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 Abstract  

An unusual form of glass with bulbous head and thin tail, known as Rupert’s drops, can withstand 
high impact or pressure applied to the head, but explodes instantly into small particles when the 
tail is broken.  The mechanism is not well understood.  To examine this, we performed macro- 
and microstatistical analyses of a sample of 500 g of fragments of exploded Rupert’s drops to 
determine the mass and particle distributions and associated fractal dimensions.  To our 
knowledge, this is the first such statistical study of the fragmentation of a metastable material 
with large internal energy.  The resulting fractal dimension D = 1.06 ± 0.09 , derived from the 
scaling region of the mass and particle distribution functions approximated by power laws, differs 
from fractal dimensions (usually ! 2 ) previously reported for many brittle materials.  The 
observed distribution functions place constraints on proposed mechanisms for the explosive 
disintegration of the drops and presumably other physical systems characterized by high 
compressive stress at the surface and tensile stress within the core.  
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1. Introduction  
 Fragmentation plays a critical role in many areas of physics among which are geophysics  
(e.g. fracture of rocks) [1], planetary science (e.g. meteoritic impact) [2], astrophysics and 
cosmology (e.g. interstellar grain, asteroid, and galaxy formation; evolution of the universe) [3,4]; 
nuclear physics (e.g. spallation processes) [5], statistical physics (e.g. critical phenomena) [6], and 
materials science (e.g. energetics of materials) [7] as well as to fields of engineering (e.g. 
chemical combustion) [8] and industry (e.g. mining) [9].  Although a wide range of mechanisms 
comes into play, many fragmentation processes, particularly those involving rapid events such as 
explosions and collisions, appear to exhibit universality [10,11] leading to power-law behavior over 
a limited range of fragment sizes or masses.  To our knowledge, the statistical investigation of  
the fragmentation of materials hitherto reported all involved passive materials subjected to 
external forces.  In this paper we report the statistical examination of fragments derived from a 
material in an explosive metastable state of very high surface compression and core tension. 
 The material referred to as Rupert’s drops is an unusual form of tempered (i.e. thermally 
toughened) glass known in Europe for over 300 years and quite possibly since the time of ancient 
Rome [12].  It is made by letting molten glass, heated by torch or drawn from an oven, fall freely 
under gravity into a receptacle of cold water.  Implemented appropriately, the glass does not 
shatter, but forms a tadpole-shaped droplet with bulbous head and long thin tail.  Since the 
exterior rapidly cools before the interior, the outer layer of a Rupert’s drop is highly compressed 
while the core is subject to large tension.  Examined between crossed polarizers (Figure 1), the 
drops display a pronounced stress-induced birefringence.   
 As a consequence of these large compressive and tensile stresses, the head of the glass 
drop can be struck with a hammer or squeezed with pliers without damage—yet the drop 
explosively disintegrates into small particles (Figure 2) if the thin tail is snapped off.  Ordinary 
tempered glass, such as used for windows in motor cars, does not explode upon rupture, but 
merely breaks into small cubical fragments.  This surprising transformation has long served as a 
source of amusement [13], yet to our knowledge relatively few scientific studies have been made 
of it.  In particular, the precise mechanism of the explosion remains to be explained satisfactorily. 
Previous high-speed photographic studies suggested that disintegration of Rupert’s drops 
proceeded by crack bifurcation [14, 15].   
 A complementary way of elucidating the mechanism of fragmentation is by statistical 
analysis of the fragments.  Studies of fragments of diverse materials (rocks, coal, sand, clay, 
glacial till, interstellar grains, and more) produced by a wide array of disintegrative processes 
(abrasion, ballistic impact, chemical explosion, nuclear explosion, and more) have been found to 
be characterized to good approximation by a particle distribution function [16] 

  N s( ) ! n "s( )d "s
s

smax

# = CN s$D $ smax
$D( ) % CNs

$D  (1)  

where N s( )  is the number of particles of size (e.g. diameter) ! s ,  

   n s( ) = !dN s( ) ds = CNDs
!D!1   (2) 

is the particle density function, smax  is the largest size in the sample, and CN  and D are constants.  
Over a range of sizes s < smax  for which the term s!Dmax  in Eq. (1) can be disregarded, N s( )  
follows a power law with D defined by Mandelbrot as the fractal dimension [17].   
 The fractal dimension, which can be defined operationally in other ways equivalent to 
Eq. (1) for self-similar objects, is a statistical measure of how much space these objects occupy 
under a transformation of scale. We use the noncommittal term “space” to refer to length, area, or 
volume, depending on the topological dimension d (1, 2, or 3) of the space in which the objects 
are embedded.  Values of D reported for fragments of passive materials like those cited above fell 
in the range ~1.5-3.5, with the preponderance of values in the vicinity of ~2.5.  In this paper we 
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report the value DRD = 1.06 ± 0.09  for fragments obtained from approximately 50 exploded lead-
crystal glass Rupert’s drops of transverse head diameter ~1.0-1.5 cm and total drop length ~7-12 
cm to produce an initial aggregate mass of  514.49 g of fragments.  
 
2. Analytical Procedures 
 In the statistical analysis of a sample of fragments containing many small particles, it is 
usually not practicable to determine N s( )  by direct counting.  Instead, one determines the mass 

density function m s( )—i.e. mass of particles within the range s, s + ds( )—and corresponding 
cumulative distribution  

  M s( ) ! m "s( )d "s
smi n

s

# = CM sdn "s( )d "s
smi n

s

#  (3) 

yielding the mass of particles of size ! s , with smin  the smallest size in the sample. A mass-based 
approach is considered more sensitive to deviations from linearity [18]. For a material with 
constant mass per volume1 at fixed temperature, the mass and particle density functions of self-
similar particles are related by m s( )! sdn s( )  with d = 3  for glass fragments.  The 
proportionality constant CM  depends on the geometry of the particles.  Assuming the power law 
expression in Eq. (1), one can show that 
  M s( ) = M 0 sd!D ! smin

d!D( ) smax
d!D ! smin

d!D( ) " M 0 s smax( )d!D  (4) 

where M 0  is the total sample mass, and the approximate equality follows when one can neglect 
smin .  From the preceding discussion, there then follow in principle four ways to deduce the 
fractal dimension from the slope of double-log plots of particle and mass distributions as a 
function of size:  

  
a( )!d logN (s) d log s = !DN !!!!!!!!!!!!!!!! c( )!d logM (s) d log s = d ! DM

b( )!d logn(s) d log s = !Dn !1!!!!!!!!!!!! d( )!d logm(s) d log s = d ! Dm !1
 (5) 

where subscripts on D designate the parent function.  The resulting slopes are independent of the 
logarithm base or units of size and mass.   
 We refer to these methods as macrostatistical, since they involve measurements on a 
sample of many particles at a time.  In an actual experiment, a sample of fragments is partitioned 
by size into discrete classes (bins) by means of calibrated sieves. To determine the fractal 
dimension of the Rupert’s drops fragments, we have used relations (5a) and (5c), where N s( )  in 
expression (5a) was determined from the mass density function through the inverse relation 
n s( ) ! s"dm s( ) .   Mass- and count-based estimates of DN  have been shown to be nearly the 
same for scale-invariant aggregates [19].   Because fragment length varies continuously, the use of  
a cumulative distribution rather than density function leads to more consistent values of fractal 
dimension [20].   
 Another method of obtaining fractal dimension, which we refer to as microstatistical, is 
to relate the perimeter to the area of individual fragments in a representative statistical sample.  
According to Mandelbrot [21], the length and area of a fractal geometric object satisfy the relation  
P ! AD/2 .  Thus, the slope of a double-log plot of perimeter against area for a random sample of 
self-similar particles yields a geometry-based fractal dimension 
  Dg = 2d logP d logA . (6)  

                                                
1 We refrain from using the familiar term “density” for the macroscopic mass per volume to avoid 
confusion with the particle and mass statistical densities.  
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Mandelbrot’s theoretical construction for estimating D entailed measuring the size of a fixed 
object with a variable scale (“box counting”)—i.e. taking a limit of the variation in size as the 
scale is reduced.  In the practical analysis of fragments, however, one does the equivalent by 
measuring the size of a variable object (the different fragments) with a fixed scale [16].  Since the 
fractal dimension is completely determined by the slope of the line of regression in a scatter plot, 
all that is necessary is that samples be chosen that span the range of sizes within which the 
preponderance of  fragments fall. 
 An assumption, either explicitly stated or implicit in the use of relations 5a-d, underlying 
previous determinations of the fractal dimensions of fragments of passive materials is that 
fragment morphology is independent of size—i.e. that sampled particles are self-similar for 
purposes of analysis.  The assumption is readily verified for particles of the same smooth 
geometric shape (e.g. spherical glass beads). However, for processes like explosive fragmentation 
that give rise to irregularly shaped particles, the assumption of self-similarity is not easily 
confirmed or refuted beforehand by direct visual appearance.  Supportive evidence may be 
adduced afterward if different empirical procedures for determining fractal dimension all yield 
the same numerical value. Our examination of randomly selected Rupert’s glass fragments under 
a stereomicroscope gave no reason to suggest that fragments in the total population may have 
constituted samples drawn from physically distinct subpopulations described by different mass or 
particle distributions.  We have therefore made the assumption of self-similarity in this analysis 
so that we could compare the resulting fractal dimensions of Rupert’s drops with fractal 
dimensions obtained by similar methods for previously investigated passive materials.. We return 
to this point, however, in our concluding remarks.  
 
3. Experimental Results 
 A sample of ~500 g of lead-crystal Rupert’s drops fragments was partitioned into ten 
classes by sieving with a set of woven wire or cloth mesh sieves of standard mesh sizes (in 
microns) of 4000, 2000, 1000, 707, 500, 354, 250, 177, 125, and 88. The observed mass density 
function shown in Figures 3a,b is reasonably well accommodated by a log hyperbolic density [22]  

   m(s) = Ae
!a

ln s s0( )
"

+1
#
$%

&
'(
+b

ln s s0( )
"

#
$%

&
'( , (7) 

the parameters of which are interpreted as follows: µ ! ln s0  is a location parameter (determines 
peak), !  is a scale parameter (determines width), and a and b together determine the left and 
right asymptotic slopes !± = ± a ± b( )  of the hyperbolic function of size s in the exponent. The 
amplitude A is a normalization constant expressible as a modified Bessel function of the second 
kind.   As limiting cases, the log hyperbolic density reduces to a log normal density for large !  
and to a log skew-Laplace density for vanishing ! .   
 The dashed curves shown in Figures 3a,b were fit visually rather than by a statistical 
fitting procedure (since no frequency-based measures of goodness-of-fit are available for fitting 
models to an empirical mass size distribution [23]) and serve primarily for comparative purposes.  
The double-log plot in Figure 3b shows the approximate hyperbolic form of the functional 
dependence on size in the exponent of Eq. (7) suggesting that the cumulative mass distribution 
M s( )  should approximate power law behavior over the range of sizes comprising the 

 

!+  
asymptote. 
1. Determination of D from M s( )  

 Following standard procedure,  logM (si )! i = 1…10( )  was plotted against the log of the 

mean bin size si + si!1( ) / 2  (with s0 ! 0 ) as shown in Figure 4, and a least-squares line of 
regression was fit to all but the final point (corresponding to smax ).  From Eq. (5c) with d = 3  we 
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obtained DM = 1.17 ± 0.12 .  The estimated uncertainty of  DM (and DN  below) takes account of 
uncertainties in both ordinate and abscissa due to finite bin widths [24, 25]. 
2. Determination of D  from N s( )  

      Using the relation n s( )! s"dm s( )  of Eq. (3), with d = 3, we constructed the distribution 

 N si( ) = N0 1! sk
!dm sk( )

k=1

i

"#
$%

&
'(

                   (8) 

where N0 is a normalizing constant, shown in Figure 5a.  From the corresponding double-log plot 
of Figure 5b, it is seen that N s( )  followed a power law in s to good approximation except for 
two points at the largest size bins, which were excluded from the regression analysis.  The slope 
of the line of regression led to DN = 1.01± 0.08 . 
3. Determination of D from P ! AD/2  
 Using a stereomicroscope with digital camera and particle counting software, we 
determined the length L, width W, mean size L +W( ) / 2 , perimeter P, and area A of each 
fragment in a randomly chosen sample of 151 fragments.  The fractal relation is not particularly 
sensitive to which linear measure of size is used.  The histogram in Figure 6a presents a 
frequency distribution of particles classified according to mean size.  The randomness of 
fragment selection is supported by the monomodal, skew-symmetric form characteristic of a 
single population governed by a log-hyperbolic distribution (shown superposed on the histogram) 
over the full range of fragment sizes. The scatter plot of logP  against logA  shown in Figure 6b 
yielded a least-squares line of regression [ R2 = 94.8% ] with Dg = 0.99 ± 0.07 , where the 

statistical measure R2 ! 1"
mean square error of model

variance of data
 quantifies the amount of variance in the 

data accounted for by a model (in this case, assumption of linearity in the double-log plot).  
  To ascertain that the sample size was adequate to represent the total population, we 
constructed a sequence of plots analogous to Figure 6b with each plot in the sequence based on a 
larger sample size than the preceding plot.  This showed that there was little marginal utility to 
increasing the sample size beyond 151 since additional points had insignificant effect on the slope 
of the regression line.   We also performed a statistical runs up/down test [26] on the chronological 
record of 151 fragment sizes to test for size bias in selection; the observed number of up/down 
runs was within 1 standard deviation of the theoretically expected mean number of such runs. 
This test is sensitive to violations of permutation invariance and has been used by two of the 
authors to test for nonrandom effects in alpha and beta decay of radioactive nuclei [27].   
 The unweighted mean of the three independent measurements is DRD = 1.06 ± 0.09 .  For 
comparison,  Table 1 shows a representative sample (from Turcotte [28]) of values of D for other 
materials and fragmentation processes.  No uncertainties on D were included in the reference 
from which the values in Table 1 were taken. 
 Although no physical sample of fragments follows a power law exactly, D nevertheless 
can provide a useful measure of the degree of irregularity of the particles created by a 
fragmentation process.  The higher the value of D, the more space filling the irregular shape.  For 
objects that are statistically invariant over a range of scale transformations, the degree of 
irregularity can be characterized by this one measure.  As Table 1 shows, fractal dimensions of 
passive brittle materials generally fall between 2 and 3.  According to Eq. (5), D cannot exceed 3, 
and reasons to doubt the accuracy of the last two entries in the table have been published [18].  
Most noteworthy is the proximity of D values to 2.50 for processes of markedly different origin, 
ranging from the continuous and moderate (grinding; crushing) to the sudden and violent 
(chemical and nuclear explosions).  Turcotte has hypothesized that fractal dimension should 
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increase with an increase in available energy density because fragmentation conserves mass and 
therefore volume, but not area—and the creation of area requires energy [16]. The numbers in the 
table do not appear to support this hypothesis, since one might have expected the fractal 
dimensions of fragments from chemical and nuclear explosions to be well above those of sands, 
clays, and glacial till produced by less energetic processes of comminution—although without 
error limits one cannot be sure of order statistics based on the table [29].  In any event, with any 
reasonable assignment of statistical uncertainties to the entries of the table it is clear that the 
consistent numerical values of the fractal dimension of Rupert’s drops, obtained independently by 
three different methods, are by far lowest.  

 The fractal dimensions we obtained for Rupert’s drops fragments agree closely with the 
fractal dimensions reported by Suzuki et al. [30] for crushed glass by a measurement procedure 
comparable to our third method.  Segregating the crushed glass sample by size into classes 
ranging from 15 µm to 950 µm, Suzuki et al. determined the fractal dimension of each class 
separately by applying Mandelbrot’s “compass method” [31] (a variant of box counting) to the 
perimeter of two-dimensional projections of particle profiles.  The reported fractal dimensions 
ranged from 1.0278 to 1.0440.  No statistical errors were given, nor did the authors identify the 
type of glass used, or the state of the glass prior to crushing, or the manner by which the glass was 
crushed.  The authors did not report particle or mass distributions of the glass fragments.   
 Other authors have obtained different values of D for the fractal dimension of crushed 
glass. Gilvarry and Bergstrom [32], investigating the fracture of solid glass spheres of diameter 
~2.4 cm confined to a gelatin matrix and subjected to external compressive stress through 
tungsten carbide platens, reported double-log plots of cumulative mass versus size with unit 
slope.  Corresponding to our Eq. (5c) for topological dimension d = 3 , this result is equivalent to 
a fractal dimension D = 2 . Odershedde et al. [6] obtained a scaling exponent equivalent to D = 2  

Table 1:  Fractal Dimensions of Various Materials and 
Processes 

MATERIAL FRACTAL DIMENSION  D 
  
Rupert’s drops (lead-crystal glass)  
     Mass distribution DM  1.17 ± 0.12  
     Particle distribution DN  1.01± 0.08  
     Perimeter vs Area   Dg  0.99 ± 0.07  
Crushed quartz 1.89 
Disaggregated gneiss 2.13 
Disaggregated granite 2.22 
FLAT TOP (chemical explosion 0.2 kt) 2.42 
Asteroids (theory) 2.48 
PILEDRIVER (nuclear explosion 61 kt) 2.50 
Broken coal 2.50 
Interstellar grains 2.50 
Projectile fragmentation of basalt 2.56 
Sandy clays 2.61 
Terrace sands and gravel 2.82 
Glacial till 2.88 
Stony meteorites 3.00 
Ash and pumice 3.54 
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for fragmentation of spherical balls of gypsum (calcium sulphate dihydrate) and found that the 
scaling depended on the shape of an object rather than on its material.  However, in comparing 
fractal dimensions obtained from different experiments, it is critical to take note not only of 
object shape, but also of the scaling region. For example, Arakcheev and Lotov [33] cite an 
experiment yielding a scaling exponent equivalent to D = 2.5  for crushed glass, but the authors 
of the actual cited source [34], which reported D = 2.35 ± 0.11 , determined the fractal dimension 
of the surface of crushed glass as measured by a molecular “yardstick” in the approximate range 
of 4.6 !10"4 "1.2 !10"2  microns. 
 If it should actually be the case that crushed glass and exploded metastable glass yield 
three-dimensional fragments of the same fractal dimension  D !1  over the tens to thousands of 
micron range, then our present work would show that fractal dimension is not a sensitive 
indicator of the internal dynamical state of glass.  Nevertheless, an abnormally low (compared 
with brittle materials in Table 1) value of the fractal dimension of glass would still indicate that 
either (a) glass responds differently than most brittle materials do when subjected to fragmenting 
stresses of either internal or external origin, or (b) numerical values of the fractal dimension of 
glass depends on the specific measurement procedure, as can occur when fragments constitute a 
set of self-affine, rather than self-similar, objects.   
 
4. Internal Energy and Explosion Dynamics 
 Regarding the internal energy of Rupert’s drops, previous measurements have shown 
tensile stresses (near the axis) of about 100-160 MPa  and compressive stresses (near the surface) 
of about 50-80 MPa [35]. If the shape of the drop head is taken roughly as a cylinder of diameter 
2R, then the thickness !R  of the compressive layer has been found to be ~!R / 2R " 0.13  [14].  
We can then estimate the internal strain energy per volume of the drop to be approximately [36] 
  

 
U V ! 3! t

2"t + 3! c
2"c( ) Y # 0.24 MJ/m3  (9) 

where ! t "130  MPa is the mean tensile stress, ! c " 1
2 ! t " 65  MPa is the mean compressive 

stress, !t = 1"#R R( )2 $ 0.55  and !c = 1"!t # 0.45  are respectively the fractional volumes 
under tensile and compressive stresses, and Y ! 70  GPa is Young’s modulus.  Putting this into 
perspective:  To produce an equivalent strain energy density by application of an external force 
on initially unstressed glass would require a pressure Pext = Y U /V( ) ~130  MPa or ~1,283 atm. 
 We have analyzed a high-speed video recording made at Corning research labs by Dr 
Steven E. DeMartino of the explosion of a single Rupert’s drop with a frame speed reported to be 
0.94 miles/s [1,513 m/s].  The video showed the propagation of the shock front from tail to head 
across a calibrated surface. In the sequence of frames that we selected from the recording to make 
the composite Figure 7, which progresses chronologically from left to right and top to bottom, 
one sees clearly the advance of the shock front behind which the fractured glass is opaque due to 
multiple light scattering. From the frame rate, size of photographed portion of drop (1 inch ~ 2.5 
cm), and calibration spacing (1 / 8  inch ~ 0.3125 cm), we estimated a shock speed of about 1,130-
1,140 m/s.  For comparison, the speed of sound in lead-crystal glass is in the range of 3,800-4,000 
m/s.   As shown in the Figure, fragments of glass began to disperse outward from the surface only 
after the shock wave propagated entirely through the drop.  As expected, therefore, the shock 
front propagated with greater velocity through the tensile core than through the compressed 
surface layer.  
 The full video continued well beyond the last frame shown in Figure 7.  By counting the 
number of frames between the time the shock wave reached the tip of the head and the time when 
the surface of scattered fragments moved outward a distance equal to the calibration length we 
estimated the velocity of the dispersing particles to be about 15-25 m/s.  If it is assumed that the 
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strain energy released in the core goes primarily into the kinetic energy of the particles of the 
compressed surface layer, then a rough measure of the kinetic energy density is given by  

  K V =
1
2
! v2 "c # 0.22 MJ/m3  (10) 

where ! = 2, 400 kg/m3  is the mass per volume of glass, and the second moment v2  of the 
speed was calculated by assuming a normal velocity distribution of mean 20 m/s and variance 
102  m2 / s2  as estimated from the Corning video.  The kinetic energy density in Eq. (10) is 
consistent with the internal strain energy density estimated in Eq. (9). 
 
5. Discussion and Conclusions 
 The disintegration of a Rupert’s drop may be understood in broad outline on the basis of 
the pioneering theoretical work of A. A. Griffith, according to which the fracture of a brittle 
material like glass arises from growth of pre-existing microcracks [37].  The energy required for 
creating new areas of free surface as the crack grows is acquired from the internal elastic energy 
of the surrounding medium.  However, this growth occurs only if (a) the stress field around the 
microcrack is tensile and (b) the product of the stress and the square root of the crack diameter 
exceeds a material-dependent critical parameter.   Microcracks in the outer surface of a Rupert’s 
drop cannot grow, even when the head of the drop is subject to significant impact or pressure, 
because the medium within which these cracks are embedded is in a state of high compressive 
stress. However, fracture of the thin cylindrical tail by application of an external force penetrates 
the core, which is in a state of tensile stress, thereby initiating a shock front that propagates in 
both directions with a speed comparable to that of sound waves in glass as demonstrated in the 
previous section.  
 Although Griffith’s theory and more recent extensions to fractal cracks in solids [38,39] 
sheds light on the explosive metastability of Rupert’s drops, specific details of the fragmentation 
mechanism are still uncertain.  One would like to know, for example, how cracks propagate three-
dimensionally through the drop just prior to the actual explosion, whether crack propagation is 
fractal or not, whether the fragmentation is in some sense universal or largely sensitive to the 
properties of the specific medium and its inhomogeneities.   
 In our statistical study of lead-crystal glass fragments from exploded Rupert’s drops, we 
determined the mass density function m s( ) , mass distribution M s( ) , particle density function 

n s( ) , and particle distribution N s( )  as  functions of particle size s.  These experimental 
distributions can be tested against theoretical fragmentation models that predict the form of the 
particle or mass densities or the fractal dimension of the set of fragments.  By and large, the many 
theories of fragmentation developed over the years fall into two broad categories:  (a) analytical 
deterministic or statistical theories based on general physical or mathematical principles, and (b) 
stochastic theories that simulate fragmentation by means of specific computationally tractable 
models executed numerically on a discrete lattice.  This partitioning is meant to be heuristic, not 
definitive, since some theories have elements of both classes.  The first category would include, 
for example, Griffith’s theory derived from the general theory of elasticity, or statistical theories 
based on the principle of maximum entropy [40]. The second category would include various 
mechanical models of fracture propagation, such as the diffusion-limited aggregation model 
[DLA] [41] or random-fuse model [42].  Given the huge number of fragmentation models, we can 
consider in this concluding section only such studies as may bear directly on the experimental 
results we obtained. 
 Among the earliest papers in the analytical category, Kolmogorov [43] deduced that for 
particles created by repetitive fracture (e.g. grinding) n s( )  should be of log-normal form 

reducing to n s( ) ! s"1  when the width parameter is sufficiently large.  From Eq. (5), this would 
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imply Dn = 0 .  Gilvarry’s theory of single fracture by an external stress system [44], predicated on 
flaw activation by stress waves, led to the asymptotic form equivalent to M s( ) ! s"1 , implying 
DM = 2 , which was observed experimentally by Gilvarry and Bergstrom [32] for crushed glass 
spheres.  Both predictions, however, appear to be in conflict with our experimental findings.  The 
distributions we obtained were not of log-normal form, and the fractal dimension of Rupert’s 
drops fragments was found to be DRD !1 .  Moreover, high-speed photographic studies of 
Rupert’s drops showed an absence of stress waves in shadowgraphs of drops exploded in water 
[14]. 
 Applying the principle of maximum entropy to fragmentation by a fast, sudden process, 
Englman [45] derived, on the basis of an assumed energy function e(s)  per particle, a 2-parameter 

mass density of the form m(s)ME = C 2! s / ŝ( )"1 +1+! s / ŝ( )2#$ %&
"1

, where C is an empirical 

constant, ŝ  is a scaling parameter, and ! <1  is a shape parameter.  Although the function 
displays a sharp rise and long fall-off with s, such as in Figure 3a, a graphical survey of the 
theoretical shapes taken by m(s)ME  for wide range of positive values of ŝ  and !  failed to 
reproduce our distribution m s( )  for Rupert’s drop fragments.  In particular, the predicted 
distribution rose with incorrect curvature and fell off too slowly.  Since all the physics resides in 
the function e s( ) , our experimental distributions may help guide construction of a more 
appropriate energy function.  We found empirically that a modified mass density 

 
!m(s) = C 2! ŝ / s( )"a +1+! s / ŝ( )2a#$ %&

"1
 with a >1  matched the experimental profile of Figure 3a 

considerably better.  It remains to be seen, however, whether such a modified form may have a 
theoretical basis. 
 In the category of lattice models, fragmentation studies by crack branching have been 
published—see, for example [46,47]—based on the assumption that at each level r of a hierarchy of 
subdivided geometric elements (e.g. cubes) a fragment will further split into fr  fragments with a 
probability pr .   In the simplest case, developed for isotropic brittle solids, p and f  are 
independent of r, and the model is scale invariant leading to the fractal dimension 
D = d ln pf( ) ln f  where d is the topological dimension.  The models do not furnish a priori 
values for p and f and therefore do not predict the fractal dimension D.  Because such models 
were created in the first place to produce fractal branching, they lead to power-law distributions 
which can be only asymptotic approximations to the actual empirical distributions reported here.  
Nevertheless, if one applies the fractal cube model to our results for fragmentation of Rupert’s 
drops, assuming the previously proposed mechanism of crack bifurcation in a space of d 
dimensions for which f = 2d  and p = 2D!d  with D = 1  and d = 3, one obtains p = 0.25.  Whether 
or not Rupert’s drops actually fracture by crack bifurcation, however, remains to be established.  
Experimentally, we did not see signs of crack bifurcation in magnified images of the high-speed 
video of a single exploding drop.  To see such detail would in any event have been difficult 
because fracturing rendered the affected regions practically opaque. 
 Of particular potential interest are computer simulations of the rupture process whereby 
the Lamé equation or Cosserat equation for a linear elastic medium of specified properties is 
discretized and solved for the displacement field by an iterative procedure [48].  Within each cycle 
of iteration, the deterministic set of resulting coupled equations is supplemented by a constitutive 
relation applied to each bond of the lattice model that determines the breaking threshold value of 
strain !  and a probability function p, dependent on strain usually in the form p !"#  for some 
adjustable parameter ! , which determines stochastically which bonds will break. A characteristic 
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feature of this model is that it led to fractal fracture patterns in the absence of noise or long-range 
time correlations.  Choices of !  and the criteria for rupture corresponding to crack propagation in 
a medium under uniaxial tension were shown to produce fractal dimensions of about 1.10-1.25 
[48,49], which is close to our experimental result for Rupert’s drops.  Such a process is analogous 
to stress corrosion cracking in metals, which can progress very rapidly, leading to catastrophic 
failure.  It is possible that this fracture model captures essential features of the tensile stress 
distribution and shock-induced disintegration in Rupert’s drops.  However, it should be noted that 
the above fractal dimensions produced by the model pertain to single crack patterns and not 
necessarily to particle fragments.  Of particular interest is the geometric form of the computer-
generated crack patterns, which are more complex than simple bifurcation patterns and might 
help account for the distribution of Rupert’s drops fragments if the model were extended to three 
dimensions. 
 Mandelbrot has noted that different definitions of fractal dimension of a set of objects 
should yield the same numerical value if the objects are self-similar [31].  In the fragmentation of 
Rupert’s drops, we have consistently obtained the same numerical value of D within statistical 
uncertainties by three procedures, two of which were based on the statistical definition 
N (s) ~ s!D  and one of which was based on the geometric definition P ~ AD/2 .  Nevertheless, it is 
possible that the fragments of internally exploded glass do not constitute a set of self-similar 
objects since tensile and compressive stresses within the glass may be distributed 
inhomogeneously, and particles originating in the core may be distributed differently from 
particles coming from the surface layers.  In the next phase of our research we plan to examine 
this hypothesis by investigating individual glass drops exploded within a confining matrix so as 
to permit statistical analysis of fragments drawn separately from areas of tension and 
compression.  Interestingly, such an observation (although not statistical analysis) is alleged to 
have been made by Robert Hooke who drew the interior of a Rupert’s drop in his classic work 
Micrographia [50].  The conically shaped fragments, however, bear no resemblance to actual 
fragments, and it is more likely that Hooke imagined, rather than observed, the interior of a 
Rupert’s drop. 
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FIGURES 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 1:  Soda-lime Rupert’s drops between crossed polarizers. 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  Unexploded Rupert’s drop (left) and powder (right) resulting from the explosion 
following cracking of the tail.  (Courtesy of Corning Museum of Glass.) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3a:  Plot of mass per bin (in g) against mean mesh size (in µm) of the sieved sample (red 
circles) of lead-crystal Rupert’s drops fragments.  Theoretical density m s( )  of Eq. (7) is 
superposed (dashed curve). [Parameters: A = 8.85 , a = 3.30 , b = !0.55 , µ = 7.30 , ! = 0.74 .] 
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Figure 3b: Double-ln plot of mass per bin against mean size (red circles).  Log hyperbolic 
density is superposed (dashed line).  [Parameters:  A = 8.98 , a = 3.60 , b = !0.40 , µ = 7.25 , 
! = 0.95 .] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4:  Double-log plot of cumulative mass M s( )  against mean size s  (red circles) for same 
sample as in Figure 3 with superposed least-squares line of regression (dashed line) excluding the 
fraction at smax .  Same units as in Figure 3.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5a:   Plot of cumulative particle number N s( )  against mean size s  for the same sample 
as in Figure 3.     
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Figure 5b: Corresponding double-log plot of cumulative particle number against mean size (red 
circles) with superposed least-squares line of regression (dashed line) excluding two fractions of 
largest size. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6a:  Histogram of mean size of 151 fragments with superposition of log hyperbolic 
density (dashed line).  [Parameters: A = 0.60 , a = 1.20 , b = 0.72 , µ = 1.70 , ! = 0.43 .]  Unit of 
length is mm.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6b: Corresponding double-log scatter plot of observed perimeter against area (red circles) 
with least-squares line of regression superposed (solid line). 
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Figure 7:  Chronological progression (a to i) of the propagation of the shock front through a 
Rupert’s drop following rupture of tail.  Dispersal of particles from the surface begins after total 
fracturing of the core (frame f).  [Figure constructed from a video provided by Dr. Steven 
DeMartino of the Corning Glass Corporation.] 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	Fragmentation of explosively metastable glass [post-print]
	 Rupert's Drops Postprint 2013_2_19 copy

