numbers 
of massive black holes that populate the universe. This “shuddering before the beautiful”, this incredible 
fact that a discovery motivated by a search after the beautiful in mathematics should find its exact replica 
in Nature, persuades me to say that beauty is that to which the human mind responds at its deepest and 
most profound. 

Students, like scientists, will also respond to a mathematically elegant theory or masterfully designed experi-
ment if they can understand it. The recognition of beauty in science, as in art and music, requires a prepared 
mind. This is a matter of positive feedback: the beauty of a subject increases with comprehension; the motiva-
tion to comprehend is stimulated by beauty. Science teachers must illustrate, wherever possible and at an appro-
priate level of complexity, those symmetries and patterns of nature that make the study of science profoundly 
interesting. 

3.2. Science, Uncertainty, and Critical Thinking 
With rare exception, I have found that many students and teachers regard science courses and textbooks as pro-
viding material the truth of which has been established beyond doubt. Such uncritical acceptance misses the es-
sence of science as a self-correcting search for knowledge whose foundations are never absolutely certain. Even 
for the archetypical science of physics in which basic principles are the most thoroughly tested and widely ap-
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plicable of any science, there are laws yet to be discovered and phenomena to be understood better.  
A science teacher who understands the nature of science will try to foster in the classroom a healthy sceptic-

ism of hypotheses and model illustrations encrusted with venerability in textbooks. For one thing, textbooks can 
be wrong and perpetuate one another’s errors, particularly in the more qualitative sciences (Gould, 1987). This 
can also occur in physics even at the most elementary level. In one example I know, a model academic problem1, 
used by textbook writers for over a hundred years to illustrate the principles of static equilibrium, is treated in-
correctly in every textbook of introductory physics I have seen (Resnick & Halliday, 1977). Since this was a 
problem that had important ramifications well beyond academia, I solved the problem myself and tested the so-
lution experimentally (Silverman, 2009). 

Discussion and analysis in science classes of selected scientific controversies can aid both instructor and stu-
dents to understand better how real science works and to distinguish it from pseudoscience (Silverman, 1992). 
Appropriate case studies are to be found in almost any field of science. One instructive example that draws from 
such widely disparate fields as astronomy and astrophysics, chemistry, geology, and paleontology is the ongoing 
debate over the massive Tertiary extinctions (think dinosaurs). In the words of one geologist (Raup, 1986): 

Science is not the pure, isolated endeavor that is usually depicted…It is rarely a simple process of posing 
hypotheses, devising experimental tests, and waiting for Yes or No answers.  

Principles do not simply fall into place upon the assiduous collection of facts. Rather, the lesson drawn by 
another geologist from the controversy over continental drift and plate tectonics is that: 

We are…more likely to be swamped by meaningless data…Piling up facts does not tell us why things be-
have as they do. On the contrary, the factual burden of a science varies inversely with its degree of maturi-
ty. As a science progresses particular facts become increasingly comprehensible within general statements 
of greater explanatory power and scope (Hallam, 1973). 

Moreover, whereas scientific facts are objective statements about nature, they can nevertheless have an emo-
tional impact on people. In the anguished lament of one opponent to the then emerging new basis of geology, “If 
we are to believe [the hypothesis of continental drift], we must forget everything which has been learned over 
the last 70 years and start all over again” (Sant, 2014). True, but science sometimes works that way.  

There is a lesson in the practice of science that is of importance outside the classroom and long after the com-
pletion of formal education. In my own classroom, I try to convey to students the message that if the principles 
of a rigorous and methodical discipline like physics are established only to within measured uncertainties and 
subject to occasional revisions, then how much less certain must be what passes for truth or dogma in other 
areas of human activity. Whether they become scientists or not, students can be helped to appreciate that a ro-
bust scepticism coupled with a need for proof is a useful mental attitude to have in the world at large. 

I also stress, however, that the qualities of open-mindedness and objectivity in science should not be con-
strued to mean all ideas are deserving of equal consideration, an anarchistic view of some philosophers (Feye-
rabend, 1975b) that puts science on par with astrology, witchcraft, magic, mysticism, and religion as equivalent 
paths to knowledge. Sophistry of this kind, if ever widely believed, poses a danger to civilised society. For if 
there are no objective facts and principles of nature, then there would be no cause or inclination to search for 
them. Such dangers are not empty rhetoric. In the US and increasingly abroad as well, efforts of religious fun-
damentalists to convince the public that scripture should replace real science as a mode of inquiry into natural 
phenomena have impeded the dissemination of scientific knowledge in public schools. Particularly in the 
cross-hairs are sciences like biology, geology, and physics that deal with origins and evolution, whether of spe-
cies, the Earth, or the cosmos.  

Scientists may differ strongly with one another over the interpretation of observations and the validity of 
theories; they may argue over whether ultimate truths in nature are attainable or even exist. But scientists, if they 
are indeed to be considered such, do not forgo the use of reason and empirical facts in the quest for knowledge. 
Science teachers must help students to realise the broader advantages of their science studies—that, beyond the 
factual details and experimental methods they are learning to use their minds to free themselves from credulity, 

 

 

1The erroneous assumption of zero friction between a ladder and a wall is found ubiquitously in general physics textbooks and on the inter-
net. The predicted forces disagree with results of actual measurements. 
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dogma, and the primacy of wishful thinking over evidence in shaping their views of reality. 

3.3. Participation in Science 
All science is at root an empirical activity. The basic principles are not obtained from stone tablets, meditation, 
or textbooks, but by the creative interaction between theory and the facts that emerge from observation and con-
trolled experiment. Science teachers generally realise that some participation in scientific activities is necessary 
for students, and include instructional laboratory work along with lectures, particularly in the introductory 
science courses. 

An instructional laboratory can be useful in introducing students to standard apparatus and measuring tech-
niques. However, as usually constituted, it does not represent what scientists experience when they are perform-
ing experimental research. Science instructors deceive themselves if they believe that any laboratory exercise 
designed from the outset to yield clean, unambiguous data in a reasonably short time on previously well-studied 
phenomena with low probability of failure could in any serious way reflect what experimental science is like.  

Nor are students oblivious to the distinction between cookbook laboratory work and real science. Introductory 
laboratories are often cited as the most tedious part of a science course. It is there, perhaps more overtly than in 
any other part of formal coursework that assignments are purely academic exercises that demand of the perfor-
mers only the repetition of well-established procedures that do not inspire, or perhaps even permit, innovation, 
and that lead in the end to results of no interest to anyone outside the classroom.  

Yet it is the experimental aspect of science—the planning, looking, touching, manipulating, controlling, mea-
suring, recording, checking—this direct contact with the phenomena of nature for the purpose of satisfying one’s 
own curiosity that has provided many scientists their strongest motivation and deepest satisfaction. A discovery 
need not be of momentous general significance to science as long as it is personally meaningful to the discoverer. 
Consider, for example, the reaction of British naturalist Alfred Russell Wallace to a rather small discovery (Be-
verage, 1950). 

None but a naturalist can understand the intense excitement I experienced when at last I captured it [new 
species of butterfly]. My heart began to beat violently, the blood rushed to my head, and I felt much more 
like fainting than I have done when in apprehension of immediate death…so great was my excitement pro-
duced by what will appear to most people a very inadequate cause. 
Teachers who embrace a perspective of science consistent with how science is practised will understand that 

the experience and enjoyment of science require active participation, not passive absorption—participation, 
moreover, in a pursuit of answers to real questions. They will realise that the opportunity to pursue an authentic 
research activity—not necessarily for publication, but simply for the heady experience of exploration and prob-
lem solving—can provide incentive to students as it has for centuries to scientists. Teachers who are themselves 
experimental scientists can make such opportunities available to students by engaging them in original research 
projects in their laboratories. Opportunities like these, however, do not exist everywhere, nor would all students 
wish to take advantage of them. But an enterprising teacher at any level of science instruction can always find 
some way to involve students, individually or in small groups, in meaningful scientific investigations. Scheduled 
laboratory time, itself, can be used for this purpose to greater educational profit than for the ritual treading of 
ancient pathways.  

Over a long career of teaching physics, I have found a number of ways to accommodate within the structure 
and time constraints of my courses activities that expose students to contemporary advances in science beyond 
the textbook and classroom lectures (Silverman, 1995). For example: 
• Keeping a physics journal: Throughout the academic term students are required to keep within a bound 

notebook a weekly account of newsworthy items relating to advances in physics pertinent to the course. A 
list of suggested sources comprehensible to an educated layman was provided, which included international 
science publications (e.g. Nature, Science, Scientific American), websites of science organisations (e.g. 
American Physical Society, Institute of Physics), websites of national and international laboratories (e.g. 
Fermilab, CERN [European Organisation for Nuclear Research], NASA [National Aeronautics and Space 
Administration]), and selected major metropolitan newspapers (e.g. New York Times, Washington Post, The 
Guardian) noted for reporting of scientific events. A minimum of two entries per week is expected. On the 
last class day of the week (usually a Friday), time would be made available in class for students to share and 
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discuss their journal entries. When appropriate, I would clarify a student’s report, answer questions from the 
class, and show how the article ties in to the formal material of the course.  

• Researching and reporting on an assigned topic: A course of lectures in which the instructor does all the 
speaking and the students sit passively taking notes can be tedious and uninspiring. In nearly every course I 
teach, students are required to choose (around the middle of the term) a well-defined issue, relevant to the 
course, which raises questions that interest them. They research, either individually or as part of a two- or 
three-person panel, the topic during the remainder of the semester, and submit a formal research report at the 
end on the results of their investigation. Moreover, time is also made available for the students to give com-
puter-aided oral presentations of their projects to the entire class. Although many students do not need assis-
tance is finding topics, a list of suggestions is provided at the beginning of the term. The array of topics will 
vary, depending on the subject matter of the course. A sample of topics recently investigated by students in a 
section of my calculus-based course on introductory physics devoted to physics of the 20th and 21st centuries 
included such questions as:  
• Do particles of light (photons) have mass? 
• Is it really the case that neutrinos easily pass through the entire Earth? 
• Why is there more matter than anti-matter in the universe? 
• Are there magnetic monopoles in nature? 
• What is the origin of gamma ray bursts? 
• How does the global positioning system (GPS) work? 
• What is a quantum computer, and can one actually be constructed? 
• What causes coloured halos around the Moon or Sun? 
• Why is the sky dark blue at the zenith and reddish orange at the horizon? 

Note that the foregoing brief sample of topics includes exotic subjects that students do not ordinarily encoun-
ter in their daily lives (e.g. gamma rays or neutrinos) as well as relatively familiar things that a student may of-
ten use, see or hear about (GPS device or sky colour) but not really understand. 
• Attending physics seminars: Besides in-class activities designed to heighten students’ awareness of, and in-

terest in, physics as a live and progressing field of study (and not a moribund discipline captured in a text-
book), students in my classes are encouraged to attend public lectures on physics by guest speakers. As the 
organiser of a programme of public lectures, I try to invite scientists who are particularly skilled at commu-
nicating with undergraduate students. The seminars are given at the end of the week at a time that minimally 
conflicts with other student activities, and those who attend are accorded some measure of extra credit as an 
incentive. In the initial few minutes of the first class of the following week, time is devoted to discussing the 
content of the seminar. 

Besides exposing students to contemporary scientific research, a significant feature of the three preceding ac-
tivities is that they provide diverse opportunities for students to write and speak. This, in my opinion, is espe-
cially important. In the traditional science or engineering curriculum at a US university or college, students may 
be required to take one course (“freshman seminar”) during their first term in which they have writing assign-
ments—but afterward may never have to write or speak again in class. And yet, to be able to write clearly and 
speak articulately are perhaps the two most important skills a person will need for a successful career. 

Another feature to be highlighted is that the foregoing activities, in place of frequent testing, which ordinarily 
occupies most of the non-lecture time in a US science classroom, fosters self-improvement and cooperation, ra-
ther than competition, among students. This is a significant virtue because test-taking is a skill rarely if ever 
needed outside academia, whereas the ability to work well in a group setting is critical to success in many 
science and non-science careers. Also, as I have discussed elsewhere (Silverman, 2015), by replacing the em-
phasis on testing (which at best measures what a student knows at a particular moment in time) with activities 
that involve research, writing, and speaking (which allow students to show what they have accomplished over an 
interval of time), an instructor can reduce the motivation for students to cheat.  

4. Concluding Remarks 
The methods of motivating science learning discussed throughout this article are all moulded from the same 
metal: that science instruction is more efficacious and enduring when it reflects the intrinsic activities practised 
by active scientists themselves. Science is not a stockpiling of phenomenological detail, but a self-correcting 
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mode of inquiry pursued by people who are curious about the natural world and will satisfy their need for ra-
tional answers to personally meaningful questions. 

To teach science well, one needs to have the attitudes of a scientist: to see science as a culturally important 
activity, technically useful and aesthetically moving; to understand that science, more than any other human ac-
tivity, helps free the mind from ignorance, superstition, prejudice, and dogma; to have the curiosity oneself, to 
explore natural phenomena—at whatever level one is capable of, and by whatever means one has availa-
ble—and to enjoy sharing this curiosity with students. 

The science teacher whose instruction goes no further than the textbook, whose notes have yellowed with age 
from unvarying use, and whose concept of scientific experience is ritualised repetition of procedure cannot hope 
to motivate and inspire students. Teachers must, themselves, be motivated and inspired: to read avidly and regu-
larly in order to learn lessons of the past and keep abreast of the present; to experiment and tinker in order to 
teach with confidence based on personal experience; to try in all ways possible to make the science classroom 
reflect accurately the attributes and activities of a place where real science is done. 

References 
Berland, T. (1962). The Scientific Life (pp. 65-66). New York: Coward-McCann. 
Beverage, W. I. B. (1950). The Art of Scientific Investigation (pp. 192). New York: Vintage Books. 
Bruner, J. S. (1966). Toward a Theory of Instruction (pp. 115). Cambridge: Harvard University Press. 
Bulwer-Lytton, E. G. (1873). Kenelm Chillingly: His Adventures and Opinions (Chap. 12).  

http://www.gutenberg.org/files/7658/7658-h/7658-h.htm#link2HCH0001  
Conover, E. (2015). Why Did You Become a Scientist? Researchers Speak Out. Science  

http://news.sciencemag.org/scientific-community/2015/04/why-did-you-become-scientist-researchers-speak-out-iamascien
tistbecause   

Curtin, D. (1982). The Aesthetic Dimension of Science (pp. 7). New York: Philosophical Library. 
Feyerabend, P. (1975a). How to Defend Society against Science. Radical Philosophy, 11, 3-8. 
Feyerabend, P. (1975b). Against Method: Outline of an Anarchistic Theory of Knowledge. New York: New Left Books.  
Feynman, R. P. (1965). The Character of Physical Law (pp. 13). Cambridge: MIT Press. 
Fraiberg, S. (1959). The Magic Years. New York: Charles Scribner. 
Gould, S. (1987). The Case of the Creeping Fox Terrier Clone. Natural History, 97, 16-24. 
Hallam, A. (1973). A Revolution in the Earth Sciences (pp. 112-113). Oxford: Oxford University Press.  
Mahon, B. (2004). The Man Who Changed Everything: The Life of James Clerk Maxwell. New York: Wiley.  
Neuman, S. (2014). 1 in 4 Americans Thinks the Sun Goes around the Earth, Survey Says. National Public Radio.  

http://www.npr.org/sections/thetwo-way/2014/02/14/277058739/1-in-4-americans-think-the-sun-goes-around-the-earth-su
rvey-says  

O’Neill, I. (2014). 1 in 4 Americans Don’t Know Earth Orbits the Sun. Yes, Really.  
http://news.discovery.com/space/astronomy/1-in-4-americans-dont-know-earth-orbits-the-sun-yes-really-140214.htm  

Raloff, J. (2010). Science Literacy: U.S. College Courses Really Count. Science News.  
https://www.sciencenews.org/blog/science-public/science-literacy-us-college-courses-really-count  

Raup, D. (1986). The Nemesis Affair (pp. 18). New York: Norton. 
Resnick, R., & Halliday, D. (1977). Physics (3rd ed., pp. 288-289). New York: Wiley.  
Sant, J. (2014). Wegner and Continental Drift Theory. http://www.scientus.org/Wegener-Continental-Drift.html  
Silverman, M. P. (1992). Raising Questions: Philosophical Significance of Controversy in Science. Science & Education, 1, 

163-179. http://dx.doi.org/10.1007/BF00572837 
Silverman, M. P. (1995). Self-Directed Learning: A Heretical Experiment in Teaching Physics. American Journal of Physics, 

63, 495-508. http://dx.doi.org/10.1119/1.18080 
Silverman, M. P. (2009). Final Report: Force of a Ladder on a Railing under Static and Dynamic Conditions. Expert Witness 

Testimony (Used by Both Defendant and Plaintiff) in the Case Shattuck v. Wynfield, Hartford Superior Court (Hartford 
CT).  

Silverman, M. P. (2015). Cheating or Coincidence? Statistical Method Employing the Principle of Maximum Entropy for 
Judging Whether a Student Has Committed Plagiarism. Open Journal of Statistics, 5, 143-157.  
http://dx.doi.org/10.4236/ojs.2015.52018 

http://www.gutenberg.org/files/7658/7658-h/7658-h.htm%23link2HCH0001
http://news.sciencemag.org/scientific-community/2015/04/why-did-you-become-scientist-researchers-speak-out-iamascientistbecause
http://news.sciencemag.org/scientific-community/2015/04/why-did-you-become-scientist-researchers-speak-out-iamascientistbecause
http://www.npr.org/sections/thetwo-way/2014/02/14/277058739/1-in-4-americans-think-the-sun-goes-around-the-earth-survey-says
http://www.npr.org/sections/thetwo-way/2014/02/14/277058739/1-in-4-americans-think-the-sun-goes-around-the-earth-survey-says
http://news.discovery.com/space/astronomy/1-in-4-americans-dont-know-earth-orbits-the-sun-yes-really-140214.htm
https://www.sciencenews.org/blog/science-public/science-literacy-us-college-courses-really-count
http://www.scientus.org/Wegener-Continental-Drift.html
http://dx.doi.org/10.1007/BF00572837
http://dx.doi.org/10.1119/1.18080
http://dx.doi.org/10.4236/ojs.2015.52018


M. P. Silverman 
 

 
1992 

Sreenivasan, K. R. (2004). One Hundred Reasons to Be a Scientist (pp. 1-268). Trieste: ICTP (Abdus Salam International 
Centre for Theoretical Physics).  

Watts, A. (1970). Does It Matter (pp. 25)? New York: Vintage Books. 
Westfall, R. (1980). Never at Rest: A Biography of Isaac Newton (Chap. 10, pp. 402-406). Cambridge: Cambridge Universi-

ty Press. 


	Trinity College
	Trinity College Digital Repository
	10-2015

	Motivating Students to Learn Science: A Physicist’s Perspective
	Mark P. Silverman

	Motivating Students to Learn Science: A Physicist’s Perspective
	Abstract
	Keywords
	1. How Science Is Perceived Affects How Science Is Taught
	2. What Inspires Scientists Will Inspire Students
	3. Motivations to Learn Science
	3.1. The Cultural Dimension of Science
	3.2. Science, Uncertainty, and Critical Thinking
	3.3. Participation in Science

	4. Concluding Remarks
	References

