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Abstract 

Rationale: 18-25-year-olds show the highest rates of alcohol use disorders (AUD) and heavy 

drinking, which may have critical neurocognitive implications. Regions subserving memory may be 

particularly susceptible to alcohol-related impairments.  

Objective: We used blood oxygen level-dependent (BOLD) functional magnetic resonance 

imaging (fMRI) to examine the neural correlates of visual encoding and recognition among heavy 

drinking college students. We predicted that heavy drinkers would show worse memory 

performance and increased frontal/parietal activation and decreased hippocampal response during 

encoding. 

Methods: Participants were 23 heavy drinkers and 33 demographically matched light drinkers, ages 

18-20, characterized using quantity/frequency of drinking and AUD diagnosis. Participants 

performed a figural encoding and recognition task during fMRI. BOLD response during encoding 

was modeled based on whether each stimulus was subsequently recognized or forgotten (i.e., 

correct vs. incorrect encoding).  

Results: There were no group differences in behavioral performance. Compared to light drinkers, 

heavy drinkers showed: 1) greater BOLD response during correct encoding in right 

hippocampus/medial temporal, right dorsolateral prefrontal, left inferior frontal, and bilateral 

posterior parietal cortices; 2) less left inferior frontal activation and greater bilateral precuneus 

deactivation during incorrect encoding; and 3) less bilateral insula response during correct 

recognition (clusters >10,233ul, p<.05 whole-brain).  

Conclusions: This is the first investigation of the neural substrates of figural memory among heavy 

drinking older adolescents. Heavy drinkers demonstrated compensatory hyperactivation of 

memory-related areas during correct encoding, greater deactivation of default mode regions during 
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incorrect encoding, and reduced recognition-related response. Results could suggest use of different 

encoding and recognition strategies among heavy drinkers.  

 

Keywords: Alcohol, Adolescent, Young Adult, fMRI, Learning, Memory, Cognition 
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fMRI Response During Figural Memory Task Performance in College Drinkers 

 

 Alcohol consumption often escalates during the college years, and the highest rates of 

alcohol use disorders (AUD) are reported among 18-25-year-olds (SAMHSA 2011). However, little 

is known about the neurobiological sequelae of heavy drinking during late adolescence and 

emerging adulthood. Heavy alcohol use during this period may have implications for 

neuromaturation (Jacobus and Tapert 2013; Silveri 2012; Tapert and Schweinsburg 2005) as well as 

academic achievement (Hanson et al. 2011). In particular, memory processing is imperative to 

college education, and may be susceptible to the deleterious effects of alcohol (Jacobus and Tapert 

2013). Therefore, it is of great importance to characterize the potential influence of heavy drinking 

on neural pathways involved in memory functioning among college students.  

 Neuropsychological studies have consistently demonstrated deficient learning and memory 

associated with heavy alcohol use in adults (for review, see Grant 1987) and adolescents (Brown et 

al. 2000; Jacobus and Tapert 2013; Parada et al. 2011; Squeglia et al. 2009b). Notably, frontal and 

temporal lobe structures that subserve memory (Budson 2009; Squire and Schacter 2002) continue 

to develop into the 20s (Gogtay et al. 2004) and may be uniquely vulnerable to the neurotoxic 

effects of alcohol (Crews and Boettiger 2009; Jacobus and Tapert 2013). Adolescents with AUD 

demonstrate smaller volumes of the hippocampus (De Bellis et al. 2000; Nagel et al. 2005) and 

prefrontal cortex (Medina et al. 2008; Thomasius et al. 2003). More recently, we reported that binge 

drinking in adolescence was associated with increased prefrontal and parietal blood oxygen level 

dependent (BOLD) functional magnetic resonance imaging (fMRI) response but decreased 

hippocampal BOLD response during verbal learning, reflecting over-engagement of task-related 

frontoparietal systems in order to compensate for deficient medial temporal involvement and 

maintain task performance (Schweinsburg et al. 2010).  
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Although the neural substrates of verbal learning impairments have been explored in 

adolescent drinkers, visuospatial memory may be differentially impacted (Hanson et al. 2011). For 

instance, heavy alcohol use in adolescence is associated with compromised delayed recall of 

complex figures (e.g., Rey-Osterrieth Complex Figure test), but normal verbal learning and delayed 

recall (Brown et al. 2000; Squeglia et al. 2009b). Moreover, despite poorer delayed figure recall 

among adolescent drinkers, initial visuospatial learning and immediate recall may remain 

unimpaired (Brown et al. 2000; Hanson et al. 2011; Squeglia et al. 2009b), which could indicate a 

disparity in visuospatial acquisition and recognition processes.  To our knowledge, the possible 

neurobiological abnormalities of complex figure encoding and recognition have not yet been 

explored among heavy drinking adolescents. Therefore, the current study was designed to 

characterize fMRI response during figural encoding and recognition in college drinkers. 

There are numerous methods of ascertaining learning and memory using fMRI. One 

powerful approach is the subsequent memory paradigm (Kim 2011b), wherein subsequent 

performance on a memory task is used to code encoding trials as either subsequently remembered 

(correctly encoded) or forgotten (incorrectly encoded). Accordingly, fMRI response can be modeled 

separately for correct vs. incorrect encoding, usefully distinguishing brain systems involved in 

successful learning from neural activity thought to interfere with successful learning (Kim 2011b). 

Typically, correct encoding activates left inferior frontal cortex, fusiform, hippocampus, premotor 

cortex, and posterior parietal cortices (Kim 2011b). In contrast, incorrect encoding is associated 

with response in the default mode network (DMN), including medial prefrontal cortex, posterior 

cingulate, precuneus, and temporo-parietal junction (Kim 2011b). DMN response supports ongoing 

internally-oriented functions typically repressed during cognitively demanding tasks (Buckner et al. 

2008; Raichle et al. 2001); activation of this network during incorrect encoding may reflect a failure 
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to suppress these ongoing processes and redirect resources to the task (Daselaar et al. 2009; Kim et 

al. 2010). 

Recent work has also characterized distributed networks associated with successful 

recognition of previously encountered stimuli (hits). During correct recognition, DMN response 

may reflect mental re-experiencing of old stimuli, prefrontal and posterior parietal regions may 

support cognitive control, and caudate may mediate positive reinforcement from correct responses 

(Kim 2011a). Several other regions have been less consistently identified, but may also be involved 

in retrieval functions (Spaniol et al. 2009). Some work differentiates between the recognition 

requirements of various paradigms, which may tap into different implicit and explicit processes 

involved in recognition (Spaniol et al. 2009).  

 In the current study, we examined the neural correlates of visual encoding and recognition 

associated with heavy drinking in college students using BOLD fMRI. Participants performed an 

established figural memory task that ascertains BOLD response during nonverbal visual encoding 

and subsequent “old/new” recognition (Beason-Held et al. 2005; Jamadar et al. 2013). Based on the 

literature on the subsequent memory paradigm (Kim 2011a; b) and our previous work examining 

fMRI response during verbal encoding (Schweinsburg et al. 2010), we predicted that 1) during 

correct encoding, heavy drinking college students would exhibit increased response compared to 

light drinkers in task-relevant regions including bilateral prefrontal cortex, posterior parietal cortex, 

and hippocampus, indicating compensatory neural recruitment to maintain task performance; 2) 

during incorrect encoding, heavy drinkers would show less DMN response, reflecting reduced 

suppression of irrelevant information and shifting of attention toward the task; and 3) during correct 

recognition, heavy drinkers would show reduced response in regions typically involved in correct 

recognition, suggesting diminished retrieval processing. 

 



fMRI of Memory in College Drinkers     7 
 

Method 

Participants 

 Participants were 56 18- to 20-year-old college students who were recruited as part of an 

ongoing study of alcohol and neurocognitive function of 2100 first-year college students, the Brain 

and Alcohol Research in College Students (BARCS) study (Dager et al. 2013). A representative 

subset of individuals from the larger BARCS study participated in neuroimaging completed the 

figural memory task during scanning. Participants provided written informed consent, approved by 

the institutional review boards at Yale University, Hartford Hospital, Trinity College and Central 

Connecticut State University. Exclusion criteria included current DSM-IV-TR anxiety and mood 

disorders, current or past psychotic disorders or substance use disorder (other than AUD in the 

heavy drinking group), positive urine toxicology screen at the time of scanning, history of seizures, 

head injury with loss of consciousness >10 minutes, left handedness, poor performance (<50% 

accuracy) or unavailable behavioral data on the figural memory task, excessive motion during 

scanning, and MRI contraindications (see Electronic Supplement for additional details). Eligible 

participants were divided into heavy drinkers and light drinkers based on a combination of AUD 

diagnosis and quantity/frequency of current alcohol consumption (Dager et al. 2013). Light drinkers 

1) did not meet current or past criteria for AUD, and 2) drank <50% of the weeks during the 

preceding six months. Heavy drinkers either 1) met criteria for current AUD, or 2) drank ≥50% of 

the weeks in the preceding six months and typically binge drank (≥4 drinks/occasion for females or 

≥5 drinks/occasion for males (e.g., Courtney and Polich 2009; Schweinsburg et al. 2010)). The final 

sample consisted of 33 light drinkers and 23 demographically similar heavy drinkers (see Table 1). 

Measures 

 Drinking history was obtained using the alcohol use module of the SCID (First et al. 2002), 

which ascertains AUD symptoms, usage patterns (e.g., quantity and frequency, lifetime drinks) and 
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alcohol-related consequences (e.g., number of black-outs and pass-outs). Current and past DSM-IV-

TR diagnoses for psychotic, anxiety, mood, and substance use disorders were ascertained using the 

MINI (Sheehan et al. 1998). Current use of other drugs was characterized through monthly online 

surveys as part of the ongoing BARCS study. Family history of alcohol use disorders was assessed 

with the Family History Assessment Module (FHAM) (Rice et al. 1995). The Fagerstrom Test of 

Nicotine Dependence (Heatherton et al. 1991) obtained information on cigarette smoking. The 

Spielberger State-Trait Anxiety Inventory (Form Y trait scale) (Spielberger et al. 1983) and Beck 

Depression Inventory (Beck 1978) were collected with monthly online surveys as part of the larger 

ongoing study in order to characterize anxiety and depressive symptoms. To best estimate anxiety 

and depression symptoms present at the time of scanning, the current study examined scores from 

the 30-day period that included the scan date. At the time of scanning, participants were free of 

alcohol and illicit substances as verified by breathalyzer and urine toxicology, and females provided 

negative pregnancy screens. 

Figural Memory Task 

The figural memory task (Beason-Held et al. 2005) is a visual encoding and recognition task 

designed to minimize verbal encoding of picture stimuli. The task stimuli (20 targets and 20 

distractors) consisted of black line drawings presented against a white background. Participants 

performed an encoding phase and a recognition phase during fMRI scanning. The encoding phase 

presented 20 target stimuli (duration 3 sec, interstimulus (ISI) interval 4 sec), which participants 

were instructed to silently memorize. Participants pressed a fiber optic response box button 

following each stimulus presentation to confirm that they saw the stimulus. The recognition phase 

followed the encoding phase after a 5-minute delay (with no other cognitive task presented during 

the delay). During the recognition phase, 20 target and 20 distractor stimuli were presented in a 

fixed pseudo-random order, each for 3 sec with an ISI of 4 sec. Participants pressed a button with 
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their right index (“yes”) and middle (“no”) fingers to indicate whether they had previously seen 

each stimulus, and accuracy was emphasized over speed. 

Image Acquisition 

Imaging data were collected on a Siemens 3T Allegra high performance head-dedicated 

system. Structural imaging was acquired with a sagittal T1 MPRAGE protocol using the following 

parameters: TR = 2500 ms, TE=2.74 ms, flip angle = 8°, FOV=176 x 256 mm, matrix = 256 x 208, 

voxel size = 1 mm3, 176 slices, total scan time =7:20. Functional images were collected in the axial 

plane using a T2*-weighted echoplanar image (EPI) gradient-echo pulse sequence covering the 

whole brain: TR = 1860 ms, TE = 27 ms, flip angle 70°, FOV = 240 mm, matrix=64 x 64, in-plane 

resolution=3.44 mm x 3.44 mm, slice thickness = 3 mm, gap = 1 mm, 36 slices, total scan time = 

12:33. 

Data Analyses 

Stimuli from the recognition phase were classified as hits, misses, correct rejections, and 

false alarms. We used a signal detection approach (Macmillan and Creelman 2005) to examine 

accuracy. The discriminability index, d’, represents the ability to discriminate targets from 

distractors and was calculated as z(hit rate) – z(false alarm rate), with a standard correction for false 

alarm rates of zero. We compared d’ between groups with an independent samples t-test. Reaction 

times during the recognition phase were compared between groups using repeated measures 

ANOVA with two within-subjects factors (target vs. distractor and response “yes” vs. “no”) and 

one between-groups factor (drinking group).  

Functional images from the figural memory task were preprocessed and modeled in SPM5 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/). The first six volumes were discarded to allow 

for T1 saturation effects. Images were realigned, spatially normalized to Montreal Neurological 

Institute (MNI) standardized space, resampled to 3x3x3 mm voxels, and smoothed with a 9 mm 
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full-width, half-maximum Gaussian filter. Datasets were inspected for motion, and those with 

>3mm displacement or >3 degrees rotation were not included in the current study (n = 20 not 

reported on here). 

BOLD response was modeled as in our previous work (Jamadar et al. 2013), based on 

behavioral performance, while covarying for the degree of motion and linear baseline trends. Trials 

from the encoding phase were modeled as correctly encoded if they were subsequently identified as 

targets during the recognition phase. Targets that were subsequently designated as distractors in the 

recognition phase were categorized as incorrectly encoded. Events in the recognition phase were 

coded as hits, misses, false alarms, and correct rejections. BOLD response for each event was 

modeled using a canonical hemodynamic response function fitted to the onset of the event. The 

duration of each event was determined by reaction time. BOLD response contrast was determined 

for correctly encoded vs. incorrectly encoded, hits vs. implicit baseline, misses vs. implicit baseline, 

and correct rejections vs. implicit baseline. Although false alarm events were modeled at the 

individual level, we did not examine group differences in BOLD response to false alarms because 

there were too few such responses to model at the group level (Jamadar et al. 2013). 

Group level analyses of BOLD response contrasts were conducted using Analysis for 

Functional NeuroImages (AFNI) (Cox 1996). First, images were transformed to Talairach space 

(Talairach and Tournoux 1988) and AFNI format files using the AFNI program 3dWarp. Then, 

independent samples t-tests characterized BOLD response differences between drinking groups for 

each contrast. We performed a whole-brain correction for multiple comparisons using a 

combination of cluster volume and individual voxel threshold (e.g., Forman et al. 1995) as 

determined through a Monte Carlo simulation (Ward 2000). Clusters were considered significant if 

they comprised ≥379 contiguous activated voxels (voxel p < .05, cluster volume 10,233 µl), 

yielding a whole-brain α = .05. To determine the nature of group differences, post-hoc analyses (p 
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< .05, uncorrected) were performed on average activation from 8mm spheres centered at each peak 

voxel within group difference cluster. 

Hippocampal ROI. Given the importance of the hippocampus in encoding, we also analyzed 

BOLD response within left and right hippocampal regions of interest (ROI) defined a priori using 

the ROI feature of AFNI (Schweinsburg et al. 2010; Schweinsburg et al. 2011). BOLD response 

during correct and incorrect encoding was averaged across the hippocampal ROIs for each subject, 

and then examined between groups using independent samples t-tests.  

Exploratory Analyses. We conducted several exploratory supplementary analyses to 

determine the relationships between alcohol use characteristics, family history of alcoholism, 

behavioral performance, and BOLD response (see Electronic Supplement for detailed methods). 

Results 

Demographic Results 

 Heavy and light drinking groups were similar on age, sex, race, family history of AUD, and 

personal history of psychiatric disorders (see Table 1). Online survey data were incomplete, such 

that mood and substance use data for the month of the scan were unavailable for 11 participants. 

One light drinker and five heavy drinkers reported some (<10 times) marijuana use in the month of 

the scan, yet all provided negative urine toxicology screens for cannabinoids. One heavy drinker 

reported limited smoking fewer than 10 cigarettes per day and scored 2 out of 10 points on the 

Fagerstrom Test of Nicotine Dependence, indicating non-dependent use; all other participants were 

nonsmokers. All but three participants were free from psychoactive medication use: one light 

drinker and one heavy drinker reported using antidepressants, and one heavy drinker reported a past 

diagnosis of ADHD and current use of Adderall, yet provided a negative urine toxicology screen at 

the time of scanning. All other participants denied past diagnoses of ADHD. On each of the alcohol 
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use indices in Table 1, heavy drinkers demonstrated significantly greater alcohol involvement than 

light drinkers (see Table 1, all p values < 0.01). 

Behavioral Results 

All participants correctly identified at least 50% of targets. There were no group differences 

in d’ [t(54) = 0.71, p = .48; see Table 2 for behavioral results]. There were no main effects on 

reaction time related to drinking group [F(1, 54) = 1.10, p = .30], stimulus type [target vs. 

distractor; F(1, 54) = 2.84, p = .10] or response type [yes vs. no; F(1, 54) = 2.70, p = .11]. There 

was a stimulus type x response type interaction for reaction time, such that participants reacted 

more slowly when responding “no” to targets (i.e., misses) than to other stimulus and response 

types [F(1, 54) = 21.87, p < .001]. There were no reaction time effects related to a stimulus type x 

response type x drinking group interaction, stimulus type x group interaction, or response type x 

group interaction (all ps > .3).  

fMRI Results 

 BOLD response during encoding. As in our previous work (Jamadar et al. 2013), 

participants (n = 56) showed activation during correct encoding in bilateral medial temporal 

cortices, medial frontal cortices and cingulate, anterior insula and inferior frontal gyri, inferior 

parietal lobules, and occipital cortices, and deactivation in precuneus and posterior cingulate 

(Figure 1). During incorrect encoding, response patterns were similar but diminished, with notable 

DMN deactivation. 

Whole-brain t-tests revealed group differences in BOLD response to correct vs. incorrect 

encoding primarily in three widespread clusters (clusters > 10,233 µl, p < .05) that each spanned 

several regions (see Table 3 and Figure 2). Follow-up single sample t-tests (p < .05, uncorrected) 

revealed the nature of group differences (see Figure 1 and Table 3). In right temporal cortex, right 

hippocampus and parahippocampus, and lateral portions of posterior parietal cortex, both heavy 
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drinkers and light drinkers showed greater activation during correct encoding compared to incorrect 

encoding; however, this difference was more pronounced for heavy drinkers. In left ventral 

middle/inferior frontal cortex, light drinkers showed substantial activation during both correct and 

incorrect encoding, yet heavy drinkers did not demonstrate significant BOLD response during 

correct or incorrect encoding. In only one region, precuneus, group differences were accounted for 

by deactivation differences. Here, light and heavy drinkers showed deactivation during both correct 

and incorrect encoding, although heavy drinkers showed enhanced deactivation during incorrect 

encoding (Figure 3). 

BOLD response during recognition. Consistent with our previous work using this task 

(Jamadar et al. 2013), participants showed BOLD response during recognition trials for hits vs. 

baseline, correct rejections vs. baseline, and missed targets vs. baseline in bilateral occipital, 

subcortical, inferior frontal, anterior cingulate, and posterior parietal regions. Compared to light 

drinkers, heavy drinkers showed less BOLD response during correct recognition trials (“hits”) in 

two clusters in bilateral insula and superior temporal gyri (clusters > 10,233 µl, p < .05; see Table 4 

and Figure 4). There were no group differences in BOLD response to correct rejections, or missed 

targets.  

Hippocampal ROI. In parallel with the whole-brain analyses, the hippocampal ROI analyses 

revealed that heavy drinkers demonstrated greater BOLD response than light drinkers during 

correct vs. incorrect encoding in right hippocampus/parahippocampus [t(54) = 2.18, p = .034] but 

not the left [t(54) = 0.64, p = .17].  

 

Discussion 

This is the first study to examine fMRI response during visual encoding and recognition 

among heavy drinking older adolescents. Although we observed no group effects on task accuracy 
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or reaction times, heavy drinkers showed three main BOLD response differences compared to light 

drinkers: 1) greater activation during encoding of subsequently remembered stimuli in widespread 

frontal, posterior parietal, and medial temporal systems; 2) less left inferior frontal activation and 

greater precuneus deactivation during incorrect encoding; and 3) decreased response during correct 

recognition in bilateral inferior frontal and insular cortices.  

Correct Encoding 

As predicted, while encoding subsequently remembered stimuli, heavy drinkers over-

engaged prefrontal and parietal structures typically involved in successful encoding (Kim 2011b; 

Spaniol et al. 2009). Similarly, our previous work has characterized increased dorsal prefrontal 

response during verbal learning in binge drinking adolescents (Schweinsburg et al. 2010; 

Schweinsburg et al. 2011), as well as lateral posterior parietal hyperactivation among adolescent 

heavy drinkers both during spatial working memory (Schweinsburg et al. 2008; Tapert et al. 2004) 

and verbal encoding (Schweinsburg et al. 2010; Schweinsburg et al. 2011). Dorsal frontal regions 

may subserve working memory organization during encoding (Blumenfeld and Ranganath 2007; 

Spaniol et al. 2009), whereas posterior parietal response may support attention during correct 

encoding, particularly during visual learning tasks (Kim 2011b; Spaniol et al. 2009). In the context 

of intact performance, over-recruitment of task-related frontoparietal regions by heavy drinkers may 

represent an attempt to compensate for inefficient processing or greater difficulty with task 

demands (e.g., Gould et al. 2003; Schweinsburg et al. 2010).  

Also consistent with previous neuroimaging work (Jamadar et al. 2013; Kim 2011b), both 

groups showed hippocampal and medial temporal activation during encoding of successfully 

remembered stimuli. In the right hippocampus, this effect was amplified among heavy drinkers. 

Although we did not test specifically for laterality effects, this finding is compatible with studies 

suggesting greater right medial temporal lobe involvement during encoding of abstract visual 
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stimuli (Banks et al. 2012; Golby et al. 2001). Enhanced hippocampal response has been observed 

with increasing encoding demands, and may reflect more effortful processing among heavy 

drinkers (Leshikar et al. 2010; Ulrich et al. 2010). Importantly, the hippocampus may be 

particularly susceptible to alcohol-related neurotoxicity (Crews and Boettiger 2009), and has shown 

volumetric reductions among adolescent heavy drinkers (Medina et al. 2007; Nagel et al. 2005). In 

contrast to the current results, our previous work showed lack of significant hippocampal activation 

and somewhat poorer performance in adolescent binge drinkers during verbal learning 

(Schweinsburg et al. 2010). These somewhat conflicting results may be related to differences in 

task design and image analyses, as degree of hippocampal response may depend on task stimuli, 

encoding paradigm, and analytic approach (Kim 2011b). Our previous study examined verbal 

paired associates learning rather than complex nonverbal item learning, and did not distinguish 

neural response to correctly vs. incorrectly encoded items, which may contribute to differing 

hippocampal results compared to the current study (Kim 2011b).  

Incorrect Encoding 

During incorrectly encoded trials, heavy drinkers demonstrated attenuated left inferior 

frontal response. This region has been repeatedly identified in memory paradigms, and may 

facilitate conceptual processing of stimulus content during successful pictorial encoding (Kim 

2011b; Spaniol et al. 2009). Moreover, inefficient interactions between left frontal and medial 

temporal cortices may be a crucial component of unsuccessful encoding (Buckner et al. 1999; 

Fernandez and Tendolkar 2001; Kim 2011b). 

In addition, heavy drinkers exhibited greater deactivation during incorrect encoding in the 

precuneus, which is a well-established component of the DMN (Raichle et al. 2001) involved in 

internally-oriented processing (Buckner et al. 2008). DMN suppression during a cognitively 

demanding task likely represents shifting of attention to task-relevant regions, and is reflected as 
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deactivation during task “on” periods (Whitfield-Gabrieli and Ford 2012). DMN deactivation 

during memory paradigms is associated with successful encoding, whereas DMN activation (i.e., 

failure to suppress DMN activity) is associated with encoding failure, reflecting that resources are 

not appropriately allocated to encoding functions (Daselaar et al. 2009; Kim et al. 2010). This 

“typical” pattern of diminished DMN suppression during incorrect encoding was observed among 

light drinkers in the current study. In contrast, heavy drinkers demonstrated more DMN suppression 

during incorrect encoding. DMN suppression (i.e., degree of task-related deactivation) increases 

with greater task difficulty, as more neural effort is focused toward task performance (Whitfield-

Gabrieli and Ford 2012). Thus, greater deactivation among heavy drinkers in the current study 

could reflect more difficulty encoding stimuli that are later forgotten. Moreover, recent work has 

hypothesized that better task performance is associated with concurrent DMN suppression and task-

positive network activation (Kelly et al. 2008; Prado and Weissman 2011; Sutherland et al. 2012). 

This model proposes that optimal performance is achieved when greater DMN suppression is 

accompanied by greater task-positive response, and argues that coherence both between and within 

these networks reflects efficient processing (Kelly et al. 2008). During incorrect encoding, heavy 

drinkers in the current study demonstrated enhanced DMN suppression without concomitant 

increases in task-related regions, which could suggest aberrant shifting between DMN and task-

positive networks during trials that were unsuccessfully encoded. Accordingly, functional 

connectivity analyses have suggested that poor coupling between these systems may mediate 

cognitive decrements observed in addiction (Sutherland et al. 2012). Others have observed that 

adults with alcohol dependence show disrupted DMN functional connectivity during both rest and 

working memory (Chanraud et al. 2011), and greater alcohol dependence severity was linked to 

weaker frontostriatal functional connectivity during inhibitory processing (Courtney et al. 2013). 

During a response inhibition task, recovering alcoholics demonstrated less connectivity between 
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posterior cingulate and mid-cingulate but greater connectivity between mid-cingulate and striatum 

(Schulte et al. 2012). Together, these studies support the hypothesis of aberrant between- and 

within-network function among heavy drinkers performing executive tasks. Future functional 

connectivity analyses may better address these relationships in the context of learning and memory.  

Recognition 

Our previous investigations of verbal learning in adolescent heavy drinkers ascertained 

fMRI response only during encoding (Schweinsburg et al. 2010; Schweinsburg et al. 2011); 

therefore, the neurobiological underpinnings of retrieval have not yet been examined in heavy 

drinkers. Heavy drinkers in the current study exhibited attenuated insula response to correctly 

recognized stimuli. Prior studies using this task have observed recognition-related insula response 

(Beason-Held et al. 2005; Jamadar et al. 2013), and meta-analyses reveal that insula activation is 

associated with successful recognition and retrieval in a variety of memory paradigms (Kim 2011a; 

Spaniol et al. 2009). The insula is involved in attention, cognitive control, and performance 

monitoring (Nelson et al. 2010), which may contribute to recognition success. In addition, insular 

function has been indicated in intolerance of uncertainty, as well as anticipation of negative 

outcomes, during cognitive tasks (Samanez-Larkin et al. 2008; Simmons et al. 2008). Blunted 

recognition-related insula response among heavy drinkers could reflect reduced arousal or distress 

while making recognition judgments. It is also possible that heavy drinkers approach the task in a 

different manner. Neuropsychological studies of heavy drinking adolescents have observed poorer 

complex figure retention, despite intact learning and immediate recall (Brown et al. 2000; Hanson 

et al. 2011), which could implicate altered consolidation or retrieval functions. In our exploratory 

analyses (see Electronic Supplement), more severe lifetime alcohol involvement (greater number of 

drinks, pass-outs, and blackouts) was also associated with slower reaction times among heavy 

drinkers, which may reflect less efficient processing or lower confidence in recognition judgments 
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(Wixted 2009). Thus, during retrieval, heavy drinkers may utilize a different, slower approach that 

ultimately results in similar accuracy. This finding parallels work examining the speed/accuracy 

tradeoff in adults with alcoholism, which generally suggests less efficient processing associated 

with alcoholism (Glenn and Parsons 1991; 1992). In particular, when task instructions emphasize 

accuracy over speed (as in the current study), individuals with alcoholism demonstrate slower 

reaction times but intact accuracy compared to controls (Glenn and Parsons 1991). The current 

study provides initial insight into the neural mechanisms underlying these processes.  

Limitations and Future Directions 

The current study gains strength and novelty from the large, well-characterized imaging 

sample, separate modeling of correct and incorrect encoding, and assessment of fMRI response 

both during encoding and recognition phases. We excluded participants with current psychiatric 

disorders and history of other substance use disorders in order to differentiate unique alcohol-

related effects, but this may limit our ability to generalize results. There are a number of limitations 

that should be addressed in future studies. Our anxiety and mood assessments may not have fully 

captured symptoms that were present at the time of scanning. We excluded for past substance use 

disorders, but did not collect detailed information on lifetime use of other drugs. We also did not 

ascertain current ADHD or prior disruptive behavior disorder symptomatology. We conducted 

exploratory analyses (see Electronic Supplement) indicating little influence of alcoholism family 

history on BOLD response patterns; however, our sample was relatively small for characterizing 

such effects. Future investigations should further explore these possible moderators (Jacobus and 

Tapert 2013; Silveri 2012; Tapert and Schweinsburg 2005).  

As with other cross-sectional studies, it is unclear whether the observed BOLD response 

differences predate the onset of drinking, or represent cumulative effects of alcohol exposure. In 

particular, some differences in visuospatial working memory may exist before heavy drinking is 
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initiated (Spadoni et al. 2008; Squeglia et al. 2012). However, additional work suggests that 

visuospatial decrements are exacerbated by escalating drinking (Squeglia et al. 2009a; Squeglia et 

al. 2012) and that hippocampal abnormalities emerge with the initiation of heavy drinking in 

adolescence (Hanson et al. 2010; Silveri 2012). Thus, work to date implicates both pre-existing 

abnormalities as well as deleterious effects of alcohol exposure on visuospatial memory processing 

in adolescents (Jacobus and Tapert 2013; Silveri 2012). Longitudinal studies could characterize 

BOLD response trajectories throughout drinking initiation and escalation, and explore the 

hypothesis that the BOLD effects we observed presage the subsequent development of performance 

decrements in heavy drinkers. 

We also did not observe group differences in behavioral performance, which could make the 

implications of fMRI differences unclear. However, absence of differences in behavioral 

performance highlights neural strategies that are used to maintain performance, and also ensures 

that fMRI differences are not ascribable to differential achievement, motivation, or other factors 

that may lead to performance differences. Future studies utilizing tasks with a wider range of 

difficulty levels will characterize differences in coupling between performance and BOLD response 

between groups. In addition, it is possible that performance decrements would be observed with 

longer histories of heavy drinking (Tapert et al. 2001), and may be uncovered in subsequent 

longitudinal analyses. Finally, functional connectivity analyses will better elucidate the 

relationships between various task networks, such as the potentially opposing processes of DMN 

and task-positive systems that differ between heavy and light drinkers.  

Conclusions 

In this first study of brain response to nonverbal learning and recognition in heavy drinking 

college students, heavy drinkers showed an overall exaggerated response pattern during both correct 

and incorrect encoding, characterized by hyperactivity of task-relevant frontal, parietal, and medial 
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temporal regions, and greater DMN deactivation. During recognition, heavy drinkers demonstrated 

reduced insula activation. Together, these findings could indicate more effortful encoding, and 

utilization of alternate encoding and retrieval strategies, compared to light drinkers. Future work is 

needed to determine the behavioral implications of these neural differences.  
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Table 1. Participant Demographic and Substance Use Characteristics  

 Heavy Drinkers 

(n = 23) 

M (SD) or % 

[range] 

Light Drinkers 

(n = 33) 

M (SD) or % 

[range] 

p value 

Age (range 18 – 20) 18.9 (0.63) 18.7 (0.42) 0.072 

Female 52.2% 60.6% 0.530 

Caucasian 74.3% 60.0% 0.918 

Family history negative for alcoholism 56.5% 72.7% 0.208 

Past mood or anxiety disorder 17.4% 6.1% 0.177 

Spielberger State-Trait Anxiety Inventory T-scorea,b 48.7 (11.1) 

[30 – 68] 

49.1 (12.5) 

[30 – 76] 

0.91 

Beck Depression Inventory total scorea 3.3 (4.9) 

[0 – 19] 

2.6 (3.6) 

[0 – 12] 

0.61 

Lifetime drinks  152.0 (216.3) 

[10 – 1000] 

24.2 (26.8) 

[0 – 100] 

0.01 

 

# weeks drinking, past 6 months  13.0 (7.4) 

[2 – 26] 

2.3 (2.6) 

[1 – 10] 

< 0.001 

Drinking days/week, past 6 months  3.5 (1.7) 

[1 – 7] 

1.1 (1.4) 

[2 – 5] 

< 0.001 

Drinks/day, past 6 months  6.7 (3.2) 

[2 – 15] 

2.1 (2.6) 

[0 – 10] 

< 0.001 

Drinks/week, past 6 months  22.3 (15.2) 

[5 – 72] 

4.1 (5.0) 

[0 – 14] 

< 0.001 

Current alcohol dependence  39.1% 0.0% < 0.001 

Current alcohol abuse  91.3% 0.0% < 0.001 
a Data available for 16 heavy drinkers and 29 light drinkers 
b Normed for college students  
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Table 2. Figural Memory Task Performance. 

 Heavy Drinkers 

(n = 23) 

M (SD) 

Light Drinkers 

(n = 33) 

M (SD) 

Number of Responses (max=20)   

Hits 14.09 (0.46) 14.18 (0.39) 

Misses 5.35 (0.46) 5.64 (0.38) 

False Alarms 3.17 (0.40) 2.88 (0.34) 

Correct Rejections 16.39 (0.44) 16.70 (0.37) 

d’  1.64 (0.69) 1.76 (0.54) 

Reaction Time (seconds)   

Hits 1.40 (0.49) 1.44 (0.41) 

Misses 1.67 (0.82) 1.74 (0.68) 

False Alarms 1.45 (0.13) 1.63 (0.11) 

Correct Rejections 1.41 (0.53) 1.43 (0.45) 
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Table 3. Regions showing significant group differences for correct vs. incorrect encoding (clusters 

> 10,233 µl, p < .05 whole brain corrected). In all regions, heavy drinkers showed greater BOLD 

response to correctly vs. incorrectly encoded stimuli relative to light drinkers. 

Anatomic Region (BA) 

MNI 
Coordinates Activation Mean (SD) Between-

Groups 
Cohen’s d 

Effect 
Size  

x, y, z Heavy 
Drinkers 

Light 
Drinkers 

Cluster 1     

Right hippocampus/parahippocampal gyrus (36) 30, -14, -26 0.27 (0.49)* -0.01 (0.33) 0.70 

Right middle frontal gyrus (9) 55, 7, 40 0.37 (0.61)* 0.02 (0.41) 0.70 

Right superior temporal gyrus, insula (22, 13, 44) 45, -15, -8 0.46 (0.66)* 0.08 (0.43) 0.71 

Right superior temporal gyrus, inferior parietal 

lobule (40, 41, 42) 

55, -28, 12 0.55 (1.14)* 0.24 (0.46) 0.65 

Right superior temporal gyrus (21, 22) 61, 6, -3 0.58 (0.82)* 0.10 (0.50) 0.74 

Bilateral cerebellum 0, -40, -6 0.65 (1.58) -0.34 (1.22) 0.72 

Cluster 2     

Left precuneus, superior parietal lobule (7) -3, -79, 42 0.48 (1.36) -0.29 (0.83)* 0.72 

Left cuneus, middle occipital gyrus (19, 31) -21, -75, 22 0.32 (0.50)* -0.01 (0.30) 0.85 

Bilateral paracentral lobule, cingulate (31) 0, -21, 48 0.40 (0.79)* -0.02 (0.50) 0.67 

Right precuneus, superior/inferior parietal lobules 

(7, 40) 

45, -55, 53 0.41 (0.78)* 0.05 (0.54) 0.56 

Bilateral medial frontal gyrus (6) 3, -13, 74 0.66 (0.85)* 0.09 (0.48) 0.88 

Left thalamus, putamen -3, -16, 15 0.34 (0.94) -0.23 (1.03) 0.57 

Cluster 3     

Left superior/middle frontal gyrus (9, 10, 46) -21, 65, 10 0.31 (0.78) -0.06 (0.49) 0.59 

Left inferior frontal gyrus, insula (11, 13, 45) -35, 21, 8 0.27 (0.41)* 0.01 (0.44) 0.60 

Note: MNI coordinates refer to peak voxels within cluster; Group activation and between groups 

Cohen’s d refer to 8mm spheres centered on peak voxels; *single sample t-test shows that BOLD 

response to correct vs. incorrect encoding significantly different from 0 (p < .05); positive mean 

indicates greater response during correct vs. incorrect encoding, negative mean indicates greater 

response during incorrect vs. correct encoding.
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Table 4. Regions showing significant group differences for correct recognition (clusters > 10,233 

µl, p < .05). In all regions, heavy drinkers showed less response during correctly recognized stimuli 

compared to light drinkers.  

Anatomic Region (BA) 

MNI 
Coordinates 

Activation Mean (SD) Between-
Groups 

Cohen’s d 
Effect 
Size 

x, y, z Heavy 
Drinkers 

Light 
Drinkers 

Cluster 1     

Left superior temporal gyrus (38, 41) -45, 7, -9 -1.13 (1.43)* 0.67 (1.56)* 1.19 

Left insula, inferior frontal gyrus (13, 47) -45, 12, 4 0.41 (0.96) 1.40 (1.25)* 0.87 

Cluster 2     

Right superior temporal gyrus, insula (38, 

22, 13) 

54, 7, -11 -0.88 (1.16)* 0.18 (1.35) 0.84 

Note: MNI coordinates refer to peak voxels within cluster; Group activation and between groups 

Cohen’s d refer to 8mm spheres centered on peak voxels; *single sample t-test shows that BOLD 

response to correct vs. incorrect encoding significantly different from 0 (p < .05); positive mean 

indicates activation during correct recognition, negative mean indicates deactivation correct 

recognition. 

  



fMRI of Memory in College Drinkers     34 
 

Figure 1. Regions showing significant BOLD response during correct encoding and incorrect 
encoding, among heavy drinkers (n = 23) and light drinkers (n = 33) (p < .05 uncorrected). 
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Figure 2. Regions showing group differences in BOLD response to correct encoding vs. incorrect 
encoding (clusters > 10,233 µl, p < .05 whole brain corrected).  
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Figure 3. Average precuneus BOLD contrasts during correct and incorrect encoding, where heavy 
drinkers showed enhanced deactivation during incorrect encoding. BOLD response is averaged 
from an 8 mm sphere around the peak MNI coordinate, -3, -79, 42. Error bars represent +/- 1 
standard error. 
 

 
* Significant group by encoding condition interaction, p < .05 
** Significant difference between encoding conditions, p < .05 
  

* 

** 
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Figure 4. Regions showing group differences (heavy drinkers < light drinkers) in BOLD response 
during correct recognition (clusters > 10,233 µl, p < .05).  
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