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Abstract  

Ketogenic diets are high-fat, low-carbohydrate formulations effective in treating medically-

refractory epilepsy, and recently we demonstrated lowered sensitivity to thermal pain in rats fed 

a ketogenic diet for 3-4 weeks. Regarding anticonvulsant and hypoalgesic mechanisms, theories 

are divided as to direct effects of increased ketones and/or decreased glucose, metabolic 

hallmarks of these diets. To address this point, we characterized the time course of ketogenic 

diet-induced thermal hypoalgesia, ketosis, and lowered glucose in young male rats fed ad libitum 

on normal chow or ketogenic diets. A strict 6.6:1 (fat:(carbohydrates + protein), by weight), 

ketogenic diet increased blood ketones and reduced blood glucose by two days of feeding, but 

thermal hypoalgesia did not appear until 10 days. Thus, ketosis and decreased glucose are not 

sufficient for hypoalgesia. After feeding a 6.6:1 ketogenic diet for 19 days, decreased thermal 

pain sensitivity and changes in blood chemistry reversed one day after return to normal chow. 

Effects on were consistent between two different diet formulations: a more moderate and 

clinically-relevant ketogenic diet formula (3.0:1) produced hypoalgesia and similar changes in 

blood chemistry as the 6.6:1 diet, thus increasing translational potential. Furthermore, feeding the 

3.0:1 diet throughout an extended protocol (10-11 weeks) revealed that significant hypoalgesia 

and increased ketones persisted whereas low glucose did not, demonstrating that ketogenic diet-

induced hypoalgesia does not depend on reduced glucose. In separate experiments we 

determined that effects on thermal pain responses were not secondary to motor or cognitive 

changes. Together, these findings dissociate diet-related changes in nociception from direct 

actions of elevated ketones or decreased glucose, and suggest mechanisms with a slower onset in 

this paradigm. Overall, our data indicate that metabolic approaches can relieve pain.  
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Perspective 

Chronic pain is a common and debilitating condition. We show that a ketogenic diet, a high fat, 

very low carbohydrate diet well-known for treating epilepsy, lowers sensitivity to thermal pain in 

rats. This reduced pain is not temporally-correlated with hallmark diet-induced changes in blood 

glucose and ketones.  

Key Words: β-hydroxybutyrate, glucose, metabolic therapy, thermal nociception 
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Introduction 

The ketogenic diet (KD) is a low-carbohydrate, high-fat diet protocol prescribed to treat 

epilepsy.8,25,49 The KD minimizes glucose metabolism and promotes ketones (β-

hydroxybutyrate, acetoacetate, acetone) as an alternate energy source. This metabolic shift is 

thought to augment inhibition and/or limit excitation, but specific mechanisms are ill-defined. 

Indeed, the KD reduces central excitability,5,7 but theories are divided as to whether these effects 

are produced directly by ketones and/or low glucose, fatty acids, or downstream metabolic 

effects.18,22,23,29,30,33,58  

Reduced excitability would be expected to have effects beyond treating seizures. Notably, a 

number of inhibitory mechanisms hypothesized to underlie the efficacy of the ketogenic diet – 

e.g. activation of K+ channels, adenosine A1 receptors or γ-aminobutyric acid (GABA) receptors 

- can cause hypoalgesia,27,47,51,57 and anticonvulsant drugs are used to treat neuropathic pain.2,21,55 

These drugs typically act by decreasing neuronal activity and/or altering membrane potential.39,42  

Given its success in reducing seizures - and hypothesized anticonvulsant mechanisms - the 

KD might be expected to influence pain.31,44 Consistent with this prediction, recently we found 

that feeding with a KD for 3-4 weeks reduced sensitivity to thermal pain in rats.43 Establishing 

broader applicability and identifying key mechanisms of the KD in vivo are essential to uncover 

novel targets for pain relief. Thus, it is critical to test if hypoalgesia relates directly to ketosis or 

reduced glucose, two primary metabolic actions of a KD. For example, in vitro reports have 

described direct effects of ketones on K+ channels and vesicular neurotransmitter uptake 

sites,22,29 and low glucose can inhibit synaptic transmission3 via activation of adenosine A1 

receptors and K+ channels.23,48  
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In addition to the importance of revealing any causal relationships among metabolic 

changes and analgesic effects, it is critical to understand the parameters of effective ketogenic 

diet ratios; dietary compliance and palatability is a major issue with ketogenic diets, particularly 

in adults. Our initial work used a research formulation KD considerably more restrictive (>6:1 

(fat:(carbohydrates + protein), by weight) than diets prescribed to treat pediatric or adult epilepsy 

(ranging from 4:1 to 1:1),24 thus limiting broader clinical interpretations. 

Here we compared two KD formulations: a strict research formulation (6.6:1 ratio) as well 

as a moderate clinical-strength diet (3.0:1 ratio), and tested longer time points (up to 11 weeks of 

diet treatment). Over a days-to-weeks time scale we quantified the evolution of thermal pain 

sensitivity, blood ketones, and blood glucose. We found the onset of observed hypoalgesia was 

delayed significantly as compared to the onset of ketosis or decreased glucose. Furthermore, at 

later time points glucose was no longer low but hypoalgesia was still observed. Therefore, the 

general ability of the KD to reduce thermal pain is supported, and it does not appear to rely 

directly on primary metabolic consequences of a KD.  

 

Materials and Methods 

Animals  

Subjects were male Sprague-Dawley rats, bred in the Trinity College Animal Care Facility. 

All experiments were carried out in accordance with the NIH Guide for the Care and Use of 

Laboratory Animals and approved by the Trinity College Animal Care and Use Committee. 

Animals were switched to the experimental diets (without prior fasting) at or just after weaning 

(3-3.5 weeks of age), or remained on the standard control diet (CD). All food and water access 

was ad libitum, and KD was changed daily. The KDs had ketogenic ratios (fat:(protein + 
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carbohydrates)) of 6.6:1 (F3666; Bio-Serv, Frenchtown, New Jersey) or 3.0:1 (F5140; Bio-Serv); 

the CD (LabDiet 5001; PharmaServ, Framingham, Massachusetts) had a corresponding ratio of < 

0.1:1. Diet constituents are listed in Table 1. Animals remained on the diets for varying times 

before behavioral testing began.  

Nocifensive testing 

Animals were placed on a hotplate (Columbus Instruments, Columbus, Ohio) and latency 

to hindpaw-associated nocifensive behavior was measured. Most rats demonstrated paw lifting 

followed rapidly by licking, although lifting without licking was also counted. Rats were kept on 

the hotplate surface with a Plexiglas box (27 x 30 x 18 cm). Animals were removed from the 

plate immediately upon display of nocifensive behavior, and all tests were limited to a 60 s 

ceiling to prevent tissue damage. Because we expected that dietary effects on thermal pain 

sensitivity would be mild, low temperatures (i.e., <50°C) were included.1 The lowest temperature 

was established as one that would allow the 60 s ceiling would be reached. The highest 

temperature was established as one that yielded a response in control rats in the 10-15 s range, 

allowing time for accurate scoring of the response and also to prevent tissue damage. Testing 

occurred once-daily on six consecutive days, with plate temperature increasing 1°C daily, from 

46 to 51°C; no rat went through the 6-day hotplate testing regimen more than once. Daily 

hotplate testing influences latency to nocifensive behavior minimally or not at all.13,16 Rats 

remained on their respective diets throughout testing except for a subset of strict KD-fed animals 

that were reverted to the CD for 24 h before a repeated, final 51°C test.  

Motor/cognitive testing 

Separate groups of rats were tested for changes in motor activity and short-term memory in 

a non-rewarded, spontaneous alternation test based on exploratory drive. The Y-maze consisted 
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of three angularly equidistant 45 × 10 cm arms with 21 cm-high walls surrounding a triangular 

center. Testing began once the animal was placed into the start arm under red light and continued 

for 5 min; the order of arm entries was recorded. Locomotor activity was measured as total 

number of arm entries, and spatial working memory was measured by the percentage of possible 

spontaneous alternations (sequential entry into all three arms). Testing was repeated over the 

course of two weeks of dietary treatment to match nocifensive testing. Data from rats that had 

two or fewer arm entries were excluded from working memory analysis.  

Blood chemistry 

To avoid the possibility of the biochemical or behavioral results being affected by 

handling, separate groups of rats were devoted to blood chemistry. Tail blood was taken either as 

a repeated measure several times over the course of dietary treatment (isoflurane-anesthetized 

rats) or at an individual time point (waking rats). Glucose and β-hydroxybutyrate were quantified 

from whole blood using a Precision Xtra meter with glucose and ketone strips (Abbott 

Laboratories, Abbott Park, Illinois).  

Analysis 

Behavior and blood chemistry data were analyzed with t-tests, one-way, or two-way 

repeated measures analysis of variance as appropriate. Neuman-Keuls tests were used for post 

hoc comparisons. Data are presented as mean ± standard error.  

 

Results 

As outlined in detail below, we found that two different KD formulations produced similar 

significant hypoalgesia to thermal pain. In both cases we found a differential time course of 

behavioral versus metabolic effects of KDs.  
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To establish time courses of hypoalgesia, ketosis, and  reduced glucose, male rats were fed 

with the 6.6:1 KD (or were kept on the CD) for 1, 7 or 14 days before the behavioral testing 

series (1 temperature per day for 6 days) to explore the evolution of KD-induced hypoalgesia. 

The KD had no significant effects on nocifensive behavior in animals fed a KD for 1-6 days (Fig. 

1, Group I, left). When a separate group of rats underwent the same testing after being fed this 

KD for 7-12 days, however, significant effects became clear, with the earliest significant 

comparison found at 10 days of treatment (at 49°C; Fig. 1, Group II, middle). Similar significant 

effects of this diet were quantified in rats fed for 14-19 d (Fig. 1, Group III, right).  

After the 6-trial test sequence in the group fed for 14-19 days, animals on the 6.6:1 KD 

were switched back to the CD for 1 day and were retested at the highest temperature (51°C): 

hypoalgesia was no longer present (Fig. 1, far right, reversal); behavioral responses of rats 

reverted to the CD became similar to those found in CD-fed animals at the same time point. As 

expected, CD-fed animals tested twice at 51°C showed similar sensitivity on both days (Fig. 1, 

Group III, far right, 19 days versus R). 

In contrast to the gradual onset of hypoalgesia to thermal pain, increased blood ketones and 

decreased glucose were measured at the earliest time point tested (2 days of 6.6:1 KD feeding) 

and remained significant for at least 19 days (Fig. 2, left panels). Thus, hallmark KD-induced 

changes in blood chemistry became significant days prior to any KD-induced changes in thermal 

nociception. Consistent with behavioral effects, these changes in blood chemistry reversed after 

1 day of CD-feeding (Fig. 2, left panels). 

To explore the effects of a diet formula more similar to those used clinically (typically for 

pediatric epilepsy), we tested a less strict KD and longer treatment times (up to 11 weeks). 

Similar to the 6.6:1 KD, we found significant hypoalgesia at 14-19 days of feeding on a 3.0:1 
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KD (49 and 50°C; Fig. 3, Group I, left). In addition, we tested the longevity of these effects 

using the 3.0:1 formula. After extended feeding (70-75 days), hypoalgesia was still present, and 

became significant at three temperatures (48, 49, and 50°C), suggesting that this effect could be 

evolving at a timescale of weeks (Fig. 3, Group II, right).  

Upon exploring the relationship between the behavioral and metabolic effects of the 3.0:1 

KD, we found that at 19 days the effects were similar; the 3.0:1 KD caused ketosis, decreased 

glucose and hypoalgesia similar to the stricter KD. However, after 76 days, when behavioral 

effects were still significant, ketosis remained but glucose was no longer decreased by this KD 

(Fig. 2, right panels). Increased ketones and the lack of a significant difference in blood glucose 

from CD-fed and 3.0:1 KD-fed at 76 days of diet treatment was similar between anesthetized rats 

having had multiple blood sampling (Fig. 2, right panels) and unanesthetized rats sampled only 

once (β-hydroxybutyrate: CD - 0.16±0.03 mM, KD - 0.49±0.10 mM, p<0.01; glucose: CD - 

96±5 mg/dL, KD - 99±3 mg/dL, n.s.). Thus, KD-induced thermal hypoalgesia (Fig. 3, Group II, 

right) can occur without a significant reduction in blood glucose.  

Diet effects on motor activity were assessed with repeated explorations of a Y-maze before 

and during treatment. In all groups, locomotion decreased over repeated testing. However, after 

7-8 days, locomotion was significantly higher in both KD groups compared to the control group; 

this difference was not apparent one week later (Fig. 4, top). Thus, at two weeks of KD 

treatment, when we found significant differences in thermal pain responses, we found neither 

locomotor hyperactivity nor motor impairment. Consistent with this finding, in previous work we 

determined that the 6.6:1 KD does not impair motor coordination after longer feeding (10 weeks) 

in mice.45 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 10 

In conjunction with locomotor activity, the Y-maze protocol assessed short-term memory 

by quantifying spontaneous alternation behavior. Level of alternation behavior varied, but the 

only significant difference was that scores were higher at two weeks for the 6.6:1 KD compared 

to control diet. We have previously found mild beneficial effects of this 6.6:1 diet on 

spontaneous alternation accuracy in mice.45 Together, these data suggest effects of this diet on 

spontaneous alternation are either neutral or positive.  

After 19 d of feeding with either KD, body weights were reduced, although less so for the 

3.0:1 KD (Fig. 5). Reduced body weight was no longer present at 76 days of feeding with the 

3.0:1 KD (Fig. 5), a time point when elevated ketones and reduced thermal pain sensitivity were 

demonstrated.  

 

Discussion 

This study demonstrates that reduced sensitivity to thermal pain is produced consistently by 

KDs – at both a very high-fat research-strength (6.6:1) and a more moderate clinical-strength 

(3.0:1). Importantly the hypoalgesic effect is consistent across a range of diet treatments lasting 

from 1.5 to 11 weeks, the longest time point tested here. In addition, for the first time, we 

establish a clear temporal distinction between the initial appearance of two hallmark metabolic 

changes observed with a KD – increased blood ketones and decreased blood glucose – and the 

onset of diet-related hypoalgesia. Furthermore, we determined that the altered sensitivity to 

thermal pain was not due to negative general effects on locomotor activity or working memory.  

Our data dissociate thermal hypoalgesia from ketosis and lowered glucose in at least two 

ways. First, we found both metabolic effects but no behavioral effects at time points of less than 

6 days. Specifically, rats fed the strongest KD (6.6:1) for 1-6 days demonstrated reduced glucose 
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and increased ketones with no change in sensitivity to thermal pain. Second, we found behavioral 

effects with only one metabolic effect: significant hypoalgesia, with ketosis - but without low 

glucose - was found in rats fed the 3.0:1 KD for 10-11 weeks. It is notable that all hypoalgesic 

states quantified here were accompanied by ketosis, and ketosis might be necessary but not 

sufficient: at 2 d we found significant ketosis but no change in thermal nociception. We conclude 

that KD-related thermal hypoalgesia is not produced immediately by decreased glucose or 

elevated ketones acting directly on molecular targets, and hypothesize that the effect stems from 

central biochemical or metabolic adaptations to a KD.  

The KD is meant to mimic fasting. Fasting has many parallels to the KD, including 

metabolic consequences and anticonvulsant activity.  Fasting also produces thermal 

hypoalgesia.10 While fasting is necessarily linked to loss of body mass, we found that KD-

induced hypoalgesia (like KD-related antiepileptic effects in children17) is not related directly to 

weight loss. We make this conclusion based on our present results with rats tested at 10-11 

weeks of diet treatment and previously published work with adult rats fed diets for 3-4 weeks.43 

This study and our previous study reporting thermal hypoalgesia43 contrast with Ziegler et 

al.,61 which describes thermal hyperalgesia in a tail flick assay after extended KD feeding. Here 

our length of diet treatment (10-11 weeks) and diet formulation (3.0:1 KD, containing 18% 

protein) were similar those used by Ziegler et al., and thus these factors are unlikely to underlie 

the apparently disparate results. The nature of the behavioral responses could be relevant, as 

withdrawal in the tail flick assay is a spinally-mediated reflex whereas paw withdrawal/licking is 

a voluntary motor behavior involving the brain. An overall difference in thermal pain sensitivity 

between glabrous and hairy skin might also be involved.52  
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The KD was developed originally to treat epilepsy, and there are a number of striking 

parallels between its known anticonvulsant effects and the hypoalgesic effects observed here: (1) 

both effects are delayed compared to the onset of ketosis and low glucose;6,11,40,46 (2) both appear 

to depend on ketosis - though ketosis alone is not sufficient for either;4,19,50,53 and (3) breaking 

the diet by eating carbohydrates (or by injecting glucose) reverses the effects of the diet.20,32,34,54 

This pattern suggests a common central mechanism involving reduced excitability or augmented 

inhibition, and argues against mediation by direct actions of ketones or glucose on targets such as 

ion channels or neurotransmitter transporters. Possible mechanisms “downstream” of immediate 

KD effects include more efficient production of ATP12,36 leading to better maintenance of 

membrane potential through the ATPase Na+/K+ pump,15,56 increased levels of the inhibitory 

neuromodulator adenosine (and consequent KATP activation) as a metabolite of augmented ATP 

and/or due to downregulation of the adenosine-metabolizing enzyme adenosine kinase,23,30,32 or 

modified GABA and glutamate levels secondary to shifted equilibria of the enzyme aspartate 

transaminase and the mitochondrial malate/α-ketoglutarate antiporter.28,60  

Alternatively, levels of some dietary constituents of a ketogenic diet, notably fatty acids, 

rise in the body with a time course that more closely parallels that of hypoalgesia.9,11 In vitro data 

show that polyunsaturated fatty acids can open K+ channels,26,58 and it has been suggested that 

polyunsaturated fats are thus a key component in the antiseizure effect of the KD.14 The 6.6:1 

KD used presently is higher in polyunsaturated fats than the CD (12.2% versus 1.3% by weight), 

although it is not specifically enriched in these fats. Notably, rats made obese through a high-

fat/high-carbohydrate diet also demonstrate thermal hypoalgesia,37 whereas genetically obese 

rats are thermally hyperalgesic,41 suggesting a role for high fat in the diet. The present and prior 

work shows, however, that obesity is not necessary for thermal hypoalgesia,43 and the KD and 
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other low-carbohydrate diets may represent a comparatively healthier means for high fat intake 

compared to a high-fat/high-carbohydrate diet.  

Clinical work with the KD for diseases and conditions other than epilepsy is overdue yet 

only beginning. This is particularly true for pain, which shares pharmaceutical approaches with 

epilepsy, and remains a prevalent chronic problem without good pharmaceutical options for 

many patients. In the one extant study regarding clinical pain and a KD, the beneficial effect of a 

KD on self-reported pain was at the threshold of statistical significance.59 However, this study 

was not a dedicated study of pain but rather one that included self-reported pain as part of 

assessment of quality of life (several physical and mental aspects of quality of life were 

improved significantly by the KD), and the subject population did not consist of pain sufferers. 

In chronic pain patients, fasting - which similarly forces ketone-based metabolism – offers well-

established pain relief (reviewed by Michalsen35) suggesting that metabolic approaches have 

untapped potential for treating pain.  

In summary, we provide clear evidence that altered metabolism can reduce pain: KDs 

consistently produce hypoalgesia to thermal pain in rats. Compared to acute metabolic effects, 

hypoalgesia has a slow onset – although it can reverse rapidly upon terminating the diet. 

Alongside the present results, multiple lines of evidence support the potential efficacy of 

metabolic strategies in relieving pain. Foremost, the KD has been proven to be anticonvulsant, 

and anticonvulsant medications are often prescribed for chronic pain. Also, the KD mimics the 

metabolic consequences of fasting, and fasting reduces pain. Ongoing research into the 

mechanisms of the KD and analogous metabolic approaches might lead to the coveted “diet in 

the pill”.38 Here we demonstrated that the KD produces hypoalgesia in rats, whereas clinical 

studies of KD treatment in chronic pain sufferers might demonstrate that the KD (more 
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sustainable and tolerable than fasting), can be an effective non-pharmacological tool available 

immediately for controlling pain. 
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Figure Legends 

Figure 1. A 6.6:1 KD produces hypoalgesia which develops over time. Three groups of rats were 

challenged with an incremental 6-temperature test (one temperature per day) after varying times 

on the 6.6:1 KD.  Top and bottom X-axes indicate hotplate temperature and days on diet, 

respectively. Gray shading indicates one day reversal of the KD in Group III. Left: Group I was 

tested from 1-6 days of KD feeding. Latency to behavioral response decreased with increased 

temperature, as expected, but there was no effect of the diet at any temperature at these early 

time points: Diet F=2.8, n.s.; Temperature F=160.3, p<0.001; Interaction F=1.5, n.s; n=20, both 

groups. Middle: Group II was tested across the same temperature range from 7-12 days, and a 

significant effect of diet was found; latency to behavioral response was increased in the KD 

group at 49, 50 and 51°C: Diet F=14.5, p<0.001; Temperature F=187.9, p<0.001; Interaction 

F=4.4, p<0.001; n=19-20. Right: Group III was tested from 14-19 days of KD feeding, and, 

similar to Group II, diet-induced hypoalgesia was also found at 49, 50 and 51°C: Diet F=5.7, 

p=0.19; Temperature F=158.4, p<0.001; Interaction F=4.0, p<0.001; n=18-20. Far right: After 

the last day of the temperature series, Group III KD-fed rats were reversed to the CD for 1 day 

(Day 20) and all rats were retested at 51oC. There was no difference between the behavioral 

response of this diet-reversal group and the CD-fed animals. *p<0.05, **p<0.01, ***p<0.001 

compared to CD at corresponding temperatures. §p<0.05, t-test, comparing pre- and post-diet 

reversal values at 51°C in the 6.6:1 KD group.   

Figure 2. Two different KD formulations (6.6:1 and 3.0:1) produce ketosis (increased β-

hydroxybutyrate, top panels) and  lowered glucose (bottom panels). Starting at 2 days of 6.6:1 

KD feeding, ketones and glucose were significantly elevated and reduced, respectively, and 

remained so for 19 days (switch to CD led to reversal of these effects; gray shading indicates one 
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day reversal of the KD). With the 3.0:1 KD, these effects were present at 19 days, but only 

ketosis remained at 74 days. The decrease in blood glucose in the control group from 3 to 13 

weeks of age is an effect we consistently find and appears to be developmental. For brevity, only 

Diet-x-Time interactions are listed here - Top left panel: F=10.8, p<0.001. Top right panel: 

F=21.7, p<.001. Bottom left panel: F=8.7, p<0.001. Bottom right panel: F=4.4, p=0.016. Number 

of subjects was 12–14. (*)p=0.055, *p<0.05, **p<0.01, ***p<0.001 compared to CD at 

corresponding times.  

Figure 3. A moderate 3.0:1 KD formulation produces hypoalgesia which persists through 10-11 

weeks of feeding. Separate groups of rats were challenged with a daily incremental 6-

temperature test after 2 or 10 weeks on the 3.0:1 KD. Top and bottom X-axes indicate hotplate 

temperature and days on diet, respectively. Group I was tested from 14-19 days, and the diet had 

significant effects at 49 and 50°C: Diet F=9.4, p=0.005; Temperature F=205.5, p<0.001; 

Interaction F=3.0, p=0.013; n=18-20. Group II was tested from 70-75 days, and the diet had 

significant effects at 48, 49 and 50°C: Diet F=10.5, p=0.003; Temperature F=172.6, p<0.001; 

Interaction F=4.4, p<0.001; n=17-19. *p<0.05, **p<0.01, ***p<0.001 compared to CD at 

corresponding temperatures.  

Figure 4. KDs transiently and minimally affected locomotion and spatial memory in the Y-

maze. Top: Locomotion decreased over repeated testing in all groups, but was increased with 

both KDs at one week of feeding compared to controls; this difference was no longer present at 

two weeks. Bottom: The accuracy of spontaneous alternations significantly increased at two 

weeks of feeding with the 6.6:1 KD; this effect was not present with the 3.0:1 KD. Dashed line 

indicates level for random arm entries. Locomotion: Time F=60.7, p<0.001; Interaction F=2.6, 
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p=0.041. Memory: Interaction F=2.5, p=0.047; n=17-18. *p<0.05 compared to CD at 

corresponding time.  

Figure 5. Varying KD effects on body weight. At 19 days of feeding, KDs led to lower body 

weight, although the effect was smaller for the moderate 3.0:1 KD (F=232.5, p<0.001; n=12, all 

groups). At 75 days, weights of rats fed the 3.0:1 KD did not differ from CD-fed rats (t-test, n.s., 

n=17-19). ***p<0.001 compared to CD. 
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Table 1.  Constituents of diets.  

 LabDiet 5001 
Bio-Serv F5140 

(3.0:1) 

Bio-Serv F3666 

(6.6:1) 

Fats 5.7 69.0 76.7 

Proteins 23.9 18.1 8.5 

Carbohydrates 

from vitamin mix 
NS 1.95 2.04 

Carbohydrates 

from mineral mix 
NS 0.77 0.41 

Other 

carbohydrates 
48.7 2.5 0.76 

 

Values are % by weight of total. AIN vitamin mix is 97.7% carbohydrate by weight. AIN 

mineral mixes are 22.1% (5140) or 11.8% (3666) carbohydrate by weight. NS = not specified. 

Protein percentages are calculated from casein, which is typically 89% protein, plus methionine. 

Added values of percentages do not reach 100% as there are unlisted constituents. Ketogenic 

ratios (in parentheses) are listed for the two ketogenic diets. Information retrieved from product 

information sheets.  
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