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Control of coupled oscillator networks with
application to microgrid technologies
Per Sebastian Skardal1,2* and Alex Arenas2

The control of complex systems and network-coupled dynamical systems is a topic of vital theoretical importance in
mathematics and physics with a wide range of applications in engineering and various other sciences. Motivated by
recent research into smart grid technologies, we study the control of synchronization and consider the important
case of networks of coupled phase oscillators with nonlinear interactions—a paradigmatic example that has guided
our understanding of self-organization for decades. We develop a method for control based on identifying and
stabilizing problematic oscillators, resulting in a stable spectrum of eigenvalues, and in turn a linearly stable syn-
chronized state. The amount of control, that is, number of oscillators, required to stabilize the network is primarily
dictated by the coupling strength, dynamical heterogeneity, and mean degree of the network, and depends little on
the structural heterogeneity of the network itself.

INTRODUCTION

Complex networks and complex systems describe the physical, bio-
logical, and social structures that connect our world and host the dy-
namical processes vital to our lives (1–3). The failure of such large-scale
systems to operate in the desired way can thus lead to catastrophic
events such as power outages (4, 5), extinctions (6, 7), and economic
collapses (8, 9). Thus, the development and design of efficient and ef-
fective control mechanisms for such systems is not only a question of
theoretical interest to mathematicians but also has a wide range of im-
portant applications in physics, chemistry, biology, engineering, and
the social sciences (10, 11).

The roots of modern linear and nonlinear control reach back sev-
eral decades, but recently, research in this direction has seen a revival
in physics and engineering communities. For instance, the concept of
“structural controllability,” which is based on the paradigm of linear
homogeneous dynamical systems, was first introduced by Lin (12) and
more recently investigated by Liu et al. (13) and Yuan et al. (14). These
advances have enabled further progress related to structural control-
lability such as centrality (15), energy (16), effect of correlations (17),
emergence of bimodality (18), transition and nonlocality (19), the spe-
cific role of individual nodes (20), target control (21), and control of
edges in switchboard dynamics (22). Significant advances have also
been made in the control of nonlinear systems, for instance, the con-
trol of chaotic systems using unstable periodic orbits (23), control via
pinning (24–26), control and rescue of networks using compensatory
perturbations (27, 28), and control via structural adaptation (29). Im-
plicit in all such network control problems are the following questions:
(i) What form(s) of control should one choose? (ii) How much effort
is needed to attain a desired state (30)?

Motivated by ongoing studies on the stability and function of
power grids (31, 32), we study the control of heterogeneous coupled
oscillator networks (33, 34). Recent research into smart grid technol-
ogies has shown that certain power grid networks called “microgrids”
evolve and can be treated as networks of Kuramoto phase oscillators
(35). A microgrid consists of a relatively small number of localized
sources and loads that, while typically operating in connection to a

larger central power grid, can disconnect itself and operate autono-
mously as may be necessitated by physical or economical constraints.
In particular, by means of a method known as “frequency drooping,”
the dynamics of microgrids become equivalent to Kuramoto oscillator
networks—a class of system for which a large body of literature detailing
various dynamical phenomena exists (36). Here, we develop a control mecha-
nism for such coupled oscillator networks, thus providing a solution
with potentially direct application to the control of certain power grids.

Our goal is to induce a synchronized state (that is, consensus) in a
given coupled oscillator network and guarantee asymptotic stability by
applying as few control gains to the network as possible. Our method
is based on calculating the Jacobian of the desired synchronized state
and studying its spectrum, by which we identify the oscillators in the
network that contribute to unstable eigenvalues and thus destabilize
the synchronized state. Our method not only identifies which oscilla-
tors require control but also the required strength of each control gain.
We find that the control required to stabilize a network is dictated by
the coupling strength, dynamical heterogeneity, and mean degree of the
network, and depends little on the structural heterogeneity of the
network. That is, the number of nodes requiring control depends sur-
prisingly little on the network topology and degree distribution and is
more sensitive to the average connectivity of the network and the dy-
namical parameters. Although Kuramoto oscillator networks serve as
our primary system of interest due to both its specific correlation with
microgrids and its rich body of literature, we note that our method
can be applied to a much wider set of oscillator networks, provided
that their linearized dynamics take a certain form. Moreover, because
Kuramoto and other oscillator network models have served as a para-
digmatic example for modeling and studying synchronization in various
contexts, we hypothesize that our results may shed light more generally
on the control of synchronization processes and could potentially give
insight into other important applications such as the termination of cardiac
arrhythmias (37) and treatments for pathological brain dynamics (38).

RESULTS

The Kuramoto model
We consider the famous Kuramoto model for the entrainment of many
coupled dissipative oscillators (39). The Kuramoto model consists of

1Department of Mathematics, Trinity College, Hartford, CT 06106, USA. 2Departament
d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain.
*Corresponding author. E-mail: persebastian.skardal@trincoll.edu

R E S EARCH ART I C L E

Skardal and Arenas Sci. Adv. 2015;1:e1500339 21 August 2015 1 of 6



N phase oscillators qi for i = 1,…, N that, when placed on a network
dictating their pairwise interactions, evolve according to:

q̇i ¼ wi þ K ∑
N

j¼1
Aij sinðqj − qiÞ ð1Þ

Each oscillator i has a unique nature frequency wi that describes its
preferred angular velocity in the absence of interactions, which is typ-
ically drawn randomly from a distribution g(w). Furthermore, the
global coupling strength K describes the influence that oscillators have
on one another via the network connectivity, which is encoded in the
adjacency matrix [Aij]. Here, we focus on the simple case of an undi-
rected, unweighted network (Aij = 1 if oscillators i and j are connected
by a link and Aij = 0 otherwise), but we note that all results presented
here easily generalize to directed and weighted networks. We also as-
sume that the network is connected, that is, irreducible. Over the last
few decades, the Kuramoto model has proven to be very useful for
modeling real-world systems (36, 40), uncovering the mechanisms be-
hind emergent collective behavior (41, 42), exploring additional effects
such as time delays (43) and community structure (44), and finding
optimal network structure (45).

Depending on the coupling strength K, as well as the frequency
vector w and the network topology, the steady-state dynamics of Eq.
1 can attain many different states that included complete incoherence,
partial synchronization, and full synchronization. The latter is charac-
terized by limt→∞j q̇jðtÞ− q̇iðtÞj ¼ 0 and is also referred to as full phase
locking, frequency synchronization, or consensus. The fully synchronized
state (henceforth called the synchronized state) typically displays a large
degree of phase synchronization r ≈ 1, where reiy ¼ N−1∑N

j¼1e
iqj is

the standard Kuramoto order parameter. In Fig. 1A, we illustrate a
synchronized state in a group of five oscillators, each moving with an
angular velocity of w. The order parameter is illustrated as vector of
length r with an offset angle y from the positive real axis.

Stability and control
Here, we address the problem of control by first assuming that be-
cause of the system parameters (that is, the coupling strength, natural
frequency sequence, or network topology), the steady-state dynamics
of Eq. 1 are at least partially incoherent, that is, one or more oscillators
remain desynchronized. In the example of the power grid, a single de-
synchronized oscillator represents a single power failure but can have
further damaging effects, in particular, triggering a cascade of addi-
tional failures and ultimately a power outage (5). Thus, our goal is
to find a synchronized state and stabilize it. If all oscillators are initially
synchronized, then our goal is trivially realized; however, our method
can be used to make this state more robustly stable. In a synchronized
state such as the one we seek here, we expect the oscillators to be

clustered in a single reasonably tight cluster such that |qj − qi| ≪ 1,
and thus, Eq. 1 can be linearized to:

q̇i ≈ wi − K ∑
N

j¼1
Lijqj ð2Þ

where L is the network Laplacian matrix with entries Lij = dij ∑l Ail − Aij,
and dij is the Kronecker delta. A straightforward analysis yields a
“target” synchronized state (within the rotating reference frame q ↦
q + 〈w〉t) given by the vector q* = K−1L†w, where L† is the pseudo-
inverse of the Laplacian (46). (We summarize a derivation of this result
inMaterials andMethods.)We note that, because the system is assumed
to be partially incoherent, the fixed point q = q* either does not exist or is
unstable. However, we take q = q* to represent the closest synchronized
fixed point for the given parameter values, and therefore, we use it as a
target. We also note that, although Eq. 2 was directly obtained from
linearizing Eq. 1, other systems ofmore general forms yield equivalent
linearizations and therefore can also be controlled using themethod we
provide here. We present an example of such a general system with ar-
bitrary coupling function [for example, see (47)] inMaterials andMethods.

The stability of q = q* is dictated by the Jacobian matrix whose
entries are defined ½DF�ij ¼ ∂q̇i =∂qj , and is stable if all the eigenva-
lues of DF|q* are nonpositive. In our case, we have that:

DFij ¼ −K∑j≠iAij cosðq*j − q*i Þ if i ¼ j

KAij cosðq*j − q*i Þ otherwise

(
ð3Þ

We note that each row (and column) of DF sums to zero, that is, sa-
tisfies DFii = −∑j≠i DFij. This is a particularly convenient property for
using the Gershgorin circle theorem (48), which implies that the ei-
genvalues of DF lie within the union of closed discs Di for i = 1,…, N,
which are each centered at DFii and have radius Ri, where Ri = ∑j≠i|DFij|.
(The full theorem is given in Materials and Methods.) In particular, if
all the off-diagonal entries of DF are nonnegative, then it follows that
each Gershgorin disc is contained in the left-half plane, implying that
all eigenvalues are nonpositive and the solution is stable. An illustration
of this case is presented in Fig. 1B. If, however, one or more nondia-
gonal entries of DF are negative, then each Gershgorin disc correspond-
ing to a row with a negative off-diagonal entry enters the right-half
plane, admitting the possibility for one or more positive eigenvalues
and thus destabilization. Thus, the oscillators that require control can
be easily identified as those whose corresponding rows have one or
more negative off-diagonal entries.

We aim to stabilize the synchronized solution by adding one or
more control gains to the system, as illustrated in Fig. 1C. In the fol-
lowing recent literature, we will refer to oscillators to which we apply
control as “driver nodes,” and to oscillators to which we do not apply
control as “free nodes.”We choose the control gains to take the form
fi(t) = Fi sin(ϕi − qi) where Fi is the strength of the ith control gain and
ϕi is a target phase that can, in principle, depend on either local or global
information, and vary in time. Here, we focus on the choice of target
phase ϕi ¼ q*i and discuss other possibilities below. Because the con-
trol gain depends on the current state of the system, this can be thought
of as a form of feedback control. The new dynamics are then given by:

q̇i ¼ wi þ K ∑
N

j¼1
Aij sinðqj − qiÞ þ Fi sinðq*i − qiÞ ð4Þ

where we take Fi = 0 for free nodes. Whereas the off-diagonal en-
tries of DF remain unaltered, the new diagonal entries are given by

CA B +

-

0

Fig. 1. Control of coupled oscillator networks. (A to C) For a five-oscillator
network, illustration of (A) the fully synchronized state with the Kuramoto
order parameter, (B) the Jacobian of a stable synchronized state, and (C)
control applied to oscillators i = 2 and 3.
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DFii ¼ −K∑j≠iAij cosðq*j − q*i Þ−Fi. Thus, we set coupling gain strength
of each driver node i such that it satisfies Fi ≥ K∑j≠i Aij½jcosðq*j − q*i Þj−
cosðq*j − q*i Þ�. This ensures that all Gershgorin discs are contained in the
left-half plane, implying that (up to the linear approximation of q*) all
eigenvalues are nonpositive and the synchronized state is stable. (In
the case of a directed network, this implies that all eigenvalues have
nonpositive real part and the synchronized state is stable.)

We now briefly comment on the choice of target phases ϕi in the
control gains. In the method outlined above, we have set the target
phase equal to the steady-state phase, ϕi ¼ q*i . This is a convenient
choice for the derivation described above. Additionally, we find that,
in practice, other choices also yield positive results. In particular, one
choice that tends to yield slightly better results is to force each driver
node toward the center of the synchronized cluster, that is, ϕi ¼ ϕ, where
we assume that the cluster is centered at the angle ϕ. Target phases can
also be chosen according to global or distributed control strategies.
In particular, given the standard Kuramoto order parameter reiy ¼
∑j e

iqj=N or the set of local order parameters rieiyi ¼ ∑j Aij e
iqj , the

choices ϕi = y and ϕi = yi correspond to global and distributed control
strategies that typically yield favorable results. We also note before
presenting examples that because the method outlined above depends
on the approximation of the steady-state solution q* ≈ K−1 L†w, in
practice, we add a buffer margin when identifying unstable oscillators,
looking for nondiagonal entries of DF that are not necessarily negative,
but rather less than some & > 0. We find that the choice & = 0.2 is
sufficient, and is what we use in the examples below.

Control of random networks
We now demonstrate our approach by considering two types of ran-
dom networks: Erdős-Rényi (ER) (49) networks and scale-free (SF) net-
works. Each ER network is constructed using a fixed link probability p,
and each SF network is built using the configuration model (50) with a
degree sequence drawn from the distribution P(k) º k−g with g = 3
and enforced minimum degree k0. To tune the mean degree 〈k〉 of each
network, we set either p = 〈k〉/(N − 1) or k0 = 〈k〉/(g − 1). Figure 2

illustrates our results with an example of each type of network, where
we have used networks of size N = 1000 with mean degree 〈k〉 = 6, set
the coupling strength K = 0.4, and used natural frequencies drawn
from a uniform distribution with zero mean and unit variance. The
top and bottom rows display the results for the ER and SF networks,
respectively, displaying the time series q(t) of a randomly selected 10%
of the oscillators without control (Fig. 2, A and D) and with control
(Fig. 2, B and E), after discarding a long transient. The difference be-
tween no control to control is quite drastic, with a large fraction of de-
synchronized oscillators without control, and full synchronization with
control. Driver nodes constituted 37.1 and 44.5% of the ER and SF
networks, respectively, to attain the synchronized state. In Fig. 2 (C and
F), we present the degree of phase synchronization, plotting the order
parameter r(t) for both solutions with and without control. Unlike the
solution without control, which fluctuates significantly at a relative low
value, the solution with control reaches a steady value near r(t) ≈ 1.

Next, we investigate the properties of driver and free nodes by re-
visiting our method. This is an essential question because of the het-
erogeneity of the oscillators in terms of both network structure (that is,
degree distribution) and local dynamics (that is, natural frequencies).
An oscillator i is a driver node if one of its off-diagonal entries
DFij ∝ cosðq*j − q*i Þ is negative, and therefore, oscillators with large
(small) steady-state values q*i º̃j½L†w�ij tend to be driver (free) nodes.
Furthermore, we find that these values scale approximately linearly
with the ratio of the natural frequencies to degrees, that is, ½L†w�i º̃
wi/ki. We illustrate this in Fig. 3, where we plot the relationship
[L†w]i versus wi/ki for the example ER and SF networks presented above
(Fig. 3, A and B, respectively), denoting driver nodes with red crosses and
free nodes with blue circles. These results show the important role that
dynamics, in addition to network structure, plays in dictating controlling
the system. In particular, driver nodes of the system tend to balance a
large ratio (in absolute value) of natural frequencies to degrees.

Finally, we quantify the overall effort required for consensus by
studying how the fraction of driver nodes, denoted nD = ND/N, where
ND is the total number of driver nodes, depends on both the system’s
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Fig. 2. Control of coupled oscillator
networks: Random networks. Exam-
ple of control applied to a coupled os-
cil lator network with ER and SF
topologies (top and bottom rows, re-
spectively) with 〈k〉 = 6 and N = 1000.
The coupling strength is K = 0.4. Time
series for phases qi(t) of 10% of oscilla-
tors without (A and D) and with (B and
E) control. Driver nodes constituted 37.1
and 44.5% of the ER and SF networks,
respectively. (C and F) Time series for
the degree of phase synchronization r(t)
for the networks without (red) and with
(blue) control.
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dynamical and structural parameters. Presenting our results in Fig. 4,
we first explore how the fraction of driver nodes depends on the cou-
pling strength by plotting in Fig. 4A nD versus K for both ER and SF
networks with mean degrees 〈k〉 = 4, 8, and 12 (blue circles, red trian-
gles, and green squares, respectively). Results for ER and SF networks
are plotted with unfilled and filled symbols, respectively, and each curve
represents an average of over 100 network realizations, each averaged
over 100 random natural frequency realizations. Although it is expected
that nD decreases monotonically with K, the curves’ dependence on
network topology and mean degree is nontrivial. In particular, the shape
of nD versus K depends more sensitively on the mean degree than the
topology, suggesting that network heterogeneity has little effect on over-
all control in comparison to average connectivity. In light of the sig-
nificant dependence of overall control on the coupling strength, we
investigate the coupling strength required to synchronize a network if
a limited amount of control is available. To this end, we calculate for
each family of networks the required coupling strengths K5%, K10%, and
K20% for which, on average, a fraction nD = 0.05, 0.1, and 0.2 will
achieve synchronization as a function of the average degree 〈k〉. We plot

the results in Fig. 4B. We point out again that ER and SF networks
behave very similarly on average, and that with a larger mean degree,
a smaller coupling strength is required to achieve synchronization.

DISCUSSION

The theoretical and practical aspects of the control of dynamical processes
remain important and ongoing areas of interdisciplinary research at
the intersection between mathematics, physics, biology, chemistry, en-
gineering, and the social sciences. The control of complex networks
and complex systems is particularly important because, together, they
comprise most of the world we live in (51); however, the nonlinear
nature of realistic dynamical processes and the complex network
topologies of real networks represent challenges for the scientific com-
munity. Building on concepts from classical linear control theory (12),
recent work has made significant advances in understanding structural
controllability (13, 14), and significant progress has been made in the
development of control mechanisms for networks of nonlinear
systems (23, 24, 28). Nonetheless, because of the problem-sensitive na-
ture of most real-world problems and applications requiring control
techniques, further progress in designing and implementing efficient
and effective control mechanisms for a wide range of problems with
practical constraints remains an important avenue of research.

Here, we have focused on the control of synchronization (that is,
consensus) in coupled oscillator networks. Our primary inspiration
has been advances in the research of power grid networks (52, 53).
In particular, recent studies have shown that certain power grids
known as microgrids can be treated as Kuramoto oscillator networks
(35, 39). Here, we have presented a control method that can easily be
applied to Kuramoto networks and other phase oscillator networks,
thus providing a control framework with potentially direct application
to these new technologies. Our method is based on identifying and
stabilizing a synchronized state for a given network via spectral prop-
erties of the Jacobian matrix, and we have demonstrated its effective-
ness on both ER and SF networks. We have observed that driver
nodes, that is, oscillators that require control, tend to balance (in ab-
solute value) large natural frequencies with small degrees. Furthermore,
the overall amount of control required to achieve synchronization de-
creases with both coupling strength and mean degree, whereas the
total effort required to attain a synchronized state depends sensitively
on the average connectivity of the network and the dynamical parameters,
but surprisingly little on the network topology and degree distribution.
These results enhance our understanding of and ability to understand,
optimize, and ultimately control synchronization in power grid net-
works [see, in particular, (5, 32)], and more generally complement im-
portant work on the control of network-coupled nonlinear dynamical
systems (26, 28, 29).

Although our central inspiration and target application are in the
area of power grid technology, synchronization phenomenon plays a
vital role in a variety of complex processes that occur in both natural
and manmade systems, including healthy cardiac behavior (54), func-
tionality of cell circuits (55), stability of pedestrian bridges (56), and
communications security (57). Given this broad range of applications,
we hypothesize that our findings here may potentially shed some light
on the control of synchronization in other contexts, such as cardiac
physiology and neuroscience. For instance, a large amount of research
has recently been devoted to the development of cardiac arrhythmia
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treatments that require minimal shock to knock out fatal asynchro-
nous behavior such as cardiac fibrillation (58) and the promotion of
normal brain oscillations (59) while repressing disorders such as
Parkinson’s disease, which are associated with abnormal oscillations (60).

MATERIALS AND METHODS

Steady-state solution
To derive the steady-state solution q* = K−1L†w, we begin with Eq. 2,
which represents the linearized dynamics of Eq. 1. Recall that this lin-
earization requires that we are searching for a synchronized state where
all oscillators are tightly packed in a single cluster, so we expect that
|qj − qi| ≪ 1. We also note that the mean frequency of all oscillators
is given by the mean natural frequency 〈w〉. For simplicity, we enter
the rotating frame q ↦ q + 〈w〉t, effectively setting the mean frequency
to zero. It is then convenient to write Eq. 2 in vector form, that is:

q̇ ≈ w − KLq ð5Þ

where L is the network Laplacian whose entries are defined Lij =
dij ∑l Ail − Aij. Although L has a zero eigenvalue, denoted l1 = 0, ren-
dering it noninvertible, it does have a pseudoinverse defined using its
other eigenvalues (which are nonzero provided that the network is
connected) and corresponding eigenvectors, L† ¼ ∑N

j¼2l
−1
j v jv jT

(46). Each eigenvector is normalized such that fv jgNj¼2 forms an or-
thonormal basis for the space of vectors in ℝN with zero mean. Thus,
both L and L† share a null space, which is spanned by the eigenvector v1º
1, and therefore map vectors onto the space of zero-mean vectors in ℝN.
With the pseudoinverse in hand, we can finally obtain the desired
steady-state solution by setting q = 0 and solving for q, which yields
the solution q* = K−1L†w, as desired.

General oscillator networks
Here, we present an example of a more general oscillator network
than that in Eq. 1 that can be controlled using the same method
detailed above. In particular, we generalize to account for an arbitrary
coupling function H(q), yielding:

q̇i ¼ wi þ K ∑
N

j¼1
AijHðqj − qiÞ ð6Þ

We assume that H(q) is 2p periodic and at least once continuously
differentiable. H need not satisfy H(0) = 0, and thus, coupling between
neighboring oscillators can be “frustrated” (47), denoting that even
when two oscillators are exactly equal, their interaction term does
not vanish. Provided that the coupling frustration is not too large, for
example, Hð0Þ= ffiffiffi

2
p

H ′ð0Þ≪1, a tightly clustered synchronized state is
attainable, and linearizing Eq. 6 yields:

q̇i ≈ wi þ KHð0Þki − KH ′ð0Þ∑
N

j¼1
Lijqj ð7Þ

By defining the quantities wei ¼ wi þ KHð0Þki and Ke ¼ KH ′ð0Þ, it
is easy to see that the linearized dynamics of Eq. 7 are of the same
form as Eq. 2, and therefore, the control method we present above can
be readily applied.

Gershgorin circle theorem
Definition. (Gershgorin discs) LetM be an N × N complex matrix. For
i = 1, …, N, let Ri = ∑j≠i |Mij| be the sum of absolute values of non-
diagonal elements of row i, and define D(Mii, Ri) closed disc of radius
Ri centered at Mii. Di = D(Mii, Ri) is the ith Gershgorin disc.
Theorem. (Gershgorin) All eigenvalues of the matrix M lie within the
union ∪Ni¼1Di of Gershgorin discs.
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