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First report of Halopeltis (Rhodophyta, Rhodymeniaceae) from the 
non-tropical Northern Hemisphere: H. adnata (Okamura) comb. 
nov. from Korea, and H. pellucida sp. nov. and H. willisii sp. nov. 
from the North Atlantic 

Craig W. Schneider1,*, D. Wilson Freshwater2 and Gary W. Saunders3

1Department of Biology, Trinity College, Hartford, CT 06106, USA
2Center for Marine Science, University of North Carolina Wilmington, 5600 Marvin Moss Lane, Wilmington, NC 28409, USA
3Centre for Environmental & Molecular Algal Research, Department of Biology, University of New Brunswick, Fredericton, 
NB E3B 5A3, Canada

Using genetic sequencing (COI-5P, LSU, rbcL) to elucidate their phylogenetic positions and then morphological char-

acters to distinguish each from existing species, three procumbent species, including two novel species, from warm tem-

perate Northern Hemisphere waters are added to the recently resurrected genus Halopeltis J. Agardh: H. adnata (Oka-

mura) comb. nov. from Korea, H. pellucida sp. nov. from Bermuda and H. willisii sp. nov. from North Carolina, USA. Prior 

to these reports, the genus was confined to the Southern Hemisphere and tropical equatorial waters of the Northern 

Hemisphere although the latter records lack molecular confirmation. These three additional species join the six known 

species presently residing in Halopeltis.

Key Words: Bermuda; Halopeltis; H. adnata comb. nov.; H. pellucida sp. nov.; H. willisii sp. nov.; Korea; North Carolina; 
Rhodymenia adnata; Rhodymeniaceae

INTRODUCTION

Significant attention has been paid of late to the Rho-

dymeniales using genetic sequencing to elucidate novel 

taxa and phylogenetic relationships among congeners. 

These studies have discovered cryptic diversity within the 

order (e.g., Saunders et al. 2006, Ballantine and Lozada-

Troche 2008, Schneider and Lane 2008, Ballantine et al. 

2010, Lozada-Troche and Ballantine 2010, Saunders and 

McDonald 2010), as well as allowing for generic discovery 

and realignment in the Rhodymeniaceae, Fryeellaceae, 

Faucheaceae, Hymenocladiaceae, Champiaceae and Lo-

mentariaceae (e.g., Millar et al. 1996, Saunders et al. 1999, 

2006, 2007, Wilkes et al. 2005, Dalen and Saunders 2007, 

Le Gall et al. 2008, Lozada-Troche et al. 2010, Saunders 

and McDonald 2010, Suzuki et al. 2010). Combined, such 

molecular-assisted, alpha taxonomic (MAAT) studies 

have begun to demonstrate a significantly clearer picture 

of species richness and evolutionary relationships within 

this order than was known in the 20th century (Bliding 

1928, Kylin 1931, 1956, Sparling 1957). 

Despite the many genera and species of red algae that 

have been investigated using MAAT over the past two 

decades, some taxa already sequenced require addi-

Received April 25, 2012, Accepted  May 28, 2012

*Corresponding Author

E-mail: cschneid@trincoll.edu
Tel: +1-860-297-2233,   Fax: +1-860-297-2538

This is an Open Access article distributed under the terms of the 
Creative Commons Attribution Non-Commercial License (http://cre-
ativecommons.org/licenses/by-nc/3.0/) which permits unrestricted 
non-commercial use, distribution, and reproduction in any medium, 
provided the original work is properly cited.



Algae 2012, 27(2): 95-108

http://dx.doi.org/10.4490/algae.2012.27.2.095 96

in silica gel and others preserved in 4-5% Formalin-sea-

water. The site locations were taken above water using 

a Garmin GPS III Plus (Garmin, Olathe, KS, USA). Thin 

sections were made using a manual American Optical 

freezing microtome (American Optical, Buffalo, NY, USA) 

or by hand and these were stained and mounted in a 20 

: 1 solution of 30% Karo corn syrup and 1% aniline blue 

with a drop of formalin added as a preservative. Field 

habit photographs were taken using a Nikon D50 digital 

camera (Nikon, Tokyo, Japan) or an Olympus 5060 digi-

tal camera (Olympus, Center Valley, PA, USA) with a Light 

& Motion housing (Light & Motion, Monterey, CA, USA) 

and Sea & Sea YS110 strobe (Sea & Sea, Long Beach, CA, 

USA). Photomicrographs were taken using Carl Zeiss 

Axioskop 40 microscope or Stemi 2000-CS (Carl Zeiss, 

Oberkochen, Germany) equipped with a model 4.2 Spot 

InSight QE digital camera (Diagnostic Instruments, Ster-

ling Heights, MI, USA), a Zeiss Axio Imager.Z1 compound 

microscope fitted with an AxioCam MRc 5 camera system 

or an Olympus BX41 compound microscope fitted with a 

Roper Scientific Photometrics CoolSnap camera (Photo-

metrics, Tucson, AZ, USA). The digital images were com-

posed in Adobe Photoshop CS5 Extended version 12.0.2 

(Adobe Systems, San Jose, CA, USA). Voucher specimens 

are variously deposited in KIRI, MICH, UNB, WNC and 

CWS’s personal herbarium. When listed, herbarium ab-

breviations follow the online Index Herbariorum (http://

sweetgum.nybg.org/ih/) and standard author abbrevia-

tions follow Brummitt and Powell (1992).

Molecular methods 

Specimens used in molecular analyses are recorded 

in Table 1. After collection, specimens were silica-dried, 

and total DNA extraction followed Saunders and McDe-

vit (in press) or the illustra Phytopure DNA Extraction 

Kit manufacturer’s recommended protocol (GE Health-

care, Buckinghamshire, UK). The COI-5P region of the 

mitochondrial genome (Saunders 2005, 2008) was first 

amplified to assign specimens to genetic species groups 

(Saunders and McDevit in press). The actual primer pair 

used to amplify this region for each sample is recorded 

with the sequence on GenBank (Table 1). For phyloge-

netic analyses, the partial plastid RUBISCO large subunit 

(rbcL) was amplified following Vis et al. (2007) with the 

primers F57 and rbcLrevNew (see Kucera and Saunders 

2012), while the large subunit ribosomal DNA (LSU) was 

amplified with the primers and profile outlined in Harper 

and Saunders (2001). All PCR products were sequenced 

using a Big Dye Terminator Cycle Sequencing Ready Re-

tional collections and genetic material to clarify species 

relationships (e.g., Saunders and McDonald 2010, Kraft 

and Saunders 2011). Using mitochondrial barcoding 

techniques and large subunit ribosomal RNA (LSU) gene 

sequences, a recent paper by Saunders and McDonald 

(2010) resurrected the genus Halopeltis J. Agardh (1854), 

for the last 150 years an entity subsumed in Rhodymenia 

Greville (1830). Although Agardh (1854) properly validat-

ed this genus, within two decades he no longer used the 

generic name in his synoptic “Species genera et ordines 

algarum...” (Agardh 1876), by which time he reverted to 

recognizing Rhodymenia australis (Agardh 1876, p. 332). 

Although Agardh (1876) listed in synonymy the species 

Acropeltis australis J. Agardh (1852) for which he later es-

tablished the genus Halopeltis (Agardh 1854), he did not 

mention his own Halopeltis there, or elsewhere in the sec-

tion of Rhodymenia, the name apparently slipping into 

synonomy without notice. Subsequent 19th century phy-

cologists made no mention of Halopeltis. The convoluted 

nomenclatural history of this genus is recounted in detail 

by Saunders and McDonald (2010), who, after resurrect-

ing Halopeltis from synonomy, moved three additional 

Rhodymenia and Rhodymeniocolax Setch. (1923) species 

to the genus and described two novel species that they 

had collected in southeastern Australia and Lord Howe 

Island. All six known Halopeltis species have Southern 

Hemisphere distributions, with only the generitype, H. 

australis (J. Agardh) G. W. Saunders, broadly distributed 

throughout the Indo-Pacific, including reports without 

molecular confirmation in tropical waters of the North-

ern Hemisphere (Guiry and Guiry 2012). 

DNA sequence analyses of recent collections in the 

Northern Hemisphere from warm temperate waters of 

Korea, Bermuda and North Carolina, USA showed them 

to phylogenetically group with Halopeltis. Morphological 

studies of these three species show that the Korean speci-

mens matched the previously described Rhodymenia 

adnata Okamura from Japan and Korea, and that the two 

Atlantic entities represented novel species. In this paper 

we describe these entities using morphological and mo-

lecular approaches and characterize them in the context 

of the genus Halopeltis and the Rhodymeniaceae.

	

MATERIALS AND METHODS

Morphological methods

Collections were made by scuba, and specimens were 

dried fresh onto herbarium paper with portions dried 
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7.8 (between H. adnata and H. willisii) to 16.1% (previous 

two to H. pellucida). Finally, blast searches at BOLD and 

Genbank both indicated an alliance of these three novel 

genetic groups with species of the genus Halopeltis (data 

not shown).

To explore further the phylogenetic affinities of the 

newly discovered COI-5P genetic species, LSU and rbcL 

data were generated for one representative each of these 

three newly uncovered genetic species, as well as for ad-

ditional rhodymeniaceous species (Table 1); emphasiz-

ing the Halichrysis and Halopeltis lineage with suitable 

outgroups (Saunders and McDonald 2010), to allow for 

single (COI-5P, LSU, and rbcL), as well as a combined gene 

analyses (Fig. 1). Within the limits of statistical support, 

all single gene analyses resulted in trees similar to that 

obtained in a combined dataset analysis, although lev-

els of support were typically lower (not shown). Further, 

missing rbcL data for Halopeltis sp._1WA did not signifi-

cantly change the resulting tree (topology or support lev-

els). Thus, we present only the phylogenetic results of the 

multigene (including Halopeltis sp._1WA with rbcL data 

recorded as missing) analyses for ML with bootstrap sup-

port and posterior probabilities from the Bayesian analy-

ses appended (Fig. 1). Our analyses solidly resolved the 

genera Halichrysis and Halopeltis as reciprocally mono-

phyletic sister taxa consistent with published studies. 

Our three novel genetic species groupings resolved with 

the latter genus, two of them, H. adnata and H. willisii, 

forming an alliance with the deeply diverging Halopeltis 

sp._1WA, while the third, H. pellucida, resolved strongly 

with a collection from South Africa (Table 1), Halopeltis 

sp._1SA (Fig. 1). The last mentioned species was tenta-

tively field-identified as Botryocladia madagascariensis 

G. Feldmann and likely represents the first report of a 

Halopeltis with inflated axes. This species requires further 

taxonomic study.

Anatomical observations

Recent collections of Rhodymenia adnata Okamura 

from 10-15 m off Jeju Island, Korea (Table 1) closely match 

the protologue (Okamura 1934) and other published de-

scriptions for this species (e.g., Lee 2008), as well as gen-

eral features recently illuminated for the genus Halopeltis 

(Saunders and McDonald 2010). Plants range from 2.5-8.0 

cm in diameter and are flat, membranous, procumbent 

and attached to the substratum and adnate to each other 

by attachment pads (Fig. 2A). Although slightly smaller 

than reported for the type (11 cm measured from Oka-

mura 1934, Pl. 319, Fig. 1), the Korean collections match 

actions DNA sequencing kit (Applied Biosystems, Foster 

City, CA, USA). Final sequences (excluding the 5′ and 3′ 
primer regions) for all three markers were assembled us-

ing Sequencher TM 4.10 (Gene Codes Corp., Ann Arbor, 

MI, USA) and based on bidirectional data.

Multiple alignments were prepared in MacClade ver-

sion 4.06 (Maddison and Maddison 2003). For species 

identification, a neighbor joining analysis of the COI-5P 

alignment with uncorrected distances was completed us-

ing PAUP* (Swofford 2003) in Geneious (Drummond et al. 

2009). For phylogenetic analyses the individual gene re-

gions (COI-5P, rbcL, and LSU), as well as a combined mul-

tigene alignment, were subjected to maximum likelihood 

(ML) analysis with a GTR + I + G model of evolution using 

PHYML in Geneious (Drummond et al. 2009). Robust-

ness was assessed through analyses of 500 bootstrap rep-

etitions. For the multigene alignment MrBayes (v. 3.1.2) 

(Huelsenbeck and Ronquist 2001) was additionally used 

to complete two independent trials (each with parallel 

runs) of Bayesian inference under a GTR + I + G model. 

Parallel runs of four Markov chains were completed with 

one million generations and sampling each 100 genera-

tions. Data were partitioned by gene, and then by codon 

for rbcL and COI-5P, and the parameters were unlinked 

with the overall rate allowed to vary across partitions. The 

burn-in for each run was determined by plotting overall 

likelihood scores against generation, which established 

the stationary phase of each run for estimating the pos-

terior probability distribution - the final estimate based 

on pooled samples from two independent runs. We were 

unable to obtain rbcL data for Halopeltis sp._1WA and 

thus we completed both the ML and bayesian multigene 

analyses in duplicate: with these data coded as missing 

and with this species removed from the alignment. This 

allowed us to assess the impact of the missing data on the 

overall topology and support.

RESULTS AND DISCUSSION

Molecular analyses

Collections of unknown rhodymeniaceous taxa (Table 

1) from Bermuda (n = 2; Halopeltis pellucida), North Car-

olina (n = 2; H. willisii) and Korea (n = 4; H. adnata) were 

subjected to routine DNA barcode screening and formed 

three distinct genetic species groups. For all three genetic 

groups, the barcode marker was identical (0% diver-

gence) for all individuals within a species, whereas diver-

gence between these three genetic groups ranged from 
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tent with species of the genus Halopeltis and, although 

not discussed in the protologue of Rhodymenia adnata, 

is nevertheless diagrammed by Okamura (1934, Pl. 319, 

Fig. 3) and documented by Lee (2008, p. 405, Fig. C) in re-

porting this species from Korea. As illustrated in the pro-

tologue (Okamura 1934, Pl. 319, Fig. 6), the outer cortex is 

incomplete with the underlying inner cortical cells clearly 

visible in surface view. 

Tetrasporangia were unknown at the time of the origi-

nal description of Rhodymenia adnata, but were later 

reported by Lee (2008, p. 405, Fig. C). One of the recent 

Korean collections is tetrasporangial. Our new obser-

vations are consistent with those of Lee (2008), and are 

consistent with species included in the genus Halopeltis 

(Saunders and McDonald 2010). Tetrasporangial sori are 

relatively extensive patches at the branch apices that fol-

low the thallus outline (as in Halopeltis; Fig. 2A) and are 

formed on a single thallus surface [upper according to 

Lee (2008); see Saunders and McDonald (2010, p. 657) 

for a description of sorus placement in other Halopeltis 

spp.]. In Rhodymenia, tetrasporangia derive from inter-

R. adnata in all of the other gross morphological features. 

The color of fresh plants range from reddish in parts to 

purplish red variegated with tints of green and expanses 

of yellow. The blades are strongly iridescent when fresh, 

agreeing with the protologue in all but the last attribute 

(Okamura 1934). In this regard, our Korean collections 

differ from those described in Lee (2008, p. 405), which 

are simply described as red (possibly an artifact of fixa-

tion), but which nonetheless share all of the other gross 

morphological features outlined here.

Anatomically, blades of the Korean material are 200-

300 µm in width near the margins and composed of a 

medulla of 2-3 axially elongate medullary cells, a 1-2 lay-

ered inner cortex of refractive cells and an outer cortex of 

rounded to slightly elongate outer cortical cells as docu-

mented in Lee (2008, p. 405, Fig. D). In middle portions 

of the thallus, the blades thicken to 300-325 µm, but are 

composed of essentially the same number of cell layers. 

In these sections, however, spaces invested with chains 

of smaller intercalating cells were now evident between 

the large medullary cells (Fig. 2B). This feature is consis-

0.04 Cephalocys�s furcellata 

Leptosomia rosea 

Microphyllum robustum 

Sparlingia pertusa 

Irvinea ardreana 

Halichrysis micans 

Halichrysis corallinaria  

Halichrysis concrescens 

Halopel�s willisii 

Halopel�s sp._1WA 

Halopel�s adnata 

Halopel�s pellucida 

Halopel�s sp._1SA 

Halopel�s sp._2LH 

Halopel�s sp._1LH 

Halopel�s sp._1Tas 

Halopel�s gracilis 

Halopel�s australis 

Halopel�s prostrata 

Halopel�s verrucosa 
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Fig. 1. The maximum likelihood (ML) result for the multigene (LSU, rbcL, COI-5P) alignment with rbcL data for Halopeltis sp._WA coded as 
missing. * indicates >95 % support for 500 bootstrap replicates under ML and bayesian posterior probabilities of 1.
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from 15-20 µm in diameter and 22-28 µm long (Fig. 2D), 

once again consistent with the observations in Lee (2008) 

and with the genus Halopeltis (Saunders and McDonald 

2010).

Taking all of this in consideration, our recent Korean 

collections of Rhodymenia adnata clearly bring to mind 

the genus Halopeltis, and this is consistent with their 

clustering with this genus in our molecular trees (Fig. 1). 

However, R. adnata and its allies (vis., Halopeltis sp._1WA 

and H. willisii) resolved as sister to, rather than embed-

ded among, the included species of Halopeltis in our phy-

logenies, which leaves open the possibility that these spe-

cies actually belong to a sister genus of Halopeltis. Given 

their many shared morphological features, however, we 

consider the conservative taxonomic decision at this time 

calary cortical cells at the transition between inner and 

outer cortical layers (Saunders et al. 1999, Saunders and 

McDonald 2010). Sparling (1957, Fig. 12) and Guiry (1974, 

Fig. 1) illustrate this feature for the generitype, R. pseudo-

palmata (J. V. Lamour.) P. C. Silva, and other species cur-

rently recognized in the genus. The tetrasporangia in the 

Korean plants derive from the direct conversion of outer 

cortical cells without adventitious growth or paraphy-

seal development and with sporangial initials commonly 

and clearly pit-connected to inner cortical cells (Fig. 2C). 

Again, although not reported by Lee for R. adnata, this 

mode of tetrasporangial development is consistent with 

his documented images (Lee 2008, p. 405, Fig. C) and the 

genus Halopeltis (Saunders and McDonald 2010). Mature 

tetrasporangia were cruciately divided and ranged in size 

Fig. 2. Halopeltis adnata comb. nov., representative collection GWS018248. (A) Image of freshly collected specimen displaying gross morphology 
and a tetrasporangial sorus (arrow). (B) Section showing large inner medullary cells with smaller intercalating cells in their interstices (arrows). 
(C) Direct development of tetrasporangial initials (arrows indicate their shared pit-connections with inner cortical cells) from outer cortical cells 
without adventitious cortical growth or paraphyseal development. (D) Cruciately divided mature tetrasporangium pit-connected (arrow) to an 
inner cortical cell. Scale bars represent: A, 1.5 cm; B, 60 µm; C & D, 15 µm.

A

C D

B
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sometimes form fasciculate clusters.

Cystocarps developing on both blade surfaces and 

margins, hemispherical, not basally constricted, some-

what flattened at the ostiole; pericarp 8-15 cells thick, loc-

ule wall lined with network of rounded cells, and network 

of darkly staining nutritive cells that develop in the cham-

ber floor; initial gonimoblast cells large, darkly stain-

ing, giving rise to filamentous gonimoblasts that ramify 

among closely adjacent lobes of densely packed obovate 

to angular carposporangia, 12-20 µm in diameter. 

Etymology. The epithet honors James Newman Willis 

III, “Capt. Jim,” US Bureau of Commercial Fisheries and 

National Marine Fisheries researcher, coastal advocate 

and historian scholar of North Carolina’s Outer Banks. 

Holotype (deposited in UNB). NCweed-178, ⊕, 30 June 

2009, Southwest Ledge, Onslow Bay, North Carolina, USA, 

western Atlantic Ocean, 34°23.576′ N, 076°53.924′ W, on 

rock, depth 27 m, coll. A. Poray [Isotype, WNC31611]. 

Paratypes. NCweed-819, ⊕, 01 August 2007, Witzig Rock 

(“West Rock”), Onslow Bay, NC, 34°16.668′ N, 076°34.949′ 
W, on rock, depth 30 m, coll. D. W. Freshwater & B. Dea-

gan [WNC32155]; NCweed-820, female, 01 August 2007, 

Witzig Rock, loc. cit., coll. D. W. Freshwater & B. Deagan 

[WNC32154]. 

Plants of Halopeltis willisii are shortly procumbent 

with few to many pseudodichotomously branched blades 

that are sometimes basally anastomosing (Fig. 3A & B). 

Blade bases are attached by multiple peg-like, second-

ary holdfasts that develop from the margins and ventral 

surfaces (Fig. 3C). Occasionally, distal portions of blades 

also develop secondary attachments to the substrate. The 

blades are constructed of two or three layers of large, sub-

globose or polygonal to transversely elliptical inner med-

ullary cells with interspersed smaller cells within many 

interstices; an outer medulla of smaller transversely el-

liptical cells, and a surrounding, more heavily pigmented 

cortex (Fig. 3D-F). Inner cortical cells are circular in sur-

face view but transversely elliptical and give rise to an 

incomplete outer cortex of globose to quadrangular cells 

(Fig. 3G & H). Inner cortical cells are, on occasion, anti-

clinally elongated at the blade margins (Fig. 3I), perhaps 

where attachments are developing, as sections through 

holdfasts reveal similarly elongate cells.

Tetrasporangial sori are variously shaped and develop 

on both blade surfaces (Fig. 4A & B). They are not strongly 

nemathecial in appearance as described for Halopeltis 

australis (J. Agardh) G. W. Saunders (as Rhodymenia aus-

tralis Sond.) and H. verrucosa (Womersley) G. W. Saunders 

(as Rhodymenia verrucosa Womersley; Womersley 1996). 

Tetrasporangia are produced by the conversion of outer 

is the transfer of R. adnata to Halopeltis, which is imple-

mented here:

Halopeltis adnata (Okamura) G. W. Saunders et 
C. W. Schneid., comb. nov. (Fig. 2) 

Basionym. Rhodymenia adnata Okamura 1934, p. 35-

36, Pl. 319. 

Interestingly, this reassignment to Halopeltis in effect 

represents the first species in the genus from non-tropical 

waters of the Northern Hemisphere. The only member of 

the Southern Hemisphere genus distributed north of the 

equator is the type, H. australis, which has been reported 

from tropical regions of the Indo-Pacific (Silva et al. 1996, 

as Rhodymenia sonderi P. C. Silva; Guiry and Guiry 2012), 

although such records await molecular confirmation.

Other recent western Atlantic Ocean collections of 

rhodymeniacean specimens from North Carolina, USA 

(34° N) and Bermuda (32° N) were also shown to group 

in a clade with Halopeltis in our COI-5P, LSU and rbcL 

consensus phylogenetic tree (Fig. 1). As neither of these 

morphotypes could be accommodated by any of the 

known species of Halopeltis, we herein establish new 

species for them, each representing, along with H. adna-

ta, species from the Northern Hemisphere. 

Halopeltis willisii Freshwater et G. W. Saunders, 
sp. nov. (Figs 3 & 4) 

Description. Blades procumbent, flattened, anasto-

mosing and pseudodichotomously branched, to 80 mm 

long and to 15 mm wide near the base, narrowing to 4-5 

mm wide in ultimate branches, rosy-brown to pink in situ; 

attached by haptera scattered along margins and ventral 

surface, margins otherwise smooth; cortex composed of 

2-3 layers of pigmented cells, outer cortex incomplete, 

cells globose to quadrangular, 4-10 µm in diameter, inner 

cortical cells transversely elliptical, 10-17 µm in greatest 

dimension; central medulla composed of 2-3 layers of 

lightly-pigmented, thin-walled, highly vacuolate, subglo-

bose to polygonal, somewhat axially elongated cells up to 

350 µm in diameter, with interspersed, variably shaped, 

smaller 10-200 µm diameter cells at some interstices; 

outer medullary cells transversely elliptical, 40-100 µm in 

diameter.

Tetrasporangia cruciately divided, 15-25 µm in diam-

eter and 30-40 µm long, developmentally replacing outer 

cortical cells and pit-connected to inner cortical cells in 

variably shaped sori on one or both blade surfaces, sur-

rounded by anticlinally elongated outer cortical cells that 
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tion (Fig. 4D-F), the latter trait considered uncommon in 

the genus (Saunders and McDonald 2010). The pericarp 

and locule begin forming early in the post-fertilization 

process and a basal nutritive tissue of darkly staining cells 

develops in the floor of the expanding cystocarp (Fig. 

4E & G). The auxiliary cell cuts off a gonimoblast initial  

(Fig. 4H & I), which will produce gonimoblast filaments 

cortical cells (Fig. 4C). Non-fertile outer cortical cells be-

come elongate and form fasciculate clusters borne on the 

inner cortical cells (Fig. 4C).

Neither pre-fertilization nor immediate post-fertiliza-

tion carpogonial and auxiliary cell branches were ob-

served. Cystocarps develop on both blade surfaces and 

margins, and are hemispherical with no basal constric-

A C

D

B

E

G

F

H I

Fig. 3. Halopeltis willisii sp. nov. (A) Holotype specimen, NCweed-178. (B) In situ image of specimen NCweed-819. (C) Peg-like holdfasts on ventral 
surface and margin of blade, NCweed-819. (D) Longitudinal section showing large inner medullary cells with smaller cells in some interstices and 
the outer medulla, NCweed-819. (E) Longitudinal section showing large inner medullary cells with smaller cells in some interstices and the outer 
medulla. Membranes of large cells were disrupted during sectioning causing the cytoplasm to look plasmolyzed, NCweed-819. (F) Transverse 
section showing large inner and smaller outer medullary cells, NCweed-820. (G) Transverse section showing transversely elliptical inner cortical 
cells giving rise to multiple outer cortical cells, NCweed-819. (H) Blade surface view with more darkly stained outer cortical cells (upper focal plane) 
forming an incomplete outer cortex over the inner cortical cells (lower focal plane), NCweed-819. (I) Transverse section through blade margin 
where inner cortical cells are anticlinally elongate, NCweed-178. Scale bars represent: A, 1 cm; C, 0.25 mm; D-F & I, 50 µm; G & H, 20 µm.
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A C

D
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E
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H I J

Fig. 4. Halopeltis willisii sp. nov. (A) Tetrasporangial sori on blade surface, NCweed-819. (B) Transverse section with tetrasporangial sori on 
both blade surfaces, NCweed-178. (C) Longitudinal section through a tetrasporangial sorus with fasciculate clusters of outer cortical cells and 
a developing tetrasporangia pit-connected (arrow) to an inner cortical cell, NCweed-819. (D) Section through a young cystocarp with the 
gonimoblast initial (arrow) visible among the developing basal nutritive tissue (more darkly staining cells) and at the base of the developing 
ostiole, NCweed-820. (E) Section through a developing cystocarp with darkly staining network of basal nutritive cells and remnant connections 
between inner pericarp cells (arrows) visible, NCweed-820. The carposporophyte was dislodged during sectioning. (F) Section through a mature 
cystocarp with a thick pericarp, darkly staining gonimoblast cells and tightly packed carposporangia, NCweed-820. (G) Section through a mature 
cystocarp showing the flattened darkly staining nutritive tissue cells, filamentous gonimoblast cells (arrows) within tightly packed carposporangia 
and remnant connections between inner pericarp cells (arrowheads), NCweed-820. (H) Section of early post-fertilization cystocarp showing an 
auxiliary mother cell (amz) and auxiliary cell (az), NCweed-179. (I) Section of an early post-fertilization cystocarp with a gonimoblast initial (gi) and 
auxiliary cell (az), NCweed-179. (J) Two carposporangia pit-connected (arrow) to a darkly stained filamentous gonimoblast cell, NCweed-820. Scale 
bars represent: A, 1 mm; B, 100 µm; C & H-J, 20 µm; D, E & G, 50 µm; F, 100 µm.
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blades 2.0-2.5 mm in diameter in ligulate portions and 

to 4.0 mm in diameter below branches, to 260 µm thick; 

attached initially to substratum by a small basal hold-

fast, and secondarily to the substratum and themselves 

by haptera issuing from blade margins, margins other-

wise smooth; blade apices rounded to spatulate (Fig. 5A 

& B); cortex incompletely forming over the interstices of 

outer medullary cells in surface view in apical regions 

(Fig. 5E), composed of 1-2 layers of circular to ellipsoidal 

pigmented cells from 5-12 µm in greatest dimension 

(Fig. 5F); cortex connecting to a lightly-pigmented 

pseudoparenchymatous medulla with 2-3 layers of 

larger globose to rounded polygonal cells (Fig. 5F & I) 

with strongly reticulated cytoplasts (Fig. 5E & F), cells 

from 25-120 µm in greatest dimension. 

Tetrasporangia cruciately divided, broadly ellipsoidal, 

12-22 µm in diameter and 17-31 µm long (Fig. 5G & H), 

developmentally replacing outer cortical cells and pit-

connected to inner cortical cells in oval to cordiform, 

raised nemathecial-like sori forming at the apices of 

blades or below branch forkings (Fig. 5B), surrounded by 

anticlinally elongated outer cortical cells (Fig. 5G & H); 

sori forming on the upper surface. 

Gametophytes monoecious; spermatangia and cysto

carps developing on both blade surfaces; cystocarps 

hemispherical, somewhat constricted basally, ostiolate, 

sometimes grouped contiguously; pericarp 8-12 cells 

thick, ostiole wall lined with a network of densely pig-

mented, flattened cells; carposporophyte compressing 

medullary cells below the cystocarp, forming a network 

of darkly staining nutritive cells that develop in the cham-

ber floor (Fig. 5M); gonimoblast cells small, darkly stain-

ing, giving rise to secondarily pit-connected gonimoblast 

cells that ramify and produce obovoid carposporangia to 

12 µm in diameter; spermatangia in sori at times ringing 

the cystocarps (Fig. 5I), even slightly covering the basal 

portions of the pericarp (Fig. 5J); spermatangia ellipsoi-

dal, 2-3 µm in diameter (Fig. 5K & L). 

Etymology. The epithet pellucida (L, fem.), represents 

the new species’ translucent, but not hyaline, ligulate 

blades. 

Holotype (deposited in UNB). CWS10-24-6 [DNA0369], 

⊕, 23 August 2010, at Cathedral Rock, off south shore 

of Bermuda Is., Bermuda, western Atlantic Ocean, 

32°20′31.1″ N, 64°39′24.2″ W, depth 17 m, coll. C. W. 

Schneider [Isotypes: MICH, Herb. CWS]. 

Paratype. TRP12-36-6 [DNA0886], monoecious game-

tophytes, 18 February 2012, Cathedral Rock, Bermuda, 

loc. cit., coll. T. R. Popolizio [KIRI, Herb. CWS].

The small prostrate plants representing Halopeltis pel-

that are darkly staining and ramify among lobes of dense-

ly packed carposporangia (Fig. 4F, G & J). The inner peri-

carp cells form an interconnected network but remain 

rounded as has been described for Halopeltis prostrata 

G. W. Saunders (Saunders and McDonald 2010). Remnant 

stretched connections are persistent between the upper 

and lower inner pericarp cells (Fig. 4E & G). Cells of the 

basal nutritive tissue become flattened as cystocarps ma-

ture (Fig. 4F & G). 

The habit of Halopeltis willisii is much broader than all 

of the known species of Halopeltis, and in fact could be 

superficially confused with young specimens of Agard-

hinula browneae (J. Agardh) De Toni, a species likewise 

known from deep offshore waters of North Carolina 

(Schneider and Searles 1991). Despite not having mate-

rial of the much larger, erect A. browneae available for ge-

netic sequencing at present, it does have morphological 

and reproductive characteristics distinct from H. willisii. 

Although the medulla of A. browneae has variously sized 

cells (Schneider and Searles 1991), they do not develop 

small cells at the interstices of adjacent cells as in H. wil-

lisii (Fig. 3D & E). Using preserved material of A. browneae 

in the first author’s herbarium, we have observed tetra-

sporangia developing directly from surface cortical cells 

in massive numbers of sori, the sori often becoming con-

fluent and appearing as a reticulated pattern covering all 

but the most apical regions of the blades. These sori are 

more darkly pigmented than the vegetative outer cortex, 

and give the blades a distinctly mottled appearance when 

fully developed (Schneider and Searles 1991). In H. willi-

sii, tetrasporangia are formed in smaller, usually discrete, 

sori, and are surrounded by anticlinally elongated outer 

cortical cells. In A. browneae, paraphyses form from outer 

cortical cells to surround the sporangia in elevated ge-

latinous nemathecia. The ontogeny of tetrasporangia and 

nemathecia in A. browneae was observed by Saunders 

and McDonald (2010), and they suggested it was similar 

to that outlined for the Fryeellaceae (Le Gall et al. 2008) 

rather than the Rhodymeniaceae where it was placed in 

the past (Schneider and Wynne 2007). Without knowledge 

of tetrasporangial development in Agardhinula, Le Gall et 

al. (2008) had considered the genus of uncertain position 

within the Rhodymeniales. 

Halopeltis pellucida C. W. Schneid. et G. W. 
Saunders, sp. nov. (Fig. 5) 

Description. Plants procumbent and translucent, 

spreading to 2 cm across; blades ligulate, arising from 

short branched stipes, pseudodichotomously branched; 
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Fig. 5. Halopeltis pellucida sp. nov. (A & B) Holotype with tetrasporangial sori at apices and dichotomies (arrows), CWS10-24-6 [DNA0369]. (C) 
Habit, TRP12-36-6 [DNA0886]. (D) Habit of an isotype, CWS10-24-6. (E) Surface view of incomplete cortex showing medullary cells with strongly 
reticulated cytoplasts (arrows), CWS10-24-6. (F) Section at margin demonstrating spherical medullary cells and 1-2-layered cortex, CWS10-24-
6. (G & H) Sections through a sorus showing tetrasporangia pit-connected to inner cortical cells (arrows) and separated by anticlinally elongated 
outer cortical cells, CWS10-24-6. (I) Cross section of a mature cystocarp ringed by a spermatangial sorus (arrows), TRP12-36-6. (J) Section 
through a pericarp wall showing basal constriction and a spermatangial sorus ascending up the cystocarp (arrows), TRP12-36-6. (K) Slightly 
raised spermatangial sorus in section, TRP12-36-6. (L) Spermatangial sorus in surface view, TRP12-36-6. (M) Flattened medullary cell below the 
carposporophyte cutting off nutritive cells (arrows). Scale bars represent: A, C & D, 5 mm; B, 100 µm; E & F, 50 µm; G, H & K-M, 25 µm; I & J, 200 µm.
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H. pellucida is most similar in habit and size to H. 

gracilis G. W. Saunders a species from Lord Howe Is. This 

procumbent Pacific species has narrow branches (1.5-

3.0 mm broad) from 110-190 µm thick (Saunders and 

McDonald 2010), narrower and thinner than those of H. 

pellucida (2-4 mm broad, to 240 µm thick). The tightly 

packed globose medullary cells of H. pellucida (25-120 

µm in greatest dimension) are differently shaped than 

the ellipsoidal cells of H. gracilis (37-45 µm in diameter, 

60-125 µm long), cells that unlike those in the new spe-

cies are separated from each other by spaces filled by in-

tercalating smaller cells (Saunders and McDonald 2010). 

Halopeltis pellucida along with H. willisii represent new 

additions to the marine flora of the Northern Hemisphere 

as well as the first members of the genus in the Atlantic 

Ocean, both now members of the western Atlantic warm 

temperate biogeographic region (Lüning 1990).
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lucida (Fig. 5A, C & D) were discovered offshore on heavily 

shaded horizontal rocks during late summer and middle 

winter in Bermuda. These delicate specimens were so 

translucent underwater that they were not discovered in 

the first collection until back in the lab where they were 

processed. The same site was revisited twice in winter 

2012, and one of these trips lead to a second collection of 

H. pellucida. As of now, sporophytes have been found in 

the summer and gametophytes in the winter.

One of the substantive characteristics outlined for 

Halopeltis by Saunders and McDonald (2010) to differ

entiate it from Rhodymenia and Pseudohalopeltis G. W. 

Saunders were small medullary cells filling some of the 

spaces between medullary cells in at least older portions 

of the blades of H. australis and the other species joining 

it in the resurrected genus. In some species, such smaller 

medullary cells budded off the larger cells are rare and 

not seen throughout, so this feature is variable among 

and between species (Saunders and McDonald 2010). 

The Cathedral Rock specimens do not demonstrate 

this feature (Fig. 5E), thus at this time H. pellucida is a 

representative of the genus not demonstrating a feature 

common to its congeneric relatives. In older portions of 

H. pellucida blades, cross sections demonstrate a tightly 

packed medulla with the larger cells grading to smaller 

outer cortical cells, in all areas lacking substantive gaps 

between cells (Fig. 5F & I). It remains possible that the 

intercalating cells in other Halopeltis species only form 

because of the available spaces between large medullary 

cells, spaces not obvious in H. pellucida. H. pellucida 

produces medullary cells containing reticulate cyto-

plasts (Fig. 5E & F) reminiscent of many rhodymenialean 

species including two from Bermuda, Asteromenia ber-

mudensis and A. peltata (Saunders et al. 2006), but until 

now not reported for Halopeltis. 

As was the case for H. willisii, neither pre-fertiliza-

tion nor post-fertilization carpogonial and auxiliary cell 

branches were observed for H. pellucida. In this species, 

cystocarps form on both blade surfaces and are often 

grouped in twos or threes. Cystocarps have slight basal 

constriction (Fig. 5I & J), a trait more typical of the genus 

(Saunders and McDonald 2010). The carposporophyte 

develops over a basal bed of darkly staining cells in the 

floor of the expanding cystocarp, and medullary cells be-

low becoming flattened as carposporophytes mature (Fig. 

5M). Gonimoblast cells elongate and pit-connect with 

other branches in the carposporophyte (Fig. 5M) before 

developing carposporangia. Inner pericarp cells become 

stretched as the pericarp enlarges, but remain connected 

to the growing carposporophyte (Fig. 5I). 
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