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Abstract. We give a general method based on dyadic Calderón-
Zygmund theory to prove sharp one and two-weight norm inequal-
ities for some of the classical operators of harmonic analysis: the
Hilbert and Riesz transforms, the Beurling-Ahlfors operator, the
maximal singular integrals associated to these operators, the dyadic
square function and the vector-valued maximal operator.

In the one-weight case we prove the sharp dependence on the
Ap constant by finding the best value for the exponent α(p) such
that

‖Tf‖Lp(w) ≤ Cn,T [w]α(p)
Ap
‖f‖Lp(w).

For the Hilbert transform, the Riesz transforms and the Beurling-
Ahlfors operator the sharp value of α(p) was found by Petermichl
and Volberg [47, 48, 49]; their proofs used approximations by the
dyadic Haar shift operators, Bellman function techniques, and two-
weight norm inequalities. Our proofs again depend on dyadic ap-
proximation, but avoid Bellman functions and two-weight norm
inequalities. We instead use a recent result due to A. Lerner [34]
to estimate the oscillation of dyadic operators. By applying this
we get a straightforward proof of the sharp dependence on the Ap
constant for any operator that can be approximated by Haar shift
operators. In particular, we provide a unified approach for the
Hilbert and Riesz transforms, the Beurling-Ahlfors operator (and
their corresponding maximal singular integrals), dyadic paraprod-
ucts and Haar multipliers. Furthermore, we completely solve the
open problem of sharp dependence for the dyadic square functions
and vector-valued Hardy-Littlewood maximal function.

In the two-weight case we use the very same techniques to prove
sharp results in the scale of Ap bump conditions. For the singular
integrals considered above, we show they map Lp(v) into Lp(u),
1 < p <∞, if the pair (u, v) satisfies

sup
Q
‖u1/p‖A,Q‖v−1/p‖B,Q <∞,

where Ā ∈ Bp′ and B̄ ∈ Bp are Orlicz functions. This condition
is sharp. Furthermore, this condition characterizes (in the scale
of these Ap bump conditions) the corresponding two-weight norm
inequality for the Hardy-Littlewood maximal operator M and its
dual: i.e., M : Lp(v) −→ Lp(u) and M : Lp

′
(u1−p′

) −→ Lp(v1−p′
).

Muckenhoupt and Wheeden conjectured that these two inequali-
ties for M are sufficient for the Hilbert transform to be bounded
from Lp(v) into Lp(u). Thus, in the scale of Ap bump conditions,
we prove their conjecture. We prove similar, sharp two-weight re-
sults for the dyadic square function and the vector-valued maximal
operator.
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1. Introduction

The problem of proving one and two-weight norm inequalities for
the classical operators of harmonic analysis—singular integrals, square
functions, maximal operators—has a long and complex history. In the
one weight case, the (nearly) universal sufficient and (often) necessary
condition for an operator to be bounded on Lp(w) is the Ap condition:
given 1 < p < ∞, a weight w (i.e., a non-negative, locally integrable
function) is in Ap if

[w]Ap = sup
Q

(
−
∫
Q

w(x) dx

)(
−
∫
Q

w(x)1−p′ dx

)p−1

<∞,

where the supremum is taken over all cubes in Rn and −
∫
Q
w(x) dx =

|Q|−1
∫
Q
w(x) dx. For more on one-weight inequalities we refer the

reader to [13, 18, 21].
An important question is to determine the best constant in terms of

the Ap constant [w]Ap . More precisely, given an operator T , find the
smallest power α(p) such that

‖Tf‖Lp(w) ≤ Cn,T [w]
α(p)
Ap
‖f‖Lp(w).

This problem was first investigated by Buckley [3]. More recently, it has
attracted renewed attention because of the work of Astala, Iwaniec and
Saksman [1]. They proved that sharp regularity results for solutions to
the Beltrami equation hold provided that the Beurling-Ahlfors operator
satisfies α(p) = 1 for p > 2.

The problem of characterizing the weights that govern the two-weight
norm inequalities for classical operators is still open and there are sev-
eral approaches to finding sufficient conditions on weights for an oper-
ator to be bounded from Lp(v) to Lp(u). One approach is to replace
the two-weight Ap condition with the Ap “bump” condition:

sup
Q
‖u1/p‖A,Q‖v−1/p‖B,Q <∞,

where A and B are Young functions and the norms are localized Orlicz
norms slightly larger than the Lp and Lp

′
norms. (Precise definitions

will be given below.) Sufficient growth conditions on A and B are
known for many operators and this has led to a number of conjectures
on sharp sufficient conditions. For the history of this approach we refer
the reader to [5, 7, 8, 10, 11].

In this paper we develop a unified approach to both of these prob-
lems and the results we get are sharp. We consider one and two-weight
norm inequalities for singular integrals, maximal singular integrals, the
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dyadic paraproduct, the dyadic square function and the vector-valued
maximal operator. The results in the one-weight case for singular in-
tegrals are not new, but we believe that our proofs are simpler than
existing proofs. The remaining theorems, however, are all new.

We believe that our approach shows that there is a deep connec-
tion between sharp results in the one and two-weight case. Further,
key to our approach is that the operators are either dyadic or can be
approximated by dyadic operators (e.g., by the Haar shift operators
defined below). Thus our results will extend to any operator that can
be approximated in this way.

Singular integrals. It is conjectured that if T is any Calderón-Zyg-
mund singular integral operator, then for any p, 1 < p < ∞, and for
any w ∈ Ap,

(1.1) ‖Tf‖Lp(w) ≤ CT,n,p [w]
max(1, 1

p−1)
Ap

‖f‖Lp(w).

This inequality is true if T is the Hilbert transform, a Riesz transform
or the Beurling-Ahlfors operator.

Theorem 1.1. Given p, 1 < p < ∞, if T is the Hilbert transform, a
Riesz transform or the Beurling-Ahlfors operator, then for all w ∈ Ap
inequality (1.1) holds.

This result was first proved by Petermichl [47, 48] and Petermichl and
Volberg [49]. For each operator the proof requires several steps. First,
it is enough to prove the case p = 2; the other values of p follow from
a version of the Rubio de Francia extrapolation theorem with sharp
constants due to Dragičević et al. [12] (Theorem 2.2 below). Second,
for each of the above operators the problem is reduced to proving the
weighted L2 inequality for a corresponding dyadic operator by proving
that the given operator can be approximated by integral averages of
the dyadic operators (and their analogs defined on translations and
dilations of the standard dyadic grid). Finally, the desired inequality
was proved for each of these dyadic operators using Bellman function
techniques and two-weight norm inequalities.

Recently, Lacey, Petermichl and Reguera-Rodriguez [28] gave a proof
of the sharp A2 constant for a large family of Haar shift operators that
includes all of the dyadic operators needed for the above results. Their
proof avoids the use of Bellman functions, and instead uses a deep, two-
weight “Tb theorem” for Haar shift operators due to Nazarov, Treil and
Volberg [40].

We give a different and simpler proof that uses approximation by
dyadic Haar shifts but avoids both Bellman functions and two-weight
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norm inequalities such as the Tb theorem. Instead, we use a very
interesting decomposition argument based on local mean oscillation
recently developed by Lerner [34] to prove the corresponding result for
dyadic Haar shifts. Intuitively, this decomposition may be thought of
as a version of the Calderón-Zygmund decomposition of a function,
replacing the mean by the median. (We will make this more precise
below.) Theorem 1.1 was announced in [6].

Remark 1.2. After this paper was completed we learned of several other
related results. First, Vagharsyakhan [52] has shown that in one dimen-
sion, all convolution-type Calderón-Zygmund singular integral opera-
tors with sufficiently smooth kernel can be approximated by Haar shifts.
Second, Lacey et al. [25] used a deep characterization of the one-weight
problem in [45] to prove Theorem 1.1 for all singular integrals with suf-
ficiently smooth kernels. Third, Lerner [35] proved Theorem 1.1 for any
convolution-type Calderón-Zygmund singular integrals provided p ≥ 3
or 1 < p ≤ 3/2. Finally, Hytönen [24] proved Theorem 1.1 for all sin-
gular integrals and all p > 1, thus solving the so-called A2 conjecture.
His proof is extremely technical: it is based on the approach in [45]
and a refinement of the arguments in [28]. A simpler proof of the A2

conjecture based upon the previous three papers appears in [26].

An important advantage of our approach is that it also yields sharp
two-weight norm inequalities. To state our result we need a few def-
initions. A Young function is a function A : [0,∞) → [0,∞) that is
continuous, convex and strictly increasing, A(0) = 0 and A(t)/t → ∞
as t → ∞. Given a cube Q we define the localized Luxemburg norm
by

‖f‖A,Q = inf

{
λ > 0 : −

∫
Q

A

(
|f(x)|
λ

)
dx ≤ 1

}
.

When A(t) = tp, 1 < p <∞, we write

‖f‖p,Q =

(
−
∫
Q

|f(x)|pdx
)1/p

.

The associate function of A is the Young function

Ā(t) = sup
s>0
{st− A(s)}.

A Young function A satisfies the Bp condition if for some c > 0,∫ ∞
c

A(t)

tp
dt

t
<∞.
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Important examples of such functions are of the form A(t) = tp log(e+
t)−1−ε, ε > 0, which have associate functions Ā(t) ≈ tp

′
log(e+ t)p

′−1+δ,
δ > 0.

Theorem 1.3. Given p, 1 < p <∞, let A and B be Young functions
such that Ā ∈ Bp′ and B̄ ∈ Bp. Then for any pair of weights (u, v)
such that

(1.2) sup
Q
‖u1/p‖A,Q‖v−1/p‖B,Q <∞,

we have that

(1.3) ‖Tf‖Lp(u) ≤ C‖f‖Lp(v),

where T is the Hilbert transform, a Riesz transform, or the Beurling-
Ahlfors operator.

Condition (1.2) is referred to as an Ap bump condition: when A(t) =
tp and B(t) = tp

′
, we get the two-weight Ap condition. Theorem 1.3

was proved in [5] for the Hilbert transform in the special case that
A(t) = tp log(e + t)p−1+δ, δ > 0 (here Ā ∈ Bp′), and for Riesz trans-
forms (indeed, for any Calderón-Zygmund singular integral) given the
additional hypothesis that p > n. Examples (see [7, 8]) show that in
this particular case these results are sharp, since they are false in gen-
eral if we take δ = 0 (when Ā 6∈ Bp′). Theorem 1.3 was proved for
the Hilbert transform and general singular integrals when p > n by
Lerner [34] by combining his decomposition argument with the argu-
ments in [5].

Two-weight inequalities were first considered by Muckenhoupt [37],
who noted that the same proof as in the one-weight case immediately
shows that for all p, 1 ≤ p <∞, (u, v) ∈ Ap if and only if the maximal
operator satisfies the weak (p, p) inequality. However, Muckenhoupt
and Wheeden [38] soon showed that while the two-weight Ap condition
is necessary for the strong (p, p) inequality for the maximal operator
and the strong and weak type inequalities for the Hilbert transform,
it is not sufficient. This led Muckenhoupt and Wheeden to focus not
on the structural or geometric properties of Ap weights but on their
relationship to the maximal operator, in particular, the fact that w ∈
Ap was necessary and sufficient for the maximal operator to be bounded
on Lp(w) and Lp

′
(w1−p′). They made the following conjecture that is

still open: a sufficient condition for the Hilbert transform to satisfy the
strong (p, p) inequality H : Lp(v) → Lp(u), 1 < p < ∞, is that the
maximal operator satisfies the pair of inequalities

(1.4) M : Lp(v)→ Lp(u), M : Lp
′
(u1−p′)→ Lp

′
(v1−p′).
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Bump Ap conditions were first considered by Neugebauer [41] who
showed the following striking result: a pair of weights (u, v) satisfies
(1.2) with power bumps A(t) = tr p, A(t) = tr p

′
for some r > 1 if

and only if there exist w ∈ Ap and positive constants c1, c2 such that
c1u(x) ≤ w(x) ≤ c2v(x). From this condition we immediately get
a large number of two-weight norm inequalities as corollaries to the
analogous one-weight results. In particular, we get the two inequalities
(1.4). An immediate question was whether this condition could be
weakened and still get that the maximal operator satisfies M : Lp(v)→
Lp(u). This was answered in [43], where it was shown that a sufficient
condition for (1.4) was that the pair of weights satisfies (1.2) with
Ā ∈ Bp′ and B̄ ∈ Bp. The centrality of these Bp conditions is shown by
the fact that they are sharp within the scale of Orlicz bumps as shown
in [43]. This led naturally to the following version of the conjecture
of Muckenhoupt and Wheeden: a sufficient condition on the pair of
weights (u, v) for any singular integral to satisfy T : Lp(v) → Lp(u) is
that (1.2) holds. Progress on this conjecture was made in [11, 5, 34].
Theorem 1.3 completely solves it for the Hilbert and Riesz transforms
and the Beurling-Ahlfors operator, and as we noted above it is the best
possible result in the scale of Bp bumps. See [7] for further details and
references on this topic.

In the past decade, a great deal of attention has been focused on
proving that “testing conditions” are necessary and sufficient for two-
weight norm inequalities for singular integrals. (See Nazarov, Treil
and Volberg [39, 53, 40] and the recent preprints by Lacey, Sawyer and
Uriarte-Tuero [29, 30].) More precisely, given a singular integral T , it
is conjectured that T : Lp(v)→ Lp(u) if and only if for every cube Q,∫

Q

|T (v1−p′χQ)(x)|pu(x) dx ≤ C

∫
Q

v(x)1−p′ dx∫
Q

|T (uχQ)(x)|p′v(x)1−p′ dx ≤ C

∫
Q

u(x) dx.

The necessity of these conditions is immediate. The best known results
are for p = 2; partial results (with additional hypotheses) are known for
other values of p. These results are of great interest not only because of
the elegance of this conjecture but also because of their connection with
Tb-theorems on non-homogeneous spaces (see [53] and the references
it contains).

Testing conditions and Ap bump conditions are not readily compa-
rable: they represent two fundamentally different approaches to the
two-weight problem. While both approaches are important, we believe
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that bump conditions have several advantages over testing conditions.
First, they are universal, geometric conditions: they are independent
of the operators and any pair yields norm inequalities for a range of
operators. Second, they are much easier to check than the testing con-
ditions, and it is very easy to construct examples of weights that do
and do not satisfy a given bump condition. (For many examples and a
general technique for constructing them, see [7].) Third, they are not
tied to L2, unlike testing conditions where the transition from p = 2
to all p has proved to be very difficult. (In this regard, we note that
in [39] it was claimed—without proof—that in the specific case they
were considering, testing conditions were not sufficient.)

Maximal singular integrals. Given a singular integral T with con-
volution kernel K, recall that the associated maximal singular integral
is defined by

T∗f(x) = sup
ε>0
|Tεf(x)| = sup

ε>0

∣∣∣∣∫
|y|>ε

K(y)f(x− y) dy

∣∣∣∣ .
Somewhat surprisingly, both Theorem 1.1 and Theorem 1.3 remain true
if the singular integral is replaced by the associated maximal singular
integral.

Theorem 1.4. Given p, 1 < p <∞, and w ∈ Ap, then inequality (1.1)
holds if T is replaced by T∗, where T is the Hilbert transform, a Riesz
transform or the Beurling-Ahlfors operator. Similarly, if the pair (u, v)
satisfies (1.2), then inequality (1.3) holds if T is replaced by T∗.

In the one-weight case, Theorem 1.4 was proved very recently by
Hytönen et al. [23]. Their proof used a very general family of “max-
imal” dyadic shift operators and a characterization of the two-weight
norm inequalities for maximal singular integrals due to Lacey, Sawyer
and Uriarte-Tuero [29]. In the two-weight case this result is new. In
both the one and two-weight case our approach is to prove the corre-
sponding result for the associated maximal dyadic shift operators.

Remark 1.5. Very recently, Lerner [35] has proved Theorem 1.4 in the
one-weight case for general Calderón-Zygmund maximal singular inte-
gral operators when p > 3.

Dyadic paraproducts and constant Haar multipliers. Let ∆ de-
note the collection of dyadic cubes in R. We consider two operators
defined on the real line. A function b is in dyadic BMO, we write
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b ∈ BMOd, if

‖b‖∗,d = sup
I∈∆

(
−
∫
I

|b(x)− bI |2 dx
)1/2

<∞,

where bI = −
∫
I
b(x) dx. Given a dyadic interval I, I+ and I− are its right

and left halves, and the Haar function hI is defined by

hI(x) = |I|−1/2
(
χI−(x)− χI+(x)

)
.

Define the dyadic paraproduct πb by

πbf(x) =
∑
I∈∆

fI〈b, hI〉hI(x).

For an overview of the history and properties of the dyadic paraproduct,
we refer the reader to Pereyra [42].

Theorem 1.6. Given a function b ∈ BMOd, and p, 1 < p <∞, then
for all w ∈ Ap,

‖πbf‖Lp(w) ≤ Cp‖b‖∗,d [w]
max(1, 1

p−1)
Ap

‖f‖Lp(w).

Furthermore, given a pair (u, v) that satisfies (1.2), then

‖πbf‖Lp(u) ≤ C‖b‖∗,d‖f‖Lp(v).

In the one-weight case, Theorem 1.6 was first proved by Beznosova [2]
using Bellman function techniques. A different proof that avoided Bell-
man functions but used two-weight inequalities was given in [23].

Given a sequence α = {αI}I∈∆ ∈ `∞, define the constant Haar mul-
tiplier Tα by

Tαf(x) =
∑
I∈∆

αI 〈f, hI〉hI(x).

If αI = 1, then Tα is the identity operator. For more on the properties
of these operators, see Pereyra [42]. The analog of Theorem 1.6 is true
for constant Haar multipliers.

Theorem 1.7. Given a sequence α = {αI}I∈∆ ∈ `∞, and p, 1 < p <
∞, then for all w ∈ Ap,

‖Tαf‖Lp(w) ≤ Cp‖α‖`∞ [w]
max(1, 1

p−1)
Ap

‖f‖Lp(w).

Furthermore, given a pair (u, v) that satisfies (1.2), then

‖Tαf‖Lp(u) ≤ C‖α‖`∞‖f‖Lp(v).

In the special case when αI = ±1, Theorem 1.7 was proved by Wit-
twer [56].
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Dyadic square functions. Let ∆ denote the collection of dyadic

cubes in Rn. Given Q ∈ ∆, let Q̂ be its dyadic parent: the unique
dyadic cube containing Q whose side-length is twice that of Q. The
dyadic square function is the operator

Sdf(x) =

(∑
Q∈∆

(fQ − f bQ)2χQ(x)

)1/2

,

where fQ = −
∫
Q
f(x) dx. For the properties of the dyadic square function

we refer the reader to Wilson [55].

Theorem 1.8. Given p, 1 < p <∞, then for any w ∈ Ap,

‖Sdf‖Lp(w) ≤ Cn,p[w]
max( 1

2
, 1
p−1)

Ap
‖f‖Lp(w).

Further, the exponent max
(

1
2
, 1
p−1

)
is the best possible.

The exponent in Theorem 1.8 was first conjectured by Lerner [31]
for the continuous square function; he also showed it was the best
possible. In [33] he proved that for p > 2 the sharp exponent is at
most p′/2 > max(1

2
, 1
p−1

). When p = 2, Theorem 1.8 was proved by

Wittwer [57] and by Hukovic, Treil and Volberg [22]; this was extended
to p < 2 by extrapolation in [12] and examples were given to show that
in this range the exponent is the best possible.

Remark 1.9. Very recently, Lerner [35] proved the analog of Theo-
rem 1.8 for continuous square functions. His proof uses the intrinsic
square function introduced by Wilson [55].

Theorem 1.10. Fix p, 1 < p < ∞. Suppose 1 < p ≤ 2, and B is a
Young function such that B̄ ∈ Bp, If the pair (u, v) satisfies

(1.5) sup
Q
‖u1/p‖p,Q‖v−1/p‖B,Q <∞,

then

(1.6) ‖Sdf‖Lp(u) ≤ C‖f‖Lp(v).

Suppose 2 < p < ∞, and A and B are Young functions such that
Ā ∈ B(p/2)′ and B̄ ∈ Bp. If the pair (u, v) satisfies

(1.7) sup
Q
‖u2/p‖1/2

A,Q‖v
−1/p‖B,Q <∞,

then (1.6) holds.
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Condition (1.5) is the same condition for the maximal operator to
map Lp(v) to Lp(u), whereas condition (1.7) is more similar to the
conditions needed for singular integrals, but with a smaller “bump”
on the left. This is easier to see in the scale of “log bumps.” As we
noted above, for a singular integral we need to take A(t) = tp log(e +
t)p−1+δ, δ > 0, but for the dyadic square function it suffices to take
A(t) = tp/2 log(e + t)p/2−1+δ, which after rescaling leads to tp log(e +
t)p/2−1+δ. This difference in the behavior of the dyadic square function
depending on whether p ≤ 2 or p > 2 was first noted in [7]. There we
conjectured Theorem 1.10 was true and proved it in some special cases.
Furthermore, we proved in [7] that this result is sharp in the scale of
log bumps: if we take p > 2 and let A(t) = tp/2 log(e + t)p/2−1+δ, then
the theorem holds for δ > 0, when A ∈ B(p/2)′ , but not for δ = 0, when
A 6∈ B(p/2)′ .

Remark 1.11. Theorem 1.8 remains true if we replace the Ap condition
by the dyadic Ap condition (i.e., defined only with respect to dyadic
cubes). Similarly, Theorem 1.10 remains true if the weight conditions
are restricted to dyadic cubes. For both theorems this follows by ex-
amining the proofs and details are left to the interested reader.

The vector-valued maximal operator. Let M be the Hardy-Little-
wood maximal operator. Given a vector-valued function f = {fi}, and
q, 1 < q <∞, define the vector-valued maximal operator M q by

M qf(x) =

(
∞∑
i=1

Mfi(x)q

)1/q

.

The vector-valued maximal operator was introduced by C. Fefferman
and Stein [14]; for more information see [18].

Similar to the dyadic square function, the behavior of the vector-
valued maximal operator depends on the relative sizes of p and q.

Theorem 1.12. Fix q, 1 < q < ∞. Given p, 1 < p < ∞, if w ∈ Ap,
then

‖M qf‖Lp(w) ≤ Cp,q,n[w]
max( 1

q
, 1
p−1

)

Ap

(∫
Rn
‖f(x)‖p`qw(x) dx

)1/p

.

Further, the exponent max
(

1
q
, 1
p−1

)
is the best possible.

Theorem 1.12 is new. A slightly worse bound than Theorem 1.12
was implicit in the literature, but does not appear to have been stated
explicitly. To get this weaker estimate, note that when q = p, by the
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sharp result for the Hardy-Littlewood maximal operator we have that

‖M qf‖Lq(w) ≤ Cq,n[w]
1
q−1

Aq

(∫
Rn
‖f(x)‖q`qw(x) dx

)1/q

.

Then by adapting to this context the sharp version of the Rubio de
Francia extrapolation theorem, we get the exponent 1

q−1
if p > q and

1
p−1

if p < q. Theorem 1.12 improves this bound for p large.

Theorem 1.13. Fix q, 1 < q < ∞. Suppose 1 < p ≤ q, and B is a
Young function such that B̄ ∈ Bp. If the pair (u, v) satisfies

(1.8) sup
Q
‖u1/p‖p,Q‖v−1/p‖B,Q <∞,

then

(1.9) ‖M qf‖Lp(u) ≤ C

(∫
Rn
‖f(x)‖p`qv(x) dx

)1/p

.

Suppose q < p < ∞, and A and B are Young functions such that
Ā ∈ B(p/q)′ and B̄ ∈ Bp. If the pair (u, v) satisfies

(1.10) sup
Q
‖uq/p‖1/q

A,Q‖v
−1/p‖B,Q <∞,

then (1.9) holds.

When p > q, Theorem 1.13 is sharp in the scale of log bumps. The
example in [9] shows that if A(t) = tp/q log(e+t)p/q−1+δ, then the result
fails if δ = 0, when A 6∈ B(p/q)′ . (If δ > 0, A ∈ B(p/q)′). In the case
p ≤ q Theorem 1.13 is not new: it was first proved in [44]; for a different
proof see [7]. We include it here for completeness and to highlight the
similarity to the dyadic square function. The case p > q is new; it was
first conjectured in [7] where a few special cases were proved.

Remark 1.14. To obtain Theorems 1.12 and 1.13 we first consider the
corresponding dyadic vector-valued maximal operator and establish
both results for it. In such a case, as observed before for the dyadic
square function, we ca replace the Ap condition by the dyadic Ap con-
dition, and in (1.8), (1.10) the sup can be taken over all dyadic cubes.
Further details are left to the interested reader.

Organization. The remainder of this paper is organized as follows.
In Section 2 we gather some basic results, primarily about weighted
norm inequalities, that are needed in subsequent sections. In Section 3
we give some preliminary material about the local mean oscillation of a
function and state the decomposition theorem of Lerner. In Section 4
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we define the Haar shift operators and prove the key estimate we need
to apply Lerner’s results. In Sections 5–8 we prove our main results.
In Section 5 we prove our results for singular integrals by proving the
corresponding results for Haar shift operators. As a corollary to these
theorems we get our results for dyadic paraproducts and constant Haar
multipliers. After the proof of Theorems 1.1 and 1.3 we will briefly dis-
cuss the technical obstructions which prevent us from applying our
approach directly to a Calderón-Zygmund singular integral. The proof
for maximal singular integrals is very similar to the proof for singular
integrals, but since we introduce a new family of dyadic operators we
give these results in Section 6. The proofs for square functions and
vector-valued maximal operators are also very similar to those for sin-
gular integrals, so we will only sketch the proofs of these results in
Sections 7 and 8, highlighting the key changes.

We would like to thank Andrei Lerner and Michael Wilson for a
clarifying discussion about the results in Section 3.

2. Preliminary results

In this section we state some basic results that we will need in
our proofs. The first is the sharp one-weight bound for the Hardy-
Littlewood maximal operator. This result is due to Buckley [3]; for an
elementary proof, see Lerner [32].

Theorem 2.1. Given p, 1 < p <∞, and any w ∈ Ap,

‖Mf‖Lp(w) ≤ Cn (p′)1/p(p)1/p′ [w]
1
p−1

Ap
‖f‖Lp(w).

The next result is the sharp version of the Rubio de Francia extrap-
olation theorem due to Dragičević et al. [12].

Theorem 2.2. Suppose that for some p0, 1 < p0 < ∞, there exists
α(p0) > 0 such that for every w ∈ Ap0, a sublinear operator T satisfies

‖Tf‖Lp0 (w) ≤ Cn,T,p0 [w]
α(p0)
Ap0
‖f‖Lp0 (w).

Then for every p, 1 < p <∞,

‖Tf‖Lp(w) ≤ Cn,T,p0,p[w]
α(p0) max(1,

p0−1
p−1 )

Ap
‖f‖Lp(w).

Third, we need a norm inequality for a weighted dyadic maximal
operator.



14 DAVID CRUZ-URIBE, SFO, JOSÉ MARÍA MARTELL, AND CARLOS PÉREZ

Lemma 2.3. Let σ be a locally integrable function such that σ > 0
a.e., and define the weighted dyadic maximal operator

Md
σf(x) = sup

Q∈∆
x∈Q

1

σ(Q)

∫
Q

|f(y)|σ(y) dy.

Then for all p, 1 < p <∞,

‖Md
σf‖Lp(σ) ≤ p′‖f‖Lp(σ).

In particular, the constant is independent of σ.

This result is well known and follows by standard arguments. Clearly,
Md

σ is bounded on L∞(σ) with constant 1. It is also of weak-type
(1, 1) (with respect to σ) with constant 1; this follows from the dyadic
structure. Then by Marcinkiewicz interpolation we get the desired
estimate (see [20, Chapter 1, Exercise 1.3.3]).

In the two-weight case we will need a norm inequality for Orlicz
maximal operators. This result was proved in [43].

Theorem 2.4. Given p, 1 < p < ∞, suppose that A is a Young
function such that A ∈ Bp. Then the Orlicz maximal operator

MAf(x) = sup
x3Q
‖f‖A,Q

is bounded on Lp(Rn).

We will also need a two-weight norm inequality for the maximal
operator, also from [43].

Theorem 2.5. Given p, 1 < p < ∞, suppose that B is a Young
function such that B̄ ∈ Bp. Then for any pair (u, v) that satisfies

sup
Q
‖u1/p‖p,Q‖v−1/p‖B,Q <∞,

we have that

‖Mf‖Lp(u) ≤ C‖f‖Lp(v).

To apply Theorem 2.5 we will need to use two facts about Young
functions and Orlicz norms. First, if A is a Young function such that
Ā ∈ Bp′ , then Ā(t) ≤ C tp

′
for t ≥ 1, so that tp ≤ A(C t) for t ≥ 1, and

therefore, ‖u1/p‖p,Q ≤ C‖u1/p‖A,Q. Second, given a Young function A
we have the generalized Hölder’s inequality,

−
∫
Q

|f(x)g(x)| dx ≤ 2‖f‖A,Q‖g‖Ā,Q.

See [7] for more details.
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3. Local mean oscillation

To state Lerner’s decomposition argument we must first make some
definitions and give a few basic results. We follow the terminology and
notation in [34], which in turn is based on Fujii [16, 17] and Jawerth
and Torchinsky [27]. We note in passing that many of the underlying
ideas originated in the work of Carleson [4] and Garnett and Jones [19].

Hereafter we assume that all functions f are measurable and finite-
valued almost everywhere. Given a cube Q and λ, 0 < λ < 1, define
the local mean oscillation of f on Q by

ωλ(f,Q) = inf
c∈R

(
(f − c)χQ

)∗
(λ|Q|),

where f ∗ is the (left-continuous) non-increasing rearrangement of f :

f ∗(t) = inf
{
α > 0 : |{x ∈ Rn : |f(x)| > α}| < t

}
.

The local sharp maximal function of f relative to Q is then defined by

M#
λ,Qf(x) = sup

Q′3x
Q′⊂Q

ωλ(f,Q).

The local sharp maximal function is significantly smaller than the
C. Fefferman-Stein sharp maximal function: for all λ > 0 sufficiently
small, M(M#

λ,Qf)(x) ≤ C(n, λ)M#f(x). (See [27].)
A median value of f on Q is a (possibly not unique) number mf (Q)

such that

max
(
|{x ∈ Q : f(x) > mf (Q)}|, |{x ∈ Q : f(x) < mf (Q)}|

)
≤ |Q|

2
.

(A different but functionally equivalent definition is given in [17].) The
median plays the same role for the local sharp maximal function as the
mean does for the C. Fefferman-Stein sharp maximal function. More
precisely, for each λ, 0 < λ ≤ 1/2,

ωλ(f,Q) ≤
(
(f −mf (Q))χQ

)∗
(λ|Q|) ≤ 2ωλ(f,Q).

(The first inequality is immediate; the second follows from (3.3) be-
low and the fact that for any constant c, mf (Q) − c = mf−c(Q); see
Lerner [36].)

To estimate the median and the local mean oscillation we need sev-
eral properties. For the convenience of the reader we gather them as a
lemma and sketch their proofs.

Lemma 3.1. Given a measurable function f and a cube Q, then for
all λ, 0 < λ < 1, and p, 0 < p <∞,

(fχQ)∗(λ|Q|) ≤ λ−1/p ‖f‖Lp,∞(Q,|Q|−1dx),(3.1)
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(fχQ)∗(λ|Q|) ≤
(

1

λ|Q|

∫
Q

|f |p dx
)1/p

.(3.2)

Furthermore,

(3.3) |mf (Q)| ≤ (fχQ)∗(|Q|/2);

in particular, if f ∈ Lp for any p > 0, then mf (Q)→ 0 as |Q| → ∞.

Proof. Inequality (3.2) follows immediately from (3.1). To prove this
inequality, fix α < (fχQ)∗(λ|Q|). Then

λ−1/p ‖f‖Lp,∞(Q,|Q|−1dx) ≥ λ−1/p|Q|−1/pα|{x ∈ Q : |f(x)| > α}|1/p ≥ α.

Since this is true for all such α, (3.1) follows at once.
To prove (3.3) we consider two cases. Suppose mf (Q) ≥ 0. Define

m+ = sup{β ≥ mf (Q) : |{x ∈ Q : f(x) < β}| ≤ |Q|/2};
then 0 ≤ mf (Q) ≤ m+ so it will be enough to prove m+ ≤ f ∗(|Q|/2).
Take any α > 0 such that

|{x ∈ Q : |f(x)| > α}| < |Q|/2.
Then

|{x ∈ Q : f(x) ≤ α}| ≥ |{x ∈ Q : |f(x)| ≤ α}| > |Q|/2.
Hence, for any β > α,

|{x ∈ Q : f(x) < β}| ≥ |{x ∈ Q : f(x) ≤ α}| > |Q|/2,
and so β ≥ m+. Since this is true for all β > α, we have that α ≥ m+,
and taking the infimum of all such α we get that (fχQ)∗(|Q|/2) ≥ m+.

Finally if mf (Q) < 0, define g(x) = −f(x). Then −mf (Q) is
a median of g and the previous case yields |mf (Q)| = −mf (Q) ≤
g∗(|Q|/2) = f ∗(|Q|/2). �

Remark 3.2. Inequality (3.1) is central to our proofs as it allows us
to use weak (1, 1) inequalities directly in our estimates. By way of
comparison, in [5] a key technical difficulty resulted from having to use
Kolmogorov’s inequality rather than the weak (1, 1) inequality for a
singular integral. Overcoming this is the reason the results there were
limited to log bumps.

To state Lerner’s decomposition theorem, we generalize our notation
slightly: given a cube Q0, let ∆(Q0) be the collection of dyadic cubes

relative to Q0. Given Q ∈ ∆(Q0), Q 6= Q0, let Q̂ be its dyadic parent:
the unique cube in ∆(Q0) containing Q whose side-length is twice that
of Q.
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Theorem 3.3. ([34]) Given a measurable function f and a cube Q0,
for each k ≥ 1 there exists a (possibly empty) collection of pairwise
disjoint cubes {Qk

j} ⊂ ∆(Q0) such that if Ωk =
⋃
j Q

k
j , then Ωk+1 ⊂ Ωk

and |Ωk+1 ∩Qk
j | ≤ 1

2
|Qk

j |. Furthermore, for almost every x ∈ Q0,

|f(x)−mf (Q0)| ≤ 4M#
1
4
,Q0
f(x) + 4

∑
k,j

ω 1
2n+2

(f, Q̂k
j )χQkj (x).

Remark 3.4. If for all j and k we define Ek
j = Qk

j \Ωk+1, then the sets

Ek
j are pairwise disjoint and |Ek

j | ≥ 1
2
|Qk

j |.

Remark 3.5. Though it is not explicit in [34], it follows at once from the

proof that we can replace M#
1
4
,Q0

by the corresponding dyadic operator

M#,d
1
4
,Q0

, where

M#,d
λ,Qf(x) = sup

x∈Q′∈∆(Q)

ωλ(f,Q
′).

Intuitively, one may think of the cubes {Qk
j} as being the analog of

the Calderón-Zygmund cubes for the function f −mf (Q0) but defined
with respect to the median instead of the mean. The cubes Qk

j are
maximal dyadic cubes with respect to a dyadic local sharp maximal
operator. The terms on the right-hand side of the above inequality
then play a role like that of the good and bad parts of the Calderón-
Zygmund decomposition. A key difference, of course, is that while the
Calderón-Zygmund decomposition is done at one “scale,” the above
theorem requires that we estimate the local mean oscillation of f at all
scales.

4. The Haar shift operators

To prove Theorems 1.1 and 1.3 we need to prove the corresponding
inequalities for certain dyadic operators that can be used to approx-
imate the Hilbert transform, the Riesz transforms and the Beurling-
Ahlfors operator. We follow the approach used in [28] and consider si-
multaneously a family of dyadic operators—the Haar shift operators—
that contains all the operators we are interested in.

Let ∆ be the set of dyadic cubes in Rn. For our arguments we
properly need to consider the sets ∆s,t, s ∈ Rn, t > 0, of translations
and dilations of dyadic cubes. However, it will be immediate that all of
our arguments for dyadic cubes extend to these more general families,
so without loss of generality we will restrict ourselves to dyadic cubes.

We define a Haar function on a cube Q ∈ ∆ to be a function hQ such
that
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(a) supp(hQ) ⊂ Q;
(b) if Q′ ∈ ∆ and Q′ ( Q, then hQ is constant on Q′;
(c) ‖hQ‖∞ ≤ |Q|−1/2;
(d)

∫
Q
hQ(x) dx = 0.

Given an integer τ ≥ 0, a Haar shift operator of index τ is an operator
of the form

Hτf(x) =
∑
Q∈∆

∑
Q′,Q′′∈∆(Q)

2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈f, hQ′〉hQ′′(x),

where aQ′,Q′′ is a constant such that

|aQ′,Q′′ | ≤ C

(
|Q′|
|Q|
|Q′′|
|Q|

)1/2

.

We say that Hτ is a CZ Haar shift operator if it is bounded on L2.
An important example of a Haar shift operator when n = 1 is the

Haar shift (also known as the dyadic Hilbert transform) Hd, defined
by

Hdf(x) =
∑
I∈∆

〈f, hI〉
(
hI−(x)− hI+(x)

)
,

where, as before, given a dyadic interval I, I+ and I− are its right and
left halves, and

hI(x) = |I|−1/2
(
χI−(x)− χI+(x)

)
.

Clearly hI is a Haar function on I and one can write Hd as a Haar
shift operator of index τ = 1 with aI′,I′′ = ±1 for I ′ = I, I ′′ = I±
and aI′,I′′ = 0 otherwise. These are the operators used by Peter-
michl [46, 47] to approximate the Hilbert transform. More precisely,
she used the family of operators Hd

s,t, s ∈ R, t > 0, which are defined
as above but with the dyadic grid replaced by its translation by s and
dilation by t. The Hilbert transform is then the limit of integral aver-
ages of these operators, so norm inequalities for H follow from norm
inequalities for Hd

s,t by Fatou’s lemma and Minkowski’s inequality. Sim-
ilar approximations hold for the Riesz transforms and Beurling-Ahlfors
operator, and we refer the reader to [48, 49] for more details.

To apply Theorem 3.3 to the Haar shift operators we need two lem-
mas. The first is simply that CZ Haar shift operators satisfy a weak
(1, 1) inequality. The proof of this is known but we could not find it in
the literature, except when τ = 0—in this case Hτ is a constant Haar
multiplier and the proof is given in [42]. Therefore, we provide a brief
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sketch of the details. Here and below we will use the following nota-
tion: given an integer τ ≥ 0 and a dyadic cube Q, let Qτ denote its τ -th
generation “ancestor”: that is, the unique dyadic cube Qτ containing
Q such that |Qτ | = 2τn|Q|.

Lemma 4.1. Given an integer τ ≥ 0, there exists a constant Cτ,n such
that for every t > 0,

|{x ∈ Rn : |Hτf(x)| > t}| ≤ Cτ,n
t

∫
Rn
|f(x)| dx.

Proof. Fix t > 0 and form the Calderón-Zygmund decomposition of
f at height t. Decompose f as the sum of the good and bad parts,
g + b. The estimate for g is standard. For b, since Lebesgue measure
is doubling, it suffices to show that the set

|{x ∈ Rn \ (∪jQτ
j ) : |Hτb(x)| > t/2}|

has measure 0. Fix j and x ∈ Rn \ Qτ
j ; then we would be done if

we could show that Hτbj(x) = 0. Fix a term aQ′,Q′′〈bj, hQ′〉hQ′′(x) in
the sum defining Hτbj(x). If this is non-zero, then hQ′′(x) 6= 0, so
Q′′ ∩ Rn \ Qτ

j 6= Ø. Since Q′′ ⊂ Q, Q ∩ Rn \ Qτ
j 6= Ø. On the other

hand, since
∫
Qj
bj(x) dx = 0, 〈bj, hQ′〉 6= 0 only if Q′ ⊂ Qj, which in

turn implies that Q ⊂ Qτ
j , a contradiction. �

Our second lemma is a key estimate that is a sharper variant of a
result known for Calderón-Zygmund singular integrals (see [27]) and
whose proof is similar. For completeness we include the details.

Lemma 4.2. Given τ ≥ 0, let Hτ be a CZ Haar shift operator. Fix λ,
0 < λ < 1. Then for any function f , every dyadic cube Q0, and every
x ∈ Q0,

ωλ(Hτf,Q0) ≤ Cτ,n
λ
−
∫
Qτ0

|f(x)| dx,

M#,d
λ,Q0

(Hτf)(x) ≤ Cτ,n
λ

Mdf(x).

Proof. It suffices to prove the first inequality; the second follows imme-
diately from the definition of M#,d

λ,Q0
. Fix Q0 and write Hτ as the sum

of two operators:

Hτf(x) = Hτ (fχQτ0 )(x) +Hτ (fχRn\Qτ0 )(x).

We claim the second term is constant for all x ∈ Q0. Let Q be
any dyadic cube. Then the corresponding term in the sum defining
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Hτ (fχRn\Qτ0 )(x) is

(4.1)
∑

Q′,Q′′∈∆(Q)
2−τn|Q|≤|Q′|,|Q′′|

aQ′,Q′′〈fχRn\Qτ0 , hQ′〉hQ′′(x).

We may assume that Q′′ ∩ Q0 6= Ø (otherwise we get a zero term);
since Q′′ ⊂ Q, this implies that Q ∩ Qτ

0 6= Ø. Similarly, we have
Q ∩ (Rn \ Qτ

0) 6= Ø. Therefore, Qτ
0 ( Q, so |Q0| < 2−τn|Q| ≤ |Q′′|.

Hence, Q0 ( Q′′ and hQ′′ is constant on Q0. Thus, (4.1) does not
depend on x and so is constant on Q0.

Denote this constant by Hτf(Q0); then

|{x ∈ Q0 : |Hτf(x)−Hτf(Q0)| > t}| = |{x ∈ Q0 : |Hτ (fχQτ0 )(x)| > t}|.
Since Hτ is a CZ Haar shift operator it is weak (1, 1). Therefore, by
inequality (3.1),

ωλ(Hτf,Q0) ≤
(
(Hτf −Hτf(Q0))χQ0

)∗
(λ|Q0|)

≤ λ−1‖Hτ (fχQτ0 )‖L1,∞(Q0,|Q0|−1dx) ≤
Cτ,n
λ
−
∫
Qτ0

|f(x)| dx.

�

5. Singular integrals, paraproducts and Haar multipliers

In this section we prove Theorems 1.1, 1.3, 1.6 and 1.7. The principal
results are the first two for singular integrals; the results for paraprod-
ucts and constant Haar multipliers are variations of these and we will
only sketch the changes. We will also indicate the technical obstacles in
attempting to apply our results to general Calderón-Zygmund singular
integrals.

One weight inequalities: proof of Theorem 1.1. As we discussed
in the previous section, to prove Theorem 1.1 it will suffice to establish
the analogous result for Haar shift operators.

Theorem 5.1. Given an integer τ ≥ 0 and a CZ Haar shift operator
Hτ , and given p, 1 < p <∞, then for any w ∈ Ap,

‖Hτf‖Lp(w) ≤ Cτ,n,p [w]
max(1, 1

p−1)
Ap

‖f‖Lp(w).

Proof of Theorem 5.1. By Theorem 2.2 it will suffice to prove that

‖Hτf‖L2(w) ≤ Cτ,n[w]A2‖f‖L2(w).

Fix w ∈ A2 and fix f . By a standard approximation argument we may
assume without loss of generality that f is bounded and has compact
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support. Let Rn
j , 1 ≤ j ≤ 2n, denote the n-dimensional quadrants

in Rn: that is, the sets I± × I± × · · · × I± where I+ = [0,∞) and
I− = (−∞, 0).

For each j, 1 ≤ j ≤ 2n, and for each N > 0 let QN,j be the dyadic
cube adjacent to the origin of side length 2N that is contained in Rn

j .
Since QN,j ∈ ∆, ∆(QN,j) ⊂ ∆. Because Hτ is a CZ shift operator, it is
bounded on L2. Thus, since f ∈ L2, by (3.3) and (3.2), mHτf (QN,j)→
0 as N →∞. Therefore, by Fatou’s lemma and Minkowski’s inequality,

‖Hτf‖L2(w) ≤ lim inf
N→∞

2n∑
j=1

(∫
QN,j

|Hτf(x)−mHτf (QN,j)|2w(x) dx

)1/2

.

Hence, it will suffice to prove that each term in the sum on the right
is bounded by Cτ,n[w]A2‖f‖L2(w).

Fix j and let QN = QN,j. By Theorem 3.3 and Lemma 4.2, for every
x ∈ QN we have that

|Hτf(x)−mHτf (QN)|(5.1)

≤ 4M#,d
1
4
,QN

(Hτf)(x) + 4
∑
j,k

ω 1
2n+2

(Hτf, Q̂
k
j )χQkj (x)

≤ Cτ,nMf(x) + Cτ,n
∑
j,k

(
−
∫
Pkj

|f(x)| dx

)
χQkj (x)

= Cτ,nMf(x) + Cτ,n F (x),

where P k
j = (Q̂k

j )
τ . We get the desired estimate for the first term from

Theorem 2.1 with p = 2:

‖Mf‖L2(QN ,w) ≤ ‖Mf‖L2(w) ≤ Cn [w]A2‖f‖L2(w).

To estimate F we use duality. Fix a non-negative function h ∈ L2(w)
with ‖h‖L2(w) = 1; then by Remark 3.4 and Lemma 2.3 we have that∫
QN

F (x)h(x)w(x) dx = Cτ,n
∑
j,k

−
∫
Pkj

|f(x)| dx
∫
Qkj

w(x)h(x) dx

≤ 2 · 2(τ+1)n
∑
j,k

w(P k
j )

|P k
j |

w−1(P k
j )

|P k
j |

|Ek
j |

× 1

w−1(P k
j )

∫
Pkj

|f(x)|w(x)w(x)−1 dx

× 1

w(Qk
j )

∫
Qkj

h(x)w(x) dx
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≤ Cτ,n [w]A2

∑
j,k

∫
Ekj

Md
w−1(fw)(x)Md

wh(x) dx

≤ Cτ,n [w]A2

∫
Rn
Md

w−1(fw)(x)Md
wh(x) dx

≤ Cτ,n [w]A2

(∫
Rn
Md

w−1(fw)(x)2w(x)−1 dx

)1/2

×
(∫

Rn
Md

wh(x)2w(x) dx

)1/2

≤ Cτ,n [w]A2

(∫
Rn
|f(x)w(x)|2w(x)−1 dx

)1/2

×
(∫

Rn
h(x)2w(x) dx

)1/2

= Cτ,n [w]A2

(∫
Rn
|f(x)|2w(x) dx

)1/2

.

If we take the supremum over all such functions h, we conclude that

‖F‖L2(QN ,w) ≤ Cτ,n [w]A2 ‖f‖L2(w).

Combining our estimates we have that(∫
QN

|Hτf(x)−mHτf (QN)|2w(x) dx

)1/2

≤ Cτ,n [w]A2‖f‖L2(w),

and this completes the proof. �

Two weight inequalities: Proof of Theorem 1.3. To prove Theo-
rem 1.3 it will suffice to establish the corresponding result for the Haar
shift operators. We record this as a separate result.

Theorem 5.2. Given an integer τ ≥ 0, let Hτ be a CZ Haar shift
operator. Given p, 1 < p < ∞, and let A and B be Young functions
such that Ā ∈ Bp′ and B̄ ∈ Bp. Then for any pair (u, v) such that (1.2)
holds we have that

‖Hτf‖Lp(u) ≤ C‖f‖Lp(v).

Proof of Theorem 5.2. The proof is very similar to the proof of Theo-
rem 5.1 replacing the A2 estimates with an argument from the second
half of the proof of the main theorem in [5]; therefore, we omit many
of the details.
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We argue as in the one-weight case and with the same notation; it
will suffice to prove(∫

QN

|Hτf(x)−mHτf (QN)|pu(x) dx

)1/p

≤ C‖f‖Lp(v)

and we use (5.1). The estimate of the term containing the maximal
operator is straightforward: by Theorem 2.5 we have M : Lp(v) →
Lp(u) since the pair (u, v) satisfies (1.2). Therefore, by duality (this
time with respect to Lebesgue measure) it is enough to show that for
every non-negative h ∈ Lp′(Rn) with ‖h‖Lp′ = 1,

I =

∫
QN

F (x)u(x)1/p h(x) dx ≤ C‖f‖Lp(v).

We apply Remark 3.4 and the generalized Hölder’s inequality to get

I ≤ C
∑
j,k

−
∫
Pkj

|f(x)| dx−
∫
Qkj

u(x)1/ph(x) dx |Ek
j |

≤ C
∑
j,k

‖fv1/p‖B̄,Pkj ‖v
−1/p‖B,Pkj ‖u

1/p‖A,Qkj ‖h‖Ā,Qkj |E
k
j |.

By convexity, ‖u1/p‖A,Qkj ≤ 2n(τ+1)‖u1/p‖A,Pkj , so since the pair (u, v)

satisfies (1.2),

I ≤ C
∑
j,k

∫
Ekj

MB̄(fv1/p)(x)MĀh(x) dx

≤ C

∫
Rn
MB̄(fv1/p)(x)MĀh(x) dx.

Since Ā ∈ Bp′ and B̄ ∈ Bp, by Theorem 2.4, MB̄ is bounded on Lp and
MĀ is bounded in Lp

′
. The desired estimate now follows by Hölder’s

inequality. �

General Calderón-Zygmund singular integrals. Key to the proofs
of Theorems 5.1 and 5.2 are the sharp estimates for the local mean os-
cillation in Lemma 4.2. If we were to try to extend these proofs to an
arbitrary Calderón-Zygmund singular integral T , then we would have
to estimate the local mean oscillation by a sum (see [27]):

ωλ(Tf,Q) ≤ C
∞∑
i=0

2−i−
∫

2iQ

|f(x)| dx.

If we use this estimate in the proof of Theorem 5.1, then we still
get that T is bounded (since the sum is bounded by 2 infx∈QMf(x)),
but we get an additional factor of [w]A2 . The proof of Theorem 5.2
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can be modified to handle this sum, but to get convergence you need
the additional assumption that p > n. This is the approach used by
Lerner [34]. This (seemingly artificial) restriction p > n also appears
in [5]. It would be very interesting to find a refinement of Theorem 3.3
that would let us remove this restriction. Alternatively, it is tempting
to conjecture that the estimate above could be improved by replacing
2−i by 2−(n+ε)i, which would be sufficient to adapt the proofs in both
the one and two-weight case. However, it is not clear that such an
inequality is true, even for singular integrals with smooth kernels.

Dyadic paraproducts and Haar multipliers: Proof of Theo-
rems 1.6 and 1.7. The proof of Theorem 1.6 is essentially identical
to the proof of the corresponding results for singular integrals once we
prove the analog of Lemma 4.2:

ωλ(πbf,Q) ≤ C‖b‖∗,d
λ
−
∫
Q

|f(x)| dx.

The proof follows as before. The dyadic paraproduct is a local oper-
ator, since for any I ∈ ∆, hI is constant on proper dyadic sub-intervals
of I, and so, given a fixed dyadic interval I0, πb(fχR\I0) is constant
on I0. Furthermore, πb is bounded on Lp and satisfies a weak (1, 1)
inequality: for every t > 0,

|{x ∈ R : |πbf(x)| > t}| ≤ C‖b‖∗,d
t

∫
R
|f(x)| dx.

For a proof, see Pereyra [42].

Theorem 1.7 is actually a special case of Theorems 5.1 and 5.2, since
the constant Haar multipliers are clearly Haar shift operators of index
τ = 0. The dependence on ‖α‖`∞ follows at once by linearity.

6. Maximal singular integrals

In this section we prove Theorem 1.4. To do so, we will follow the ap-
proach used by Hytönen et al. [23] and actually prove the corresponding
result for a family of “maximal” dyadic shift operators. The underlying
dyadic operators are a generalization of the Haar shift operators de-
fined in Section 4. As noted in [23], the results for the maximal singular
integrals associated to the Hilbert transform, the Riesz transforms and
the Beurling-Ahlfors operator are gotten by the same approximation
arguments as we discussed above.

We begin by defining the appropriate shift operators. To distinguish
them from the operators defined above, we will refer to them as gen-
eralized Haar shift operators. (In [23] they are simply referred to as
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Haar shift operators, but our change in terminology should not cause
any confusion.) We say that an operator T is a generalized Haar shift
operator of index τ ≥ 0 if

Tf =
∑
Q∈∆

〈f, gQ〉 γQ,

where the functions γQ are such that:

(a) supp(γQ) ⊂ Q;
(b) if Q′ ∈ ∆ and Q′ ⊂ Q with |Q′| ≤ 2−τ n |Q|, then γQ is constant

on Q′;
(c) ‖γQ‖∞ ≤ |Q|−1/2.

The functions gQ also have these properties. Finally we assume that
the functions γQ, gQ are such that T extends to a bounded operator on
L2. Together, these hypotheses imply that T is of weak-type (1, 1) (see
[23]). Examples of generalized Haar shift operators include the dyadic
paraproducts and their adjoints.

Associated with a generalized Haar shift operator T is the maximal
Haar shift operator

T∗f = sup
ε>0
|Tεf | = sup

ε>0

∣∣∣∣ ∑
Q∈∆
|Q|≥εn

〈f, gQ〉 γQ
∣∣∣∣,

We again have that T∗ is bounded on L2 and is of weak-type (1, 1) (see
[23]).

Our main result for maximal Haar shift operators is the following.

Theorem 6.1. Let T be a generalized Haar shift operator of index
τ ≥ 0, and let T∗ be the corresponding maximal Haar shift operator.
Then, for every p, 1 < p <∞, and for all w ∈ Ap,

‖T∗f‖Lp(w) ≤ Cτ,n,p[w]
max(1, 1

p−1)
Ap

‖f‖Lp(w).

Furthermore, if the pair of weights (u, v) satisfies (1.2), then

‖T∗f‖Lp(u) ≤ C‖f‖Lp(v).

The proof of Theorem 6.1 is very much the same as the proofs of
Theorem 5.1 and 5.2, so we will only describe the differences between
the two arguments. First, if f is bounded and has compact support,
supε>0 |mTεf (Q)| → 0 as |Q| → ∞. Indeed, by (3.3) and (3.2),

sup
ε>0
|mTεf (Q)| ≤ 21/p sup

ε>0

(
1

|Q|

∫
Q

|Tεf |2 dx
)1/2

≤ |Q|−1/2 ‖T∗f‖L2 ,
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and the right-hand term tends to 0 as |Q| → ∞ since T∗ is bounded on
L2. Now fix j, 1 ≤ j ≤ n, and as before let QN = QN,j. Then in the
one-weight case by Fatou’s lemma we have that∫

Rnj
|T∗f(x)|2w(x) dx

≤ lim inf
N→∞

∫
QN

∣∣ sup
ε>0
|Tεf(x)| − sup

ε>0
|mTεf (QN)|

∣∣2w(x) dx

≤ lim inf
N→∞

∫
QN

sup
ε>0
|Tεf(x)−mTεf (QN)

∣∣2w(x) dx.

In the two-weight case we get the same inequality with 2 replaced by
p and w with the weight u.

Fix ε > 0 and apply Theorem 3.3. To continue the proof we need
an analog of Lemma 4.2 that takes into account the supremum. This
in turn reduces to showing the following: given λ, 0 < λ < 1, and a
dyadic cube Q0, for every x ∈ Q0

(6.1) sup
ε>0

ωλ(Tεf,Q0) ≤ Cτ,n
λ
−
∫
Qτ0

|f(x)| dx.

Given inequality (6.1) the remainder of the proof in both the one and
two-weight case proceeds exactly as before.

To prove (6.1) we proceed as in the proof of Lemma 4.2. Fix ε > 0;
since Tε is linear,

Tεf(x) = Tε(fχQτ0 )(x) + Tε(fχRn\Qτ0 )(x)

We claim that the second term is constant for all x ∈ Q0; denote it by
Tε(Q0). Assuming this for the moment, we have that

|{x ∈ Q0 : |Tεf(x)− Tεf(Q0)| > t}| = |{x ∈ Q0 : |Tε(fχQτ0 )(x)| > t}|
≤ |{x ∈ Q0 : T∗(fχQτ0 )(x) > t}|

≤ C

t

∫
Qτ0

|f(x)| dx,

where we have used that T∗ is of weak-type (1, 1). Inequality (6.1)
follows at once from this and (3.1):

sup
ε>0

ωλ(Tεf,Q0)

≤ sup
ε>0

(
(Tεf − Tεf(Q0))χQ0

)∗
(λ|Q0|) ≤

Cτ,n
λ
−
∫
Qτ0

|f(x)| dx.
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It remains to show that Tεf(Q0) is indeed a constant. Fix x ∈ Q0;
then

Tε(fχRn\Qτ0 )(x) =
∑
Q∈∆
|Q|≥εn

〈fχRn\Qτ0 , gQ〉γQ(x).

We may restrict the sum to those cubes Q satisfying Q ∩Q0 6= Ø and
Q ∩ (Rn \ Qτ

0) 6= Ø since otherwise we get terms equal to 0. In this
case, Qτ

0 ( Q, and consequently Q0 ⊂ Q with |Q0| < 2−τ n |Q|. This
implies that γQ is constant on Q0 which proves our claim.

7. The dyadic square function

To prove our results for the dyadic square function we must first give
a version of Lemma 4.2. The key change, however, is that we prove it
not for Sdf but for (Sdf)2.

Lemma 7.1. Fix λ, 0 < λ < 1. Then for any function f , every dyadic
cube Q0, and every x ∈ Q0,

ωλ((Sdf)2, Q0) ≤ Cn
λ2

(
−
∫
Q0

|f(x)| dx
)2

,

M#,d
λ,Q0

((Sdf)2)(x) ≤ Cn
λ2
Mdf(x)2.

Proof. It suffices to prove the first inequality; the second follows imme-
diately from the definition of M#,d

λ,Q0
. Fix Q0; then for every x ∈ Q0 we

can decompose Sdf(x)2 as

Sdf(x)2 =
∑
Q∈∆
Q(Q0

|fQ − f bQ|2χQ(x) +
∑
Q∈∆
Q⊃Q0

|fQ − f bQ|2.

The second term is a constant; denote it by Sdf(Q0)2. Furthermore,
we have that for x ∈ Q0,

0 ≤ Sdf(x)2 − Sdf(Q0)2 =
∑
Q∈∆
Q(Q0

|fQ − f bQ|2χQ(x) ≤ Sd(fχQ0)(x)2.

Hence, since Sd is weak (1, 1) (see, for instance, [55]), for every t > 0
we have that

|{x ∈ Q0 : |Sdf(x)2 − Sdf(Q0)2| > t}|

≤ |{x ∈ Q0 : |Sd(fχQ0)(x)| > t1/2}| ≤ Cn
t1/2

∫
Q0

|f(x)| dx.

Therefore, by (3.1) with p = 1/2,
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ωλ((Sdf)2, Q0)

≤
(
((Sdf)2 − Sdf(Q0)2)χQ0

)∗
(λ|Q0|) ≤

Cn
λ2

(
−
∫
Q0

|f(x)| dx
)2

.

�

One weight inequalities: Proof of Theorem 1.8. The proof is a
variation of the proof of Theorem 5.1 and we describe the main changes.
The first is that rather than proving this result for p = 2, we choose
p = 3, so that 1/2 = (p− 1)−1. Then by Theorem 2.2 it will suffice to
prove that for any w ∈ A3,

‖Sdf‖L3(w) ≤ Cn[w]
1
2
A3
‖f‖L3(w).

Fix w ∈ A3 and j, 1 ≤ j ≤ 2n. As before, let QN = QN,j. Then,(∫
Rnj
|Sdf(x)|3w(x) dx

)2/3

≤ lim inf
N→∞

(∫
QN

|Sdf(x)2 −m(Sdf)2(QN)|3/2w(x) dx

)2/3

.

By Theorem 3.3 and Lemma 7.1, for every x ∈ QN we have

|Sdf(x)2 −m(Sdf)2(QN)|(7.1)

≤ CnMf(x)2 + Cn
∑
j,k

(
−
∫

bQkj |f(x)| dx

)2

χQkj (x)

= CnMf(x)2 + Cn F (x).

To estimate the first term we use Theorem 2.1 with p = 3:

‖(Mf)2‖L3/2(QN ,w) ≤ ‖Mf‖2
L3(w) ≤ Cn [w]A3‖f‖2

L3(w).

To estimate F we use duality. Fix a non-negative function h ∈ L3(w)
with ‖h‖L3(w) = 1; then Remark 3.4 and Lemma 2.3 yield∫
QN

F (x)h(x) dx =
∑
j,k

(
−
∫

bQkj |f(x)| dx

)2 ∫
Qkj

w(x)h(x) dx

≤ 2n+1
∑
j,k

w(Q̂k
j )

|Q̂k
j |

(
w−1/2(Q̂k

j )

|Q̂k
j |

)2

|Ek
j |

×

(
1

w−1/2(Q̂k
j )

∫
bQkj |f(x)|w(x)1/2w(x)−1/2 dx

)2
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× 1

w(Qk
j )

∫
Qkj

h(x)w(x) dx

≤ Cn[w]A3

∑
j,k

∫
Ekj

Md
w−1/2(fw

1/2)(x)2Md
wh(x) dx

≤ Cn[w]A3

∫
Rn
Md

w−1/2(fw
1/2)(x)2Md

wh(x) dx

≤ Cn[w]A3

(∫
Rn
Md

w−1/2(fw
1/2)(x)3w(x)−1/2 dx

)2/3

×
(∫

Rn
Md

wh(x)3w(x) dx

)1/3

≤ Cn[w]A3

(∫
Rn
|f(x)w(x)1/2|3w(x)−1/2 dx

)2/3

×
(∫

Rn
h(x)3w(x) dx

)1/3

= Cn[w]A3‖f‖2
L3(w).

Taking the supremum over all such functions h we conclude that

‖F‖L3/2(QN ,w) ≤ Cn[w]A3‖f‖2
L3(w).

If we combine the two estimates we get(∫
QN

|Sdf(x)2 −m(Sdf)2(QN)|3/2w(x) dx

)1/3

≤ Cn [w]
1/2
A3
‖f‖L3(w),

and the desired inequality follows as before.

The exponent max
(

1
2
, 1
p−1

)
is the best possible. As we noted above,

for p ≤ 2 specific examples were constructed by Dragičević et al. [12].
For p > 2, a proof was sketched by Lerner [31], adapting an argu-
ment for singular integrals due to R. Fefferman and Pipher [15]. For
completeness we give the details.

If 2 < p ≤ 3, then the sharpness of this exponent follows at once by
extrapolation. For suppose there existed p0 in this range such that the
best possible exponent satisfied α(p0) < 1

p0−1
. Then by Theorem 2.2,

we get that the exponent in the weighted L2 inequality is

α(p0) max

(
1,
p0 − 1

2− 1

)
< 1,

contradicting the fact that the best possible exponent is 1.
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We now consider the case p > 3. Suppose to the contrary that there
exists a non-decreasing function φ such that φ(t)/t1/2 → 0 as t → ∞,
and suppose that for some p0 > 2,

(7.2) ‖Sdf‖Lp0 (w) ≤ Cn,p0φ([w]Ap0 )‖f‖Lp0 (w).

We will show that this implies for all p > p0 that

(7.3) ‖Sdf‖Lp ≤ C1φ(C2p)‖f‖Lp .

Below we will give an example to show that this is a contradiction.
To prove (7.3), fix p > p0 and fix a non-negative function h ∈ L(p/p0)′ ,
‖h‖L(p/p0)′ (Rn) = 1. Define the Rubio de Francia iteration algorithm

(see [7])

Rh =
∞∑
k=0

Mkh

2k ‖M‖k
L(p/p0)′ (Rn)

.

Then it follows from this definition that ‖Rh‖L(p/p0)′ (Rn) ≤ 2 and

[Rh]Ap0 ≤ [Rh]A1 ≤ 2 ‖M‖L(p/p0)′ (Rn) ≤ Cn,p0p.

Therefore, by (7.2) and Hölder’s inequality,∫
Rn
Sdf(x)p0h(x) dx ≤

∫
Rn
Sdf(x)p0Rh(x) dx

≤ Cn,p0φ([Rh]Ap0 )p0
∫

Rn
f(x)p0Rh(x) dx ≤ Cn,p0φ(Cn,p0p)

p0‖f‖p0Lp(Rn).

Inequality (7.3) now follows by duality, giving us the desired contra-
diction.

It remains to show that (7.3) cannot hold. This result is known: see,
for instance, Wang [54]. For completeness, here we construct a simple
example of a function f on the real line such that ‖Sdf‖p ≥ cp1/2‖f‖p.
Define the function f on R by

f(x) =
∞∑
j=0

χ(2−2j−1,2−2j)(x).

Then

‖f‖p =

(
∞∑
j=0

2−2j − 2−2j−1

)1/p

=

(
1

2

∞∑
j=0

2−2j

)1/p

=

(
2

3

)1/p

≤ 1.

To estimate the norm of Sdf , let Fi = fQi , i ≥ 1, denote the average
of f on the interval Qi = [0, 2−i). Then repeating the above calculation
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shows that

F2i = 22i

∞∑
j=i

2−2j − 2−2j−1 =
2

3
.

Since the integrals of f on Q2i and Q2i−1 are the same, F2i−1 = 1
3
.

Therefore, given i ≥ 2, if 2−2i−1 < x < 2−2i,

Sdf(x)2 ≥
∑

1≤j≤i

∣∣F2j − F2j−1

∣∣2 =
i

9
≥ c log(1/x).

The same estimate (with a smaller constant c) holds when 2−2i < x <
2−2i+1. Therefore,

‖Sdf‖p ≥ c

(∫ 2−3

0

log(1/x)p/2 dx

)1/p

≥ c

(
∞∑
k=3

kp/2e−k

)1/p

≥ cp1/2,

where to get the last estimate we drop all the terms in the sum except
for k = [p] + 2. Combining these two estimates, we see that

‖Sdf‖p ≥ cp1/2‖f‖p,
which is what we wanted to prove.

Two weight inequalities: Proof of Theorem 1.10. Fix p, 1 <
p <∞. Then, arguing as before it suffices to show that(∫

QN

|Sdf(x)2 −m(Sdf)2(QN)|p/2u(x) dx

)2/p

≤ C ‖f‖2
Lp(v).

We again use (7.1). To estimate the term containing M , note that we
have

‖(Mf)2‖Lp/2(QN ,u) ≤ ‖Mf‖2
Lp(u) ≤ C ‖f‖2

Lp(v),

where we have used Theorem 2.5 and the fact that (u, v) satisfies (1.5)
when 1 < p ≤ 2 or (1.7) when p > 2.

To estimate F we consider two cases. Suppose first that 1 < p ≤ 2.
Then we use that p/2 ≤ 1, inequality (1.5), and Theorem 2.4 and the
fact that B̄ ∈ Bp to get∫

QN

F (x)p/2 u(x) dx ≤
∑
j,k

(
−
∫

bQkj |f(x)| dx

)p

u(Qk
j )

≤ C
∑
j,k

−
∫
Qkj

u(x) dx ‖v−1/p‖p
B, bQkj ‖fv1/p‖p

B̄, bQkj |Ek
j |

≤ C
∑
j,k

∫
Ekj

MB̄(fv1/p)(x)p dx
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≤ C

∫
Rn
MB̄(fv1/p)(x)p dx

≤ C‖f‖pLp(v).

Combining these two estimates we get the desired inequality.

Now suppose that p > 2. In this case the proof is very similar
to the proof of Theorem 5.2 and we highlight the changes. To use
duality with respect to Lebesgue measure, fix a non-negative function
h ∈ L(p/2)′(Rn) with ‖h‖L(p/2)′ = 1. Then (1.7) gives∫

QN

F (x)u(x)2/p h(x) dx

≤ C
∑
j,k

(
−
∫

bQkj |f(x)| dx

)2

−
∫
Qkj

u(x)2/ph(x) dx |Ek
j |

≤ C
∑
j,k

‖fv1/p‖2
B̄, bQkj ‖v−1/p‖2

B, bQkj ‖u2/p‖A,Qkj ‖h‖Ā,Qkj |E
k
j |

≤ C
∑
j,k

∫
Ekj

MB̄(fv1/p)(x)2MĀh(x) dx

≤ C

∫
Rn
MB̄(fv1/p)(x)2MĀh(x) dx

≤ C ‖MB̄(fv1/p)(x)‖2
Lp ‖MĀh‖L(p/2)′

≤ C ‖f‖2
Lp(v),

where we have used Hölder’s inequality, Theorem 2.4 and the fact that
Ā ∈ B(p/2)′ and B̄ ∈ Bp. The desired estimate follows at once if we
take the supremum over all such functions h.

8. The vector-valued maximal operator

Our two results for the vector-valued maximal operator are exact
parallels of our results for the dyadic square function. Formally, the
change only requires replacing “2” by “q”, 1 < q <∞, and in fact, the
proofs do adapt readily as we will sketch below.

As with singular integral operators, in order to prove sharp results for
vector-valued maximal operator, we need to consider a dyadic operator.
Recall that the dyadic maximal operator is defined by

Mdf(x) = sup
Q∈∆
Q3x

−
∫
Q

|f(y)| dy.
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Given q > 1 and f = {fi}, define the dyadic vector valued maximal
operator by

M
d

qf(x) =

(
∞∑
i=1

Mdfi(x)q

)1/q

.

By an argument that goes back to C. Fefferman and Stein [14] (see also
[50] and [18]), the maximal operator can be approximated by the dyadic
maximal operator and the analogous operator defined on all translates
of the dyadic grid. Therefore, by a straightforward argument using
Fatou’s lemma and Minkowski’s inequality, to prove weighted norm
inequalities for the vector-valued maximal operator it suffices to prove

them for M
d

q . (For the details of this argument, see [7].)
Again like the dyadic square function, the key estimate for the dyadic

vector-valued maximal operator is to control the local mean oscillation

of (M
d

qf)q.

Lemma 8.1. Fix λ, 0 < λ < 1, and q, 1 < q < ∞. Then for any
function f = {fi}, every dyadic cube Q0, and every x ∈ Q0,

ωλ((M
d

qf)q, Q0) ≤ Cn,q
λq

(
−
∫
Q0

‖f(x)‖`q dx
)q

,

M#,d
λ,Q0

((M
d

qf)q)(x) ≤ Cn,q
λq

Md(‖f(·)‖`q)(x)q.

Proof. The second estimate again follows from the first. To prove the
first, fix Q0. Then for every x ∈ Q0 and every i ≥ 1, we observe that

Mdfi(x) = max

Md(fiχQ0)(x), sup
Q∈∆
Q0⊂Q

−
∫
Q

|fi(y)| dy

 .

The second term on the right is constant; using this we define

K0 =

 ∞∑
i=1

 sup
Q∈∆
Q0⊂Q

−
∫
Q

|fi(y)| dy

q1/q

.

For x ∈ Q0, M
d

qf(x)q ≥ Kq
0 . We also have the following elementary

inequality: for every a, b ≥ 0, 0 ≤ max(a, b)− b ≤ a. Combining these
facts we get that

0 ≤M
d

qf(x)q −Kq
0 ≤

∞∑
i=1

Md(fiχQ0)(x)q = M
d

q(fχQ0)(x)q.
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Since the vector-valued maximal operator is weak (1, 1) (see [14]), for
any t > 0,

|{x ∈ Q0 : |Md

qf(x)q −Kq
0 | > t}|

≤ |{x ∈ Q0 : M
d

q(fχQ0)(x) > t1/q}| ≤ Cn,q
t1/q

∫
Q0

‖f(x)‖`q dx.

Therefore, by (3.1) with p = 1/q,

ωλ((M
d

qf)q, Q0)

≤
(
((M

d

qf)q −Kq
0)χQ0

)∗
(λ|Q0|) ≤

Cn,q
λq

(
−
∫
Q0

‖f(x)‖`q dx
)q

.

�

One weight inequalities: Proof of Theorem 1.12. As we noted
above, the proof is very similar to the proof of Theorem 1.8, and so we
briefly sketch the key details. By Theorem 2.2 it will suffice to prove
it for the special case when p = q+ 1. For this value of p we have that
(p/q)′ = p and 1 − p′ = −1/q. As before, fix w ∈ Ap and QN ; we will
show that(∫

QN

|Md

qf(x)q −m
(M

d
qf)q

(QN)|p/qw(x) dx

)q/p
≤ Cn,q[w]Ap

(∫
Rn
‖f(x)‖p`qw(x) dx

)q/p
.

By Theorem 3.3 and Lemma 8.1, for every x ∈ QN ,

|Md

qf(x)q −m
(M

d
qf)q

(QN)|(8.1)

≤ Cn,qM(‖f(·)‖`q)(x)q + Cn,q
∑
j,k

(
−
∫

bQkj ‖f(x)‖`q dx

)q

χQkj (x)

= Cn,qM(‖f(·)‖`q)(x)q + Cn,q F (x).

To estimate the first term we use Theorem 2.1. The estimate for F uses
duality: fix a non-negative function h ∈ Lp(w) with ‖h‖Lp(w) =1 (recall
that (p/q)′ = p). Then, proceeding as before, we use the definition of
Ap = Aq+1 to show that∫
QN

F (x)h(x)w(x) dx

≤ Cn[w]Ap

∫
Rn
Md

w−1/q(‖f(·)‖`qw1/q)(x)qw(x)−1/pMd
wh(x)w(x)1/pdx.
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Finally, we use Hölder’s inequality, Theorem 2.3 and then take the
supremum over all such functions h to get the desired estimate.

To prove that the exponent max
(

1
q
, 1
p−1

)
is the best possible, we

consider two cases. If p ≤ q + 1, then the exponent is 1
p−1

, which

is the same as the sharp exponent for the scalar maximal function.
Therefore, the examples given by Buckley [3] immediately adapt to the
vector-valued maximal operator.

If p > q+1, then we can argue exactly as we did for the dyadic square
function, replacing the exponent 1/2 by 1/q. Therefore, to show that
the exponent 1/q is sharp we need to show that there exists a vector-
valued function f = {fi} such that ‖M qf‖p ≥ cp1/q‖f‖p. But such a
function is given by Stein [51, p. 75].

Two weight inequalities: Proof of Theorem 1.13. The proof is
again nearly the same as the proof of Theorem 1.10 for the dyadic
square function, so we only sketch the highlights. Fix p, 1 < p < ∞;
then it suffices to show that∫

QN

|Md

qf(x)q −m
(M

d
qf)q

(Qn)|p/qu(x) dx ≤ C

∫
Rn
‖f(x)‖p`q v(x) dx.

We use (8.1). We estimate the term involving M using Theorem 2.5
and the fact that (u, v) satisfies (1.8) when 1 < p ≤ q or (1.10) when
p > q.

To estimate F we consider two cases. Suppose first that 1 < p ≤ q,
then ∫

QN

F (x)p/q u(x) dx ≤
∑
j,k

(
−
∫

bQkj ‖f(x)‖`q dx

)p

u(Qk
j ),

and this term is estimated exactly as before. Combining these two
estimates we get the desired inequality.

When p > q, we use duality with respect to Lebesgue measure and
consider a non-negative function h such that ‖h‖L(p/q)′ = 1. Then,∫

QN

F (x)u(x)q/p h(x) dx

≤ Cn,q
∑
j,k

(
−
∫

bQkj ‖f(x)‖`q dx

)q

−
∫
Qkj

u(x)q/ph(x) dx |Ek
j |.

From here we follow the argument in the proof of Theorem 1.10, re-
placing 2 by q.
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