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INFINITELY MANY HYPERBOLIC 3-MANIFOLDS WHICH
CONTAIN NO REEBLESS FOLIATION

R. ROBERTS, J. SHARESHIAN, AND M. STEIN

1. Introduction

It has long been realized that the presence of a Reebless foliation in a compact
3-manifold M reveals useful topological information about M . By Novikov [No65],
M is irreducible with infinite fundamental group. By Palmeira [Pa78], M has uni-
versal cover R3. Building on work of Thurston and Gabai and Kazez [Ga98, GK98],
Calegari [Ca] has shown that if M is also atoroidal, then π1(M) is Gromov nega-
tively curved. Furthermore, Thurston has proposed an approach to demonstrating
geometrization for such M . Many 3-manifolds contain Reebless foliations, and it
has often been conjectured that all closed hyperbolic 3-manifolds do. (It is our
impression that for many years Hatcher provided the sole voice of dissent.) In this
paper, we give the first examples of closed hyperbolic 3-manifolds which contain no
Reebless foliation.

Theorem A. There exist infinitely many closed orientable hyperbolic 3-manifolds
which do not contain a Reebless foliation.

In particular, therefore, there exist infinitely many closed orientable hyperbolic
3-manifolds which do not contain an Anosov flow.

In 1989, Gabai and Oertel [GO89] introduced the notion of essential lamination.
Empirically, these objects seemed easier to find than Reebless foliations, but it was
not known whether or not essential laminations were in fact more prevalent. See
[Br93, Cl91], [RS01] and [BNR] for related results. In this paper we give the first
examples (again, an infinite family) of closed hyperbolic 3-manifolds which do not
contain a Reebless foliation but which do contain essential laminations.

Theorem C. There exist infinitely many closed orientable hyperbolic 3-manifolds
which contain neither a Reebless foliation nor a transversely oriented essential lam-
ination but which do contain essential laminations.

In contrast, as discussed in Section 2, we expect that a subset of the set of
examples of Theorem A will lead also to examples of closed orientable hyperbolic
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3-manifolds which contain no essential lamination. Indeed, Fenley has recently
announced a proof of this claim.

We establish nonexistence of Reebless foliations and transversely oriented es-
sential laminations by proving the nonexistence of nontrivial fundamental group
actions on leaf spaces. Let Λ be any Reebless foliation in M . Denote its lift to the
universal cover M̃ of M by Λ̃. Then the leaf space (see Section 6) of Λ̃, TΛ̃, is a
second countable but not necessarily Hausdorff simply-connected 1-manifold, and
the action of π1(M) on M̃ induces a nontrivial action of π1(M) on TΛ̃ by home-
omorphisms ([HR57, Pa78]; see also [Ba98, CC]). (An action of a group G on a
topological space X is called trivial if there is an x ∈ X such that for all g ∈ G,
x and xg are not separated in X .) We obtain Theorem A by describing an infi-
nite family of closed hyperbolic 3-manifolds whose fundamental groups do not act
nontrivially on simply-connected (second countable but not necessarily Hausdorff)
1-manifolds. More generally, we investigate group actions on R-order trees [GK97].
Let Λ be any essential lamination in M , and denote by Λ̃ its lift to M̃ . Then the
leaf space (as defined in Section 6) of Λ̃, TΛ̃, is an R-order tree, and the action
of π1(M) on M̃ induces a nontrivial action of π1(M) on TΛ̃ by homeomorphisms
[GO89, GK97]. Using the same set of examples, but instead ruling out nontriv-
ial orientation preserving actions by the fundamental groups on R-order trees, we
obtain Theorem C.

Here is a brief outline of the structure of the paper. In Section 2, we describe
the family of examples of Theorems A and C. They form a subset of a family
of examples proposed by Hatcher [Ha92]. In Section 3, we begin by examining
the case that the simply-connected 1-manifold is R. In Section 4, we build on a
paper of Barbot [Ba98] and also the well-known work on isometric actions on real
trees to investigate actions on non-Hausdorff 1-manifolds. In Section 5, we pass
from simply-connected 1-manifolds to the more general world of R-order trees. In
particular, we obtain the following results.

Corollary 5.7. G acts nontrivially on an R-order tree, then G acts nontrivially
on a Hausdorff R-order tree.

Proposition 5.10. If G acts nontrivially on an oriented R-order tree by orien-
tation preserving order tree automorphisms, then G acts nontrivially on a simply-
connected 1-manifold (by orientation preserving homeomorphisms).

In Section 6, we recall the definition of leaf space and relate the existence of
Reebless foliations (and essential laminations) to the existence of actions on simply-
connected 1-manifolds (R-order trees). In Sections 7 and 8, we prove the nonexis-
tence of group actions for the examples. Finally, in the appendix, we make precise
the notion of Denjoy blow-up for simply-connected 1-manifolds and order trees.

We note that recently Calegari and Dunfield [CD03] announced that they too
can generate examples of closed hyperbolic 3-manifolds containing no taut foliation.
Their approach is also via group actions but from a different viewpoint. They
obtain their examples by using their result that any atoroidal 3-manifold with a
taut foliation has a finite abelian cover whose fundamental group is left-orderable.

2. The examples

Once-punctured torus bundles over S1,

Mφ = (F × I)/φ
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(where F is a compact orientable surface of genus one with single boundary compo-
nent and φ ∈ Homeo(F )), and manifolds M̂φ(ρ) obtained by ρ-surgery on Mφ have
been much studied. See, for example, [Ba89, Ba90, BH96, BPZ, BMR, CJR, FH82,
Ha92, HMW, Jo77, Ma00, Mc87, NR92, Pr83, Pr84, Re95, RW99, Th88, We85]. In
particular, it is well known that Mφ is uniquely determined (up to homeomorphism)
by φ] : H1(F ) → H1(F ) [Ni17], where by fixing a basis for F , we obtain a matrix
φ] ∈ GL2(Z). By Thurston [Th88], Mφ is hyperbolic if and only if φ is pseudo-
Anosov, and an elementary eigenvalue argument reveals that φ is pseudo-Anosov
if and only if |trace(φ])| > 2. By Thurston’s Orbifold Theorem, M̂φ(ρ) admits a
geometric decomposition (cf. [CHK]). And when Mφ is hyperbolic (namely, when
|trace(φ])| > 2), Thurston’s Hyperbolic Dehn Surgery Theorem [Th79] reveals that
M̂φ(ρ) is hyperbolic for all but at most finitely many choices of ρ. In fact, since
M̂φ(ρ) admits a geometric decomposition, M̂φ(ρ) is hyperbolic for all but at most
12 values of ρ [Ag00, La00]. (For improvements on this bound for these manifolds,
see also the comments following Theorem 13 of [BH96].)

We next summarize what is known about the existence of Reebless foliations and,
more generally, essential laminations in the closed manifolds M̂φ(ρ). For simplicity
of exposition, we restrict attention to the case that Mφ is hyperbolic and orientable.
Recall that a slope is an isotopy class of unoriented simple closed curves in ∂M .
Let |〈ζ, η〉| denote the absolute value of the homological intersection number of
representatives of slopes ζ and η. Note that this number is well defined even though
the homology classes of ζ and η are defined only up to ±1.

Essential surfaces in Mφ are classified in [FH82] and [CJR]. In particular, it
follows from these classifications that there are essential surfaces in M̂φ(ρ) for at
most finitely many ρ.

Fixing a Riemannian metric on F and choosing the corresponding pseudo-Anosov
representative for φ [Th88], let fs and fu denote, respectively, the stable and
unstable laminations fixed by φ. Let γ denote the isotopy class of a closed orbit of
the pseudo-Anosov flow of φ restricted to ∂M . Choose transverse orientations for
fs and fu. Notice that

• φ : fs → fs preserves the transverse orientation iff trace(φ]) > 2 iff
|γ ∩ ∂F | = 1.
• φ : f s → fs reverses the transverse orientation iff trace(φ]) < −2 iff
|γ ∩ ∂F | = 2.

Now let Λs = (fs × I)/φ and Λu = (fu × I)/φ denote the suspension laminations.
Notice that Λs and Λu are transversely oriented if and only if trace(φ]) > 2. By
Theorem 5.3 of [GO89], Λs and Λu are essential in M̂φ(ρ) for all ρ not isotopic
to γ when |γ ∩ ∂F | = 1, and for all ρ satisfying |〈ρ, γ〉| ≥ 2 when |γ ∩ ∂F | = 2.
Furthermore, as noted by Thurston, Fried and Ghys, these suspension laminations
extend to taut foliations exactly when they are transversely orientable (cf. [Ga97]).
Namely, when |γ ∩ ∂F | = 1 and ρ is not isotopic to γ, and when |γ ∩ ∂F | = 2 and
〈ρ, γ〉 is a nonzero even integer, the suspension laminations extend to taut foliations
in M̂φ(ρ). Otherwise, they do not.

There exists a family of taut foliations discovered by Hatcher [Ha92]. If
|γ ∩ ∂F | = 1, then M̂φ(ρ) contains taut foliations transverse to the pseudo-Anosov
flow inherited from Mφ for all slopes ρ not isotopic to γ. If |γ ∩ ∂F | = 2, the situa-
tion is again a little more complicated to describe. When |γ ∩ ∂F | = 2, there exist
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exactly two slopes, µ1, µ2 say, determined by the intersection number conditions
|〈µi, ∂F 〉| = 1 and |〈µi, γ〉| = 2. Fixing a basis on ∂M yields a canonical identifica-
tion of the set of slopes with Q ∪ {∞}, which in turn embeds as a dense subset of
S1 [Ro77]. We can therefore think of the boundary slopes {µ1, µ2} as disconnect-
ing S1 into two open subintervals; denote by (µ1, µ2) the interval which does not
contain γ. Then M̂φ(ρ) contains taut foliations transverse to the pseudo-Anosov
flow inherited from Mφ for all slopes ρ in the interval (µ1, µ2).

Up to minor modifications, we have just listed all essential laminations known
to exist in manifolds M̂φ(ρ).

Question (Hatcher [Ha92]). Is this list complete?

We are almost ready to describe the examples considered in this paper. First
however we must fix a coordinate system on ∂M . As is standard, we describe a
coordinate system on ∂M by specifying two oriented simple closed curves, called
the longitude, λ, and the meridian, µ, respectively, and satisfying 〈λ, µ〉 = 1. Given
any essential simple closed curve γ in T , we define

slope γ =
〈γ, λ〉
〈µ, γ〉 .

(See, for example, [Ro77], p. 259.) Note that the slope of λ is therefore 0
1 ; the

slope of µ, 1
0 . We follow convention and set λ = ∂F , with the orientation inherited

from F . When |〈γ, ∂F 〉| = 1, we choose µ = γ. Otherwise, |〈γ, ∂F 〉| = 2 and we
choose µ so that γ has slope 2

1 . Let ρ have slope p
q . Note that if trace(φ]) > 2,

then |〈ρ, γ〉| = 2|q|, and if trace(φ]) < −2, then |〈ρ, γ〉| = |p− 2q|.
We can now summarize the existence results described above as follows.

(1) M̂φ(pq ) contains an essential surface for at most finitely many p
q .

(2) M̂φ(pq ) contains a taut foliation if one of the following is true:
• trace(φ]) > 2 and p

q 6=
1
0 .

• trace(φ]) < −2 and p
q ∈ (−∞, 1).

• trace(φ]) < −2 and p is even.
(3) M̂φ(pq ) contains a transversely oriented essential lamination if one of the

following is true:
• trace(φ]) > 2 and p

q 6=
1
0 .

• trace(φ]) < −2 and p
q ∈ (−∞, 1).

(4) M̂φ(pq ) contains an essential lamination if one of the following is true:
• trace(φ]) > 2 and p

q 6=
1
0 .

• trace(φ]) < −2 and |p− 2q| ≥ 2.

Next we fix a standard group presentation for π1(M̂φ(pq )). Isotope µ as necessary

so that |λ ∩ µ| = 1 and set {x0} = λ ∩ µ. Let t = [µ] ∈ π1(M̂φ(pq ), x0), and choose
a basis a, b for π1(F, x0). Let φ∗ : π1(F, x0) → π1(F, x0) be the map induced by
φ : F → F . Then π1(M̂φ(pq )) has group presentation

〈a, b, t|at = aφ∗, b
t = bφ∗, t

p [a, b]q = 1〉,
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where we use the notation gh := h−1gh and [g, h] := ghg−1h−1. In this paper, we
pass to the subset of these examples satisfying

φ] =
[
m 1
−1 0

]
.

(To view these manifolds in an alternate context, namely, as surgeries on the White-
head link, see [HMW].) Now for integers p, q,m with gcd(p, q) = 1, define G(p, q,m)
to be the group generated by t, a and b subject to the relations

(R1) at = abam−1,
(R2) bt = a−1, and
(R3) tp [a, b]q = 1.

Note that relations (R1) and (R2) imply that

t [a, b] = [a, b] t.

Since by Nielsen [Ni17],

Aut+(F ) ∼= {f ∈ Aut(π1(F ))|f fixes [a, b]} ∼= SL2(Z),

we conclude that
π1(M̂φ(

p

q
)) ∼= G(p, q,m).

Now let T be a simply-connected (second countable but not necessarily Haus-
dorff) 1-manifold. Since T is a simply-connected 1-manifold, it possesses exactly
two orientations. Orient T and let Homeo+(T ) be the subgroup of Homeo(T )
consisting of the orientation preserving homeomorphisms of T .

Convention. Throughout this paper, we assume that all group actions on all sets
are from the right. This includes the action of Homeo(X) on X for any space X.

So we are interested in continuous (right) actions of G(p, q,m) on T , that is,
homomorphisms Φ from G(p, q,m) to the group Homeo(T ) of homeomorphisms of
T . As noted in the introduction, we say that a subgroup H of Homeo(T ) has a
global fixed point, or that H acts trivially on T , if there is some x ∈ T such that
xh, x are nonseparated in T for all h ∈ H . We will prove the following result.

Theorem 2.1. Suppose m, p, q are integers satisfying m < −2, p ≥ q ≥ 1, and
(p, q) = 1. Suppose further that both m and p are odd. Then the image of any
homomorphism

Φ : G(p, q,m)→ Homeo+(T )
has a global fixed point.

Proof. This is proved in Sections 3, 7 and 8. �

Since the commutator quotient H1(G(p, q,m)) is isomorphic to Zp⊕Z|m−2|, the
restriction to orientation preserving homeomorphisms is no restriction at all when
p and m are both odd, as in this case Z2 is not a quotient of G. In fact, slightly
more is true.

Lemma 2.2. Let X be any oriented manifold and let

Ψ : G(p, q,m)→ Homeo(X)

be any homomorphism.
(1) If m is odd, then Ψ(a),Ψ(b) ∈ Homeo+(X).
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(2) If p is odd, then Ψ(t) ∈ Homeo+(X).

Proof. Note we first that
[
Homeo(X) : Homeo+(X)

]
≤ 2. So in particular,

[Homeo(X), Homeo(X)] ⊆ Homeo+(X), and any even power of any homeomor-
phism is in Homeo+(X). Now these two facts together with relation (R1) imply
that when m is odd, we have Ψ(b) ∈ Homeo+(X). But relation (R2) guarantees
that Ψ(b) ∈ Homeo+(X) if and only if Ψ(a) ∈ Homeo+(X), establishing the first
claim of the lemma. Now if p is odd, we have Ψ(t) ∈ Homeo+(X) if and only
if Ψ(tp) ∈ Homeo+(X). So relation (R3) and the fact that [a, b] ∈ Homeo+(X)
imply the second claim. �

Thus Theorem 2.1 gives the following result.

Corollary 2.3. Suppose m, p, q are integers satisfying m < −2, p ≥ q ≥ 1, and
(p, q) = 1. Suppose further that both m and p are odd. Then the image of any
homomorphism Φ : G(p, q,m)→ Homeo(T ) has a global fixed point.

Theorem A. There exist infinitely many closed hyperbolic 3-manifolds which do
not contain a Reebless foliation.

Proof. As noted in the introduction, if M contains a Reebless foliation, then π1(M)
acts nontrivially on a simply-connected 1-manifold [HR57, Pa78]. A simple proof
is as follows. Since M is hyperbolic, it is taut [Go75]. In particular, there is a
homotopically nontrivial simple closed curve transverse to every leaf. This implies
that the orbit of every leaf in the universal cover contains a pair of leaves which
are joined in T by an embedded interval; in particular, the orbit contains separated
leaves. So the action is nontrivial.

Theorem A therefore follows immediately from Corollary 2.3 as soon as we show
that the set

M =
{
M̂φ(

p

q
)|m < −2 is odd, p is odd, (p, q) = 1,

p

q
≥ 1
}

contains infinitely many distinct hyperbolic 3-manifolds. As we noted above,
Thurston’s Hyperbolic Dehn Surgery Theorem [Th82] guarantees that for any given
m, M̂φ(ρ) is hyperbolic for all except possibly finitely many p

q . Furthermore, since

H1(M̂φ(ρ)) = Z/p⊕ Z/(m− 2),

it follows that the set M is infinite. �

Theorem 5.10. Any nontrivial orientation preserving action on an oriented R-
order tree T0 canonically induces a nontrivial orientation preserving action on a
related oriented simply-connected 1-manifold X.

Proof. This is proved in Section 5. �

From Corollary 2.3, we therefore also obtain

Theorem B. There exist infinitely many closed hyperbolic 3-manifolds which do
not contain a transversely oriented essential lamination.

Furthermore, infinitely many of the manifolds in M do contain essential lami-
nations: the essential laminations Λs and Λu.
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Theorem C. There exist infinitely many closed hyperbolic 3-manifolds which con-
tain neither a Reebless foliation nor a transversely oriented essential lamination,
but which do contain essential laminations.

On the other hand, when |p− 2q| = 1 and m < −2, there are no known essential
laminations in M̂φ(pq ). In fact, restricting to these cases and adding the condi-
tion that m be odd, we conjecture that there exist no nontrivial actions of such
π1(M̂φ(pq )) on R-order trees, and hence that there are infinitely many hyperbolic
3-manifolds which contain no essential lamination. As noted in the introduction,
Fenley has announced a proof of this conjecture, without the condition that m be
odd, for m < −3.

We also turn our attention to R-covered foliations. When T = R, it is possible
to make slightly stronger statements.

Proposition 3.1. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, then the image of any
homomorphism Φ : G(p, q,m)→ Homeo+(R) is trivial.

Corollary 2.4. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, then M̂φ(pq ) contains no
transversely oriented R-covered foliations.

Corollary 3.2. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, and m, p are both odd, then
the image of any homomorphism Φ : G(p, q,m)→ Homeo(R) is trivial.

Corollary 2.5. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, and both p and m are odd,
then M̂φ(pq ) contains no R-covered foliations.

Finally, we note that in [RSS], we examine all φ] ∈ SL2(Z) with odd negative
trace. By working with a standard normal form for φ], we obtain the conclusions of
Proposition 3.1, Corollary 3.2, Corollary 2.4, and Corollary 2.5 for this larger family.
We suspect that the conclusion of Theorem 2.1 is also true. So our restriction to φ
satisfying

φ] =
[
m 1
−1 0

]
seems likely to be merely a convenience. On the other hand, we have yet really to
understand the condition that m be odd. Notice that in contrast with the condition
that p be odd, which is topologically necessary (since when p is even, M contains
a Reebless foliation), the role of m odd is still unclear. The condition that m be
odd does seem to be important in our proof of Theorem 2.1.

Question. Is the condition that m be odd necessary to rule out nontrivial group
actions? If yes, is the condition that m be odd necessary to rule out existence of
Reebless foliations?

3. The case T = R

As a warm-up and for those readers primarily interested in actions on R, we first
prove

Proposition 3.1. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, then the image of any
homomorphism Φ : G(p, q,m)→ Homeo+(R) is trivial.

As noted in Section 2, the restriction to orientation preserving homeomorphisms
is no restriction at all when p and m are both odd. Thus Proposition 3.1 gives the
following result.
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Corollary 3.2. If m < 0 and p ≥ q ≥ 1, (p, q) = 1, and m, p are both odd, then
the image of any homomorphism Φ : G(p, q,m)→ Homeo(R) is trivial.

Our proof of Proposition 3.1 is by contradiction; so we assume that there is
some nontrivial homomorphism Φ : G(p, q,m) → Homeo+(R). Note that if every
representation describes an action with global fixed point, then necessarily every
representation is trivial, by the following argument. Fix a nontrivial homomor-
phism φ : G→ Homeo+(R) and observe that F := {x | xφ(γ) = x for each γ ∈ G}
is a closed, proper subset of R. Each component of the nonempty set R \ F is
homeomorphic to R and is invariant under the given action. Furthermore, by con-
struction the action on each component has no global fixed point and is orientation
preserving.

So we may equivalently assume that there is some representation describing an
action with no global fixed point.

Set
• τ := Φ(t),
• α := Φ(a),
• β := Φ(b), and
• γ := Φ([a, b]).

Note that γ = αβα−1β−1. Using the relations which define G(p, q,m), we see that
we have

(A) τ−1ατ = αβαm−1,
(B) τ−1βτ = α−1,
(C) τp = γ−q, and
(D) τγ = γτ .

Condition (B) guarantees that the image of Φ is generated by both {τ, α} and
{τ, β}, and the next lemma follows.

Lemma 3.3. There is no x ∈ R which is fixed by τ and at least one of α, β.

Lemma 3.4. Let g, h be elements of a group G such that gh = hg and such that
there exist relatively prime integers p, q with gp = h−q. Then there is some k ∈ G
such that g = kq and h = k−p.

Proof. Take integers r, s with rp+sq = 1 and verify that k = gsh−r has the desired
properties. �

We conclude that there is some κ ∈ Image(Φ) such that:
(E1) τ = κq,
(E2) γ = κ−p.

Another relation which will be used repeatedly and without reference is:
(F) τ−1ατ = αβαm−1 = γβαm.

And finally, we highlight the following elementary but key fact:
If g is orientation preserving and x < y, then xg < yg.

3.1. A general lemma for posets. Our proof of Proposition 3.1 involves exam-
ining the fixed point sets of κ and α. The following general lemma about actions
of G(p, q,m) on partially ordered sets (posets) will be of use not only for certain
cases in this section, but also when proving Theorem 2.1 for general T . We say
that a group G acts on a poset P if we have a homomorphism from G to the group
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of order preserving bijections on P . Note that in this lemma, the existence of k is
guaranteed by Lemma 3.4.

Lemma 3.5. Let G = G(p, q,m) act on a partially ordered set P . Assume m < 0
and p ≥ q ≥ 1, (p, q) = 1. Let k ∈ G satisfy kq = t and k−p = [a, b]. If some x ∈ P
satisfies either of the conditions

(1) xk = x and x, xa are related in P , or
(2) xa = x and x, xk are related in P ,

then x is fixed by every g ∈ G.

Proof. Say condition (1) holds, so xk = x. Then xt = x [a, b] = x. If xa = x,
then x is fixed by every element of G, so assume (for contradiction) that xa 6= x.
Replacing P with the poset P op (so y ≤P z if and only if z ≤Pop y) if necessary,
we may (and do) assume that xa > x. Then

xbam = x [a, b] bam = xt−1at = xat > xt = x,

and since m < 0, we have

(3.1) xb > xa−m > x.

However, we have

xbt = xt−1bt = xa−1 < x,

so

(3.2) xb < xt−1 = x,

and equations (3.1) and (3.2) give the desired contradiction.
Now say condition (2) holds, so xa = x. As above, we may assume (for contra-

diction) that xk > x. Note that

xt−1b = xa−1t−1 = xt−1.

Since

x [a, b] = xk−p ≤ xk−q = xt−1,

we have

xt−1at = x [a, b] bam ≤ xt−1bam = xt−1am < xam = x,

so

(3.3) xt−1a < xt−1.

On the other hand, we have

xba−1 = xaba−1 = x [a, b] b ≤ xt−1b = xt−1,

so

(3.4) xt−1a ≥ xb > xt−1b = xt−1.

Now equations (3.3) and (3.4) give the desired contradiction. �
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3.2. Completing the proof of Proposition 3.1. As noted above, a homomor-
phism from G(p, q,m) to Homeo+(R) determines an action of G(p, q,m) on the
poset R (with the usual linear order). Since all pairs x, y of elements of R are
related in this order, the next result follows immediately from Lemma 3.5.

Corollary 3.6. Assume p ≥ q ≥ 1, (p, q) = 1, and m < 0. If the image of
Φ : G(p, q,m)→ Homeo+(R) has no global fixed point, then Fix(κ) = Fix(α) = ∅.

We complete the proof of Proposition 3.1 by showing that necessarily Fix(α) 6= ∅.
Suppose, by way of contradiction, that Fix(α) = ∅. By the intermediate value

theorem, either xα < x for all x ∈ R or xα > x for all x ∈ R. We may orient R so
that xα > x for all x ∈ R. So

(xτ−1)ατ > (xτ−1)τ = x

for all x ∈ R. On the other hand, xβ = xτα−1τ−1 < x, which implies xαβα−1 < x
for all x ∈ R, and hence

(xτ−1)ατ = xαβαm−1 = x(αβα−1)αm < x

for all x ∈ R. Hence, Fix(α) = ∅ is impossible and, necessarily, the image of Φ has
a global fixed point.

4. Non-Hausdorff 1-manifolds

Let T be a (path-connected and) simply-connected 1-manifold. We will assume
that T is second countable but not necessarily Hausdorff. Since T is path-connected,
there is a path between any two points. In general, however, unique minimal paths
do not exist. Given x, y ∈ T , we often consider instead the geodesic spine

[[x, y]] = {z ∈ T |x, y lie in distinct components of T \ {z}} ∪ {x, y}
from x to y (see p. 563, [Ba98]). Note that [[x, y]] is the intersection of all paths
from x to y (Theorem 3.6, [RS01]). Moreover, [[x, y]] is the union of a finite number
n ≥ 1 of disjoint (possibly degenerate) closed intervals (Proposition 2.3, [Ba98])

[[x, y]] = [x, y1] ∪ [x2, y2] ∪ · · · ∪ [xn, y],

where yi is not separated from xi+1. (To obtain finiteness, it suffices to note that
if ρ : [0, 1]→ T is any path from x to y, then ρ([0, 1]) is compact and hence has a
finite open cover by sets homeomorphic to R.) Let ((x, y)), [[x, y)), ((x, y]] denote
[[x, y]] \ {x, y}, [[x, y]] \ {y} and [[x, y]] \ {x}, respectively. As in [Ba98], set

d(x, y) = n− 1.

Only in exceptional cases is d a metric. In general, it certainly might be true that
x 6= y but d(x, y) = 0. For example, if T = R, then d ≡ 0. And, in general, only a
modified version of the triangle inequality holds. See, for example, Figure 1. (On
the other hand, replacing d by d+ 1 on T ×T \ {(x, x) : x ∈ T } does yield a metric
on T .)

Lemma 4.1. Let x, y, z ∈ T . Then
• [Proposition 2.5,[Ba98]]. If y ∈ [[x, z]], then d(x, z) = d(x, y) + d(y, z).
• d(x, z) ≤ d(x, y) + d(y, z) + 1.
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X Z

Y

Figure 1. d(x, z) = 1 > 0 = d(x, y) + d(y, z).

Proof. If x, y and z lie on a common geodesic spine, then d(x, z) ≤ d(x, y)+d(y, z).
So we may assume that x, y and z satisfy one of the configurations of Figure 2, as
described in Theorem 3.10, [RS01]. It is easy to verify that in the first three cases,

X Z

Y

X Z

Y

X Z

Y

X Z

Y

Figure 2.

d(x, z) ≤ d(x, y) + d(y, z), whereas in the fourth case, d(x, z) ≤ d(x, y) + d(y, z) + 1
is the best possible. �

We shall call a subset X of T spine-connected if for all x, y ∈ X , [[x, y]] ⊂ X .

Lemma 4.2. Suppose X ⊂ T is spine-connected and X ⊂ Y ⊂ X. Then Y is
spine-connected.

Proof. Consider distinct points y1, y2 ∈ Y and let z ∈ ((y1, y2)). Let U1, U2 be
neighbourhoods of y1,y2, respectively, which are homeomorphic to R and which lie
in T \ {z}. Since U1 and U2 are separated by z with U1 ∩X 6= ∅ and U2 ∩X 6= ∅,
necessarily z ∈ X . Hence, [[y1, y2]] ⊂ Y . �

Since T is simply-connected, it is orientable. Orient T by choosing either one of
the two possible orientations.

Definition 4.3. (See Section 2.1, [Ba98].) For x ∈ T , let Ix be an open set in T
containing x which is homeomorphic (as an oriented manifold) to R (such an Ix
exists since T is an oriented 1-manifold). Let I+

x be the set of elements of Ix \ {x}
which can be reached from x by walking in the positive direction according to the
orientation on T ; let I−x = (Ix \ I+

x ) \ {x}. Since T is simply-connected, T \ {x}
has at least two connected components, and since T is a 1-manifold, T \ {x} has
exactly two connected components. Let x+ be the component containing I+

x and
let x− be the component containing I−x .

We now define a partial order ≤ on T .

Definition 4.4. For x, y ∈ T , we say that

x ≤ y ⇐⇒ x+ ⊇ y+.

Note that for distinct elements x, y ∈ T , y+ ⊆ x+ if and only if both y ∈ x+ and
x ∈ y−. A straightforward induction on d(x, y) therefore yields the following:
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Lemma 4.5. For all x, y ∈ T , we have:
• x+ ⊇ y+ if and only if x− ⊆ y−.
• x, y are comparable with respect to ≤ if and only if d(x, y) is even.

Define a relation ∼ on T by
• x ∼ y if and only if x and y are not separated in T .

Set
[x] = {y ∈ T |y ∼ x}.

If x ∼ y, let T{x,y} denote the submanifold defined as follows:
• if x ∈ y+ (equivalently, if y ∈ x+), set T{x,y} =

⋂
z∼x and z∼y z

+, and
• if x ∈ y− (equivalently, if y ∈ x−), set T{x,y} =

⋂
z∼x and z∼y z

−.

The relation ∼ is reflexive and symmetric, but not necessarily transitive. However,
since T has countable basis, there are at most countably many points b satisfying
a ∼ b and b ∼ c but a � c. (For an example of such a point b, see Figure 3. For
a precise description of this phenomenon, see the appendix or [Ba98].) Hence, by

a

b

c

a

c

Figure 3. Denjoy blow-up at b.

blowing up these countably many points to closed nondegenerate intervals in the
spirit of Denjoy [De32, Sc74] (see the appendix for details), we obtain a related
simply-connected 1-manifold T ′ on which the relation ∼ is transitive, and hence an
equivalence relation. Note that all trees T ′ obtained in this way are homeomorphic.

Definition 4.6. Let T be a simply-connected 1-manifold. Form the quotient space

TH = T ′/ ∼,
where T ′ is a 1-manifold obtained from T as above. Since T ′ is uniquely determined
up to homeomorphism, so is TH . Call TH the Hausdorff tree associated to T . Let
p : T → TH denote the corresponding quotient map.

When proving Theorem 2.1, we will often examine subsets of T whose images in
TH are homeomorphic to subintervals of R. Working in TH rather than T whenever
possible allows us to avoid tedious case analyses when examining such subsets of T .
For example, notice that if [[x,y]] is a geodesic spine in T , then p([[x, y]]) ⊂ TH is
homeomorphic to a closed interval in R. Other examples of such subsets are bridges,
which we now define. If X,Y are disjoint, nonempty, spine-connected subsets of T ,
the bridge from X to Y is simply the intersection of all paths in T with one endpoint
in X and the other in Y . Similarly, if X,Y are disjoint, nonempty connected subsets
of TH , then the bridge from X to Y in TH is the intersection of all paths in TH
with one endpoint in X and the other in Y . Such a bridge in TH is always of the
form [x, y] for some x ∈ X and y ∈ Y . Some possible structures at [x] of a bridge
in T whose image in TH is [x, y] are illustrated in Figure 4. (The bridge near X is
represented schematically by the connected vertical segment and X is represented
schematically by the horizontal segments.)
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Figure 4.

Now suppose that G is any group acting on T . Let g ∈ G. Note that if g is
orientation preserving (reversing), it preserves (reverses, respectively) the partial
order ≤ on T . As usual, write

Fix(g) = {x ∈ T |xg = x}.
Write

Nonsep(g) = {x ∈ T |xg ∼ x},
for the set of points not separated by g. We shall say that x ∈ T is a global fixed
point for the action of G on T if xg ∼ x for all g ∈ G. If there exists a global fixed
point, we call the action trivial. By extending linearly over the blown-up intervals,
any action of G on T induces an action of G on T ′. Moreover, the action of G on
T is trivial if and only if the induced action of G on T ′ is trivial.

Without loss of generality therefore, and with gain an increased simplicity of
exposition, we make the following assumption throughout the rest of the paper: ∼
is transitive on T .

Define the characteristic set associated to g by

Cg = {x ∈ T |d(x, xg) is even}.
Note that in [Ba98], Barbot calls this set the fundamental axis. We will reserve the
term axis for the case Nonsep(g) = ∅.
Lemma 4.7 (See also [Ba98, Proposition 2.7(2)]). Let x ∈ T . Then x ∈ Cg if and
only if x and xg are comparable with respect to the partial order ≤.

Proof. This follows immediately from Lemma 4.5. �
Proposition 4.8 ([Ba98, Proposition 2.10]). Suppose Nonsep(g) = ∅. Then Cg 6=
∅ and for any x ∈ Cg,

Cg =
⋃
n∈Z

[[xgn, xgn+1]].

For an alternate approach to the proof of Proposition 4.8, beginning with the
characterization of Cg given in Corollary 4.11, see also Theorem 5.6 [RS01] or
Theorem 3.4 [Fe].

Corollary 4.9. If Nonsep(g) = ∅, then Nonsep(gn) = ∅, for all nonzero integers
n.

Hence, when Nonsep(g) = ∅, Ag := Cg is an axis for g in the spirit of Tits-Serre
(Proposition 24, Section 6.4, [Se77]). We note in passing that any fact from the the-
ory of group actions on R-trees which depends only on the combinatorial properties
of existence of such axes still holds true in this setting. In fact, existence merely
of the characteristic set Cg for arbitrary g is sometimes (although certainly not
always) sufficient for the generalization of well-known arguments. (Good surveys
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on isometric actions on real trees can be found in [Ch01, Mo92, Pa95, Sh87, Sh91].
See also [CM87, CV96].)

From Proposition 4.8, it follows that in TH , p(Ag) ≈ R, and in T , either Ag ≈ R
or Ag =

⋃∞
−∞[xi, yi], where [xi, yi] is homeomorphic to a closed interval in R,

[xi, yi]∩ [xj , yj] = ∅ when i 6= j, xi 6= yi, and yi ∼ xi+1 for all i, j. In each case, the
action of g on Ag is conjugate to an action by translations, and there is a natural
linear order �g on Ag satisfying x ≺g xg for all x ∈ Ag. (In general, �g agrees
with neither ≤ nor the opposite partial order ≥.)

Suppose Y is a g-invariant embedded copy of R in T on which g acts freely.
Then we call Y a local axis for g. Note that if x lies in a local axis for g, then
d(x, xg) = 0.

Now suppose Nonsep(g) 6= ∅ and let Ti, i ∈ I, denote the path components of
T \Nonsep(g). Notice that each Ti is path-connected and open. So T i∩Tj = ∅ for
all i 6= j and hence T i\Ti ⊂ Nonsep(g) ⊂ Cg for all i. In particular, T i\Ti = ∅ only
if Nonsep(g) = ∅. Notice also that Tig = Tj for some j ∈ I. When Tig = Tj 6= Ti,
then since T is simply-connected, T i \Ti 6= ∅ can consist of at most one, and hence
exactly one, point x ∈ Nonsep(g), and T j \ Tj is the point xg, where xg ∼ x and
xg 6= x (namely, the situation pictured in Figure 5 must hold). In this case, we call

x xgTi Tj

Figure 5.

x the root of Ti in T (and xg the root of Tj in T ). On the other hand, whenever
Tig = Ti, g acts freely on Ti, and hence this local action has an axis Aig ⊂ Ti.
Using distance to an element of T i ∩ Nonsep(g), one can check that such an Aig
is homeomorphic to R and hence is an example of a local axis for g; in fact, all
local axes for g arise in this way. We summarize some of these observations in the
following lemma.

Lemma 4.10. Suppose Nonsep(g) 6= ∅. Then:
• Nonsep(g) ⊂ Nonsep(gn) and hence Cg ⊂ Cgn , for any n.
• Cg = {x ∈ T |d(x, xg) = 0}.
• Cg = Fix(g) ∪ {x ∈ T |x lies on a local axis for g}.

Corollary 4.11. For any g ∈ G, we have

Cg = {x ∈ T |x ∈ [[xg−1, xg]]}.
Proof. Suppose x ∈ T satisfies x ∈ [[xg−1, xg]]. If d(xg−1, xg) = 0, then d(x, xg) =
0 and so Lemma 4.10 guarantees that x ∈ Cg. So suppose that d(xg−1, xg) > 0.
By Lemma 4.1,

d(xg−1, xg) = d(xg−1, x) + d(x, xg) = 2d(x, xg)

and so x ∈ Cg2 . By Lemma 4.10, Nonsep(g2) = ∅, and so Cg2 = Ag2 . But
Nonsep(g) ⊂ Nonsep(g2) = ∅ and in particular, x ∈ Cg2 = Ag2 = Ag = Cg.

The reverse inclusion follows immediately from Proposition 4.8 and Lemma 4.10.
�
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Corollary 4.12. If there is some x ∈ T such that d(x, xg) 6= 0 is even, then
Nonsep(g) = ∅.

Corollary 4.13. Let g ∈ G. Then both Cg and Cg∪Nonsep(g) are spine-connected.

Proof. If Nonsep(g) = ∅, then Cg ∪ Nonsep(g) = Ag is spine-connected. So we
may assume Nonsep(g) 6= ∅. By Lemma 4.2, it suffices to prove that Cg is spine-
connected.

Consider first the special case that x ∈ Fix(g) and y ∈ Cg. Since d(x, y) =
d(x, yg) and d(y, yg) = 0, necessarily x, y and yg are collinear in T (i.e., lie on
a common geodesic spine). If g is orientation reversing, then [[x, y]] ⊂ [[y, yg]] =
[y, yg]. And if g is orientation preserving, then either yg ∈ [[x, y]] or y ∈ [[x, y]]g.
So either [[x, y]]g ⊂ [[x, y]] or [[x, y]]g−1 ⊂ [[x, y]], and hence, for every z ∈ [[x, y]],
d(z, zg) = 0. In either case, [[x, y]] ⊂ Cg.

Consider next the special case that x, y ∈ Cg \ Fix(g). If x and y lie in a
common component of T \ Nonsep(g), then necessarily x and y lie on a common
local axis, and hence [[x, y]] = [x, y] is also contained in this common local axis
(and hence in Cg). Otherwise, x and y are separated by some z ∈ Nonsep(g). Now
z ∈ Fix(g) since otherwise d(x, xg) and d(y, yg) are odd. So [[x, y]] = [[x, z]]∪[[z, y]]
is contained in Cg by the first special case. �

It will sometimes be useful to consider an object obtained by adding one point x̂,
called an ideal point of T , to T for each ∼-equivalence class [x] in T which contains
more than one point. This object, denoted by T̂ , is called the completion of T .
(Compare with Section 5 of [RS01].) We say that an ideal point x̂ is a source if
whenever y, z are distinct elements of [x] we have y ∈ z−, and we say that x̂ is a
sink if whenever y, z are distinct elements of [x] we have y ∈ z+. Note that every
ideal point x̂ is either a source or a sink. The action of any subgroup of Homeo(T )
extends to an action on T̂ in the obvious way, that is, we set x̂g = ŷ if [x]g = [y].
We want to extend our partial order on T to T̂ so that group actions on T̂ obtained
from orientation preserving actions on T preserve this extended partial order. For
an ideal point x̂, we define

x̂+ =
{ ⋃

y∈[x]({y} ∪ y+), x̂ a source,⋂
y∈[x] y

+, x̂ a sink,

and set

x̂− = T \ x̂+.

Note that x̂+, x̂− ⊆ T . It is straightforward to show that if H is any group of
orientation preserving homeomorphisms of T , then for x, y ∈ T̂ and h ∈ H , we
have x+ ⊆ y+ if and only if (xh)+ ⊆ (yh)+. So, we have the following result, which
will allow us to invoke Lemma 3.5 more often in the proof of Theorem 2.1 than
would be possible without the introduction of T̂ .

Proposition 4.14. Define the relation ≤ on T̂ by x ≤ y if y+ ⊆ x+. This relation
is a partial order which extends the order ≤ on T defined in Definition 4.4. In
addition, if H ≤ Homeo+(T ), then the induced action of H on T̂ is order preserving.
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5. R-order trees

Both simply-connected 1-manifolds and their associated Hausdorff trees are spe-
cial cases of a more general tree-like object, the R-order tree. An order tree T
[GO89] is a set T together with a collection S of linearly ordered subsets called
segments. If σ is a segment, then −σ denotes the same subset with reverse order.
The segments satisfy :

(1) Each segment σ has distinct least and greatest elements, which we will
denote by i(σ) and f(σ), respectively. (We also write σ = [i(σ), f(σ)].)

(2) If σ is a segment, so is −σ.
(3) A closed nondegenerate (i.e., containing more than one element) subinterval

of a segment is a segment.
(4) Given x, y ∈ T , there exists a path from x to y; namely, a sequence

σ1, . . . , σk of segments such that i(σ1) = x, f(σk) = y, and f(σj) = i(σj+1)
for all j.

(5) Given a cyclic path σ0σ1 · · ·σk−1 (where cyclic means f(σk−1) = i(σ0)),
there is a subdivision of the path σ0σ1 · · ·σk−1 to a path ρ0 · · · ρn−1 so that
after cancelling all adjacent pairs of the form (ρ)(−ρ), we have the empty
sequence.

(6) If f(σ1) = i(σ2) = σ1 ∩ σ2, then σ1 ∪ σ2 is a segment.
An R-order tree [GK97] is an order tree satisfying also:

(7) Each segment is order isomorphic to a closed interval in R.
(8) T is a countable union of segments.

T is topologized by giving segments the order topology and then declaring a set
U ⊂ T to be open in T if and only if U∩σ is open in σ for every segment σ. Note that
defining axiom (4) guarantees that T is path-connected and that defining axiom
(5) guarantees that T is simply-connected.

An orientation of an order tree is a choice of subset S+ ⊂ S such that
• S+ ∩ (−S+) = ∅, where −S+ = {−σ|σ ∈ S+}.
• A closed nondegenerate subinterval of a segment in S+ is in S+.
• Any two elements of T can be joined by a sequence σ1, . . . , σk of segments

in S+ ∪ (−S+) such that f(σj) = i(σj+1) for all j.
• If σ1, σ2 ∈ S+, and f(σ1) = i(σ2) = σ1 ∩ σ2, then σ1 ∪ σ2 ∈ S+.

Since there are no nontrivial cyclic words, orientations always exist. In contrast to
the situation when T is a simply-connected 1-manifold and therefore has exactly
two orientations, there are generally many possible choices of orientation for an R-
order tree. Note that if S0 is a collection of linearly ordered subsets of T such that
S0 ∪ −S0 satisfies conditions (1), (4) and (5) of the definition of order tree, then
there is a unique smallest set S containing S0 and also satisfying all six defining
conditions.

As we will discuss further in Section 6, if Λ is an essential lamination in M with
no isolated leaves, then its lift to the universal cover of M has leaf space an R-order
tree [GO89]. If Λ is a transversely oriented essential lamination with no isolated
leaves in M , then its lift to the universal cover of M has leaf space an oriented
R-order tree.

Now let T be any simply-connected 1-manifold for which ∼ is transitive. Let TH
denote the associated Hausdorff tree. It is easy to see that the (oriented) 1-manifold
structure on T induces canonical (oriented) R-order tree structures on T and TH ,
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respectively. Choose either of the two orientations of T . Let S+ = {σ ⊂ T |σ is
homeomorphic to a nondegenerate closed interval in R, with linear order inherited
from the orientation of T }, and let S be the smallest set containing S+ and also
satisfying the axioms defining an order tree. Then T together with S is an R-order
tree, and S+ is an order tree orientation for T . Next, let (SH)+ = {p(σ)|σ ∈ S+},
and let SH be the smallest set containing (SH)+ and also satisfying the axioms
defining an order tree. Then TH together with SH is an R-order tree, and (SH)+

is an order tree orientation for TH . (The first two defining conditions of order tree
orientation are clearly satisfied. The third condition follows from the finiteness of
d(x, y) for every pair x, y ∈ T ; namely, from Proposition 2.3 of [Ba98]. The fourth
condition follows from the fact that since T is an oriented 1-manifold, it is not
possible to find distinct x, y ∈ T and σ1, σ2 ∈ S+, such that f(σ1) = x ∼ y = i(σ2).)
So any orientation of T projects to an orientation of TH as an R-order tree. In
contrast, not all order tree orientations of TH lift to orientations of T .

Now let T be any order tree. A function φ : T → T is called an (order tree)
automorphism if φ is a set bijection satisfying [x, y]φ = [xφ, yφ] ∈ S ⇐⇒ [x, y] ∈ S.
We say that φ is orientation preserving if σφ ∈ S+ ⇐⇒ σ ∈ S+. Set Aut(T ) = {φ :
T → T |φ is an order tree automorphism}, and set Aut+(T ) = {φ ∈ Aut(T )|φ is
orientation preserving}. Let G be any group. A right action of G on T as an order
tree is a mapping

T ×G→ T : (x, g) 7→ xg = xΦ(g),
for some homomorphism

Φ : G→ Aut(T ).
An orientation preserving action is an action satisfying Φ(G) ⊂ Aut+(T ). Now
consider the special case that T is a simply-connected 1-manifold with canonically
induced R-order tree structure. Then φ ∈ Aut(T ) ⇐⇒ φ ∈ Homeo(T ). So an
action of G on T as a 1-manifold is also an action of G on T as an R-order tree,
and an action of G on T as an R-order tree (still with canonically induced R-order
tree structure) is also an action of G on T as a 1-manifold.

Many of the properties of simply-connected 1-manifolds hold true for or gener-
alize to R-order trees. (In particular, the notation used in this section for R-order
trees T is consistent with the notation used in Section 4 in the special case that T
is a simply-connected 1-manifold.)

Given x, y ∈ T , we again consider the geodesic spine

[[x, y]] = {z ∈ T |x, y lie in distinct components of T \ {z}} ∪ {x, y}
from x to y. Again, [[x, y]] is the intersection of all paths from x to y (Theorem 3.6,
[RS01]). Moreover, [[x, y]] is the union of a finite number n ≥ 1 of disjoint (possibly
degenerate) closed intervals (Axiom (4))

[[x, y]] = [x, y1] ∪ [x2, y2] ∪ · · · ∪ [xn, y],

where yi is not separated from xi+1. Let ((x, y)), [[x, y)), ((x, y]] denote [[x, y]] \
{x, y}, [[x, y]] \ {y} and [[x, y]] \ {x}, respectively. Set

d(x, y) = n− 1,

and note that only a modified version of the triangle inequality holds.

Lemma 5.1. Let x, y, z ∈ T . Then
• If y ∈ [[x, z]], then d(x, z) = d(x, y) + d(y, z).
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• d(x, z) ≤ d(x, y) + d(y, z) + 1.

Again, we call a subset X of T spine-connected if for all x, y ∈ X , [[x, y]] ⊂ X .
Define a relation ∼ on T by
• x ∼ y if and only if x and y are not separated in T .

Set
[x] = {y ∈ T |y ∼ x}.

If x ∼ y, let T{x,y} denote the component of T \ [x] which has both x and y as limit
points. Note that alternatively, ∼ can be defined in terms of segments as follows:

x ∼ y
if and only if σ1∩σ2 6= ∅ for every pair σ1, σ2 ∈ S+ such that x ∈ σ1 \{i(σ1), f(σ1)}
and y ∈ σ2 \ {i(σ2), f(σ2)}. The relation ∼ is reflexive and symmetric, but not
necessarily transitive. However, as described in the appendix, there is a naturally
associated R-order tree T ′ on which ∼ is transitive and hence an equivalence rela-
tion.

The notions of characteristic set, axis and local axis also generalize to the case
of order trees. Define the characteristic set of g to be

Cg = {x ∈ T |x ∈ [[xg−1, xg]]}.
Again we note that any fact from the theory of group actions on R-trees which
depends only on the combinatorial properties of existence of such characteristic
sets still holds true in this setting.

Proposition 5.2 ([RS01, Theorem 5.6]). Suppose Nonsep(g) = ∅. Then Cg 6= ∅,
with

Cg =
⋃
i

[[xgi−1, xgi]]

for any x ∈ Cg.

Hence, when Nonsep(g) = ∅, it again makes sense (in the sense of Tits-Serre) to
call Ag := Cg an axis for g.

And again, by local axis for g we mean either an axis for g or, when Nonsep(g) 6=
∅, any subset of T order isomorphic to R on which g acts freely.

Lemma 5.3. Suppose Nonsep(g) 6= ∅. Then
• Nonsep(g) ⊂ Nonsep(gn) and hence Cg ⊂ Cgn , for any n.
• Cg = Fix(g) ∪ {x ∈ T |x lies on a local axis for g}.

Corollary 5.4. Let g ∈ G. Then both Cg and Cg∪Nonsep(g) are spine-connected.

The proof of Theorem 5.6 of [RS01] also yields the following.

Proposition 5.5. Let T be any R-order tree. Let x ∈ T , g ∈ Homeo(T ) with
xg 6= x. Suppose further that [[xg−1, x]] ∩ [[x, xg]] = {x}. For n ∈ Z set In =
[[xgn, xgn+1]]. Then

(1) If j, k ∈ Z with j < k, then

Ij ∩ Ik =
{ {

xgk
}
, k = j + 1,

∅, otherwise.

(2)
⋃
n∈Z In is a local axis for g.
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Now let T be any orientedR-order tree and let TH denote its associated (oriented)
Hausdorff tree (Definition 9.3).

Lemma 5.6. Any nontrivial action of G on T canonically induces a nontrivial
action of G on TH .

Proof. If x ∼ y, then xg ∼ yg for any g ∈ G. So [x]g = [xg] defines a homeomor-
phism of TH . This induced action is trivial if and only if the action of G on T is
trivial. �

Note that with respect to this induced action, FixTH (g) = p(Nonsep(g)).

Corollary 5.7. If G acts nontrivially on an R-order tree, then G acts nontrivially
on a Hausdorff R-order tree.

Lemma 5.8. Suppose TH has orientation inherited from T . Then any orientation
preserving action on TH canonically induces an orientation preserving action on T .
This induced action on T is nontrivial if and only if the given action of G on TH
is nontrivial.

Proof. Let C = {x ∈ T ||[x]| > 1}. Since p : T → TH restricted to T \ C is injective
(and C is G-invariant), we may set

xg = p−1([x]g)

for all x ∈ T \ C. Now consider any z ∈ C. Since C is countable, z ∈ σ for some
segment σ = [x, y] with x, y ∈ T \ C, and so we may set

zg = p−1([z]g) ∩ [xg, yg].

�

Next we introduce a notion of incidence for order trees. Fix an orientation
on T and let x ∈ T . Define an equivalence relation ≈f on the set S(x, f) = {σ ∈
S+|f(σ) = x} by σ1 ≈f σ2 if and only if both f(σ1) = f(σ2) = x and {x} ( σ1∩σ2.
For each σ ∈ S(x, f), let rσ = {τ ∈ S(x, f)|τ ≈f σ} and call rσ an incoming ray
at x. Let R(x, f) = {rσ|σ ∈ S(x, f)}. Call nf (x) = |R(x, f)| the in-degree at x.
Similarly, define an equivalence relation ≈o on the set S(x, o) = {σ ∈ S+|i(σ) = x}
by σ1 ≈o σ2 if and only if both i(σ1) = i(σ2) = x and {x} ( σ1 ∩ σ2. For each
σ ∈ S(x, o), let rσ = {τ ∈ S(x, o)|τ ≈o σ} and call rσ an outgoing ray at x. Let
R(x, o) = {rσ|σ ∈ S(x, o)}. Call no(x) = |R(x, o)| the out-degree at x. We say that
a segment σ is incident to x if σ ∈ S(x, o) ∪ S(x, f), and we say that a ray rσ is
incident to x if rσ ∈ R(x, o)∪R(x, f). Call x ∈ T regular if no(x) = nf (x) = 1. Call
x ∈ T a branch point if it is not regular, and let B denote the set of branch points of
T . Note that if B = ∅, then T can also be given the structure of a simply-connected
1-manifold.

Now consider any x ∈ B. If the out-degree no(x) = 0 (in-degree nf(x) = 0), call
x a sink (respectively, source). If no(x) = 1 and nf (x) > 1, call the single element
rσ ∈ R(x, o) the distinguished ray at x. Symmetrically, if nf (x) = 1 and no(x) > 1,
call the single element rσ ∈ R(x, f) the distinguished ray at x.

Lemma 5.9. Let T0 be an oriented R-order tree such that at every x ∈ B, there
is a distinguished ray. Then any nontrivial orientation preserving action on T0

canonically induces a nontrivial orientation preserving action on a related oriented
simply-connected 1-manifold X.
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Proof. It suffices to describe X as an R-order tree with no branch points.
By assumption, every branch point x ∈ B has a distinguished ray r̂x. Construct

X from T0 \ B by adding in place of each x ∈ B a family of points {xrσ}, where rσ
ranges over all rays in R(x, f) if r̂x is outgoing and ranges over all rays in R(x, o) if
r̂x is ingoing. We describe an R-order tree structure on X as follows. Let σ be any
segment in the orientation (S0)+ of T0. Let x ∈ σ ∩ B. Either x ∈ {i(σ), f(σ)} or
x ∈ σ \ {i(σ), f(σ)}. If x ∈ {i(σ), f(σ)}, and σ does not represent the distinguished
ray at x, then set x′ = xrσ . If x ∈ σ \ {i(σ), f(σ)}, let τ be a nondegenerate
subinterval of σ representing a ray incident to x such that rτ 6= r̂x, and set x′ = xrτ .
Now let X ′σ denote the set of points x′ thus defined. Set

σ′ = (σ \ B) ∪X ′σ,

with linear order induced in the natural way from the linear order on σ. Let

S+ = {σ′|σ ∈ (S0)+}

and let S be the smallest set containing S+ and also satisfying the axioms defining
an order tree. Then (X,S) is an R-order tree, and S+ is an orientation of X .

Extend the action of G on T \ B to an action on X by setting xrσg = xrσg . �

Proposition 5.10. Any nontrivial orientation preserving action on an oriented
R-order tree T0 canonically induces a nontrivial orientation preserving action on a
related oriented simply-connected 1-manifold X.

Proof. We show that any nontrivial orientation preserving action on an oriented
R-order tree T0 canonically induces a nontrivial orientation preserving action on
an oriented R-order tree T such that at every x ∈ B, there is a distinguished ray.
Lemma 5.9 then applies.

First, let D denote the set of branch points x ∈ T0 with both in-degree and
out-degree greater than one. Let T denote the linear Denjoy blow-up of T0 along D
with respect to the orientation on T0 and extend the action of G to T as described
in Section 9.3. Let B now denote the branch points of T . Note that if x ∈ B, then
either x has a distinguished ray or else it is either a sink or a source.

Finally, we introduce distinguished rays at all sinks and sources in B. At every
sink x ∈ B, attach a set σx order isomorphic to [0,∞) (so that precisely the endpoint
of σx is identified with x). Symmetrically, at every source x ∈ B, attach a set
σx order isomorphic to (−∞, 0] (so that precisely the endpoint of σx is identified
with x). Let the set of segments associated to this new tree be the smallest set
satisfying the defining axioms and containing S, the segments of T , together with
all nondegenerate subintervals of the σx. Extend the action of G linearly over the
sets σx.

�

6. Spaces of leaves

Let M be any closed 3-manifold containing an essential lamination Λ [GO89].
By Theorem 6.1 of [GO89], the universal cover M̃ of M is homeomorphic to R3.
Lift Λ to a lamination Λ̃ of M̃ . Now define an equivalence relation ≡ on M̃ by

x ≡ y
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if and only if either x, y lie on a common leaf of Λ̃ or x, y both lie in the union of
some complementary region with its boundary leaves.

TΛ̃ = M̃/ ≡

is called the leaf space of Λ̃. Remark that when Λ is not a foliation and therefore has
complementary regions, TΛ̃ is not really the “space of leaves” but rather a natural
quotient of this space.

When Λ is a Reebless foliation, TΛ̃ is a second countable but not necessarily
Hausdorff simply-connected 1-manifold, and the action of π1(M) on M̃ induces
a nontrivial action of π1(M) on TΛ̃ by homeomorphisms ([HR57, Pa78]; see also
[Ba98, CC]).

Proposition 6.1 ([HR57, Pa78]). If M contains a Reebless foliation, then π1(M)
acts nontrivially on a simply-connected 1-manifold.

Corollary 6.2. If M contains a Reebless foliation Λ and π1(M) contains no index
two subgroup, then Λ is necessarily transversely orientable, and π1(M) acts nontriv-
ially on a simply-connected 1-manifold by orientation preserving homeomorphisms.

More generally, when Λ is an essential lamination with no isolated leaves, TΛ̃ is
an R-order tree [GO89]. Roughly speaking, segments in the R-order tree arise from
a family of well-chosen transversals τ to Λ̃: if Λ̃ (equivalently, Λ) has no isolated
leaves, then each Λ̃∩ τ is a closed perfect set, and hence, by a devil’s staircase-like
argument (cf. [Be99]), τ/ ≡ is order isomorphic to R. As remarked in [GK97], if
M contains an essential lamination, then M contains an essential lamination with
no isolated leaves (isolated leaves can simply be replaced by products as described
in [Ga92]). On the leaf space level, this replacement of isolated leaves by products
results in the Denjoy blow-up operation as defined in the appendix.

Now consider the action of π1(M) on TΛ̃ induced by the action of π1(M) on M̃
by deck transformations. This action has no global fixed point. (See, for example,
Proposition 8.1 of [RS01].) Furthermore, if Λ is transversely oriented, then the
transverse orientation on Λ lifts to a transverse orientation on Λ̃, and hence induces
an orientation on TΛ̃ which is preserved by the action of π1(M). (Note that if Λ is
an essential surface, then by passing to a double cover of Λ as necessary, we may
assume that Λ is transversely oriented.)

Proposition 6.3. If M contains an oriented essential lamination Λ, then π1(M)
acts nontrivially by orientation preserving order tree automorphisms on an oriented
R-order tree.

7. Case I: Nonsep(κ) = ∅
This section is devoted to the proof of the following special case of Theorem 2.1.

Lemma 7.1. Let m < −2 and p ≥ q ≥ 1, (p, q) = 1, with m and p both odd. Let Φ :
G(p, q,m)→ Homeo+(T ) be a homomorphism with the property that Nonsep(κ) =
∅. Then the image of Φ has a global fixed point.

Proof. As noted in Section 4, we may assume that ∼ is an equivalence relation on
T . In much of the following argument, we work in TH . When doing so, we often
abuse notation and write x for [x]. However, we are careful to remind the reader
of this whenever we think confusion might otherwise arise.



660 R. ROBERTS, J. SHARESHIAN, AND M. STEIN

Suppose Nonsep(κ) = ∅. Consider the action of G(p, q,m) on the Hausdorff tree
TH . In TH , Aκ ≈ R and there are exactly three possibilities for Aκ ∩Aκα:

(a) Aκ ∩Aκα = Aκ.
(b) Aκ ∩Aκα is a nonempty proper closed connected subset I of Aκ.
(c) Aκ ∩Aκα = ∅.

Recall that Aκα = Aα−1κα and Aκα−1 = Aακα−1 .

7.1. Case (a). If Aκ ∩Aκα = Aκ, then Aκ ≈ R is invariant under Im Φ and hence
there is a fixed point in TH by Corollary 3.2. Thus, there is a global fixed point in
T by Lemma 5.6.

Although unnecessary for this proof, we observe here that an element which is
orientation preserving as a homeomorphism of T can induce an orientation reversing
homeomorphism on a copy of R properly embedded in TH .

7.2. Case (b). Let � denote the total order on Aκ specified by x � xκ for all
x ∈ Aκ. (When d(x, xκ) 6= 0, this total order bears no resemblance to the partial
order ≤ on T .) With respect to this total order, let r (respectively, s) denote the
lower bound (respectively, upper bound), if it exists, of Aκ ∩ Aκα. Otherwise, set

r

AA

A

A

A A

A

A

r s s

Figure 6.

r = −∞ (respectively, s =∞). Note that at least one of r and s is finite since we
are in Case (b). For ease of exposition (namely, to avoid breaking into the three
cases shown in Figure 6), we set ±∞g = ±∞ or ±∞g = ∓∞, as necessary, for
elements g ∈ G(p, q,m).

Let �α denote a total order on Aκα such that � and �α agree on Aκ∩Aκα, and
let �α−1 denote a total order on Aκα−1 such that � and �α−1 agree on Aκ∩Aκα−1.
When r = s, choose �α so that α−1κα is increasing with respect to �α on Aκα,
and choose �α−1 so that ακα−1 is increasing with respect to �α−1 on Aκα−1. Note
that �α and �α−1 are uniquely determined.

Lemma 7.2. The following are equivalent:
• rα−1 � sα−1 on Aκ.
• α−1κα is increasing with respect to �α on Aκα.
• ακα−1 is increasing with respect to �α−1 on Aκα

−1.

Proof. Assume r 6= s. The map

α : (Aκ,≺)→ (Aκα,≺α)

must be either order preserving or order reversing. Since (rα−1)α = r ≺α s =
(sα−1)α, we see that α is order preserving if rα−1 ≺ sα−1 and order reversing if
sα−1 ≺ rα−1. Since rα−1, sα−1 ∈ Aκ ∩Aκα−1, we have

rα−1 ≺α−1 sα−1 ⇐⇒ rα−1 ≺ sα−1
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(by definition of ≺α−1). Therefore

α−1 : (Aκ,≺)→ (Aκα−1,≺α−1)

is order preserving if rα−1 ≺ sα−1 and order reversing if sα−1 ≺ rα−1.
Suppose rα−1 ≺ sα−1. Since x ≺ xκ for all x ∈ Aκ, we have xα−1 ≺α−1

xκα−1 = xα−1(ακα−1) and xα ≺α xκα = xα(α−1κα) for all x ∈ Aκ.
Symmetrically, if sα−1 � rα−1, we have xα−1 �α−1 xκα−1 = xα−1(ακα−1) and

xα �α xκα = xα(α−1κα).
�

Now note that by substituting β = τα−1τ−1 into αβα−1β−1 = κ−p, we obtain

(7.1) (ατα−1)τ−1 = κ−p+q(α−1τ−1α).

Let ω denote the element represented by the two words in (7.1). Using the axes Aκ
and Aα−1κα, we will derive information about the translate

Aκω = Aκκ
−p+q(α−1τ−1α) = Aκ(α−1τ−1α).

Then, using instead the axes Aκ and Aακα−1 , we will derive information about the
translate

Aκω = Aκ(ατα−1)τ−1.

Happily, contradictions are plentiful.
We order Aκω by setting, for x, y ∈ Aκ, xω �ω yω if and only if x � y.
Suppose first that rα−1 � sα−1. By Lemma 7.2, rα−1τ−1α ≺α r along Aκα.

We compare sα−1τ−1α and r with respect to ≺α. It is straightforward to show

r s

A

A

-1-1r

-1-1s

A

r s

A

A

-1-1r
-1-1s

A
A

A A

A

r s

A

A

-1-1r

-1-1s

A A

A

=
x

A

Figure 7.

that
• if r ≺α sα−1τ−1α, then Aκ ∩ Aκω = [r, sα−1τ−1α] and the orders � and
�ω agree on Aκ ∩Aκω,
• if sα−1τ−1α ≺α r, then Aκ ∩ Aκω = ∅, with [r, sα−1τ−1α] the bridge

connecting Aκ and Aκω, and
• if r = sα−1τ−1α, then both r, s are finite, Aκ∩Aκω = [x, r] = [x, sα−1τ−1α]

for some x, and either x = r or the orders � and �ω disagree on Aκ∩Aκω.
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These three possibilities are illustrated in Figure 7. Also by Lemma 7.2, we have
sα−1 ≺α−1 sτα−1 = sα−1(ατα−1) along Aκα−1, and we compare rτα−1 and sα−1

with respect to ≺α−1 . After noting that Aκ ∩ Aκω = (Aκ ∩ Aκατα−1)τ−1, it is

-1
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A

-1r s -1-1r

s
A
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-1

A

A

-1r s -1

-1r

s

A
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-1A

-1

A

A

-1r s -1

-1r
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A
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-1

-1A

A

=
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Figure 8.

straightforward to show that
• if rτα−1 ≺α−1 sα−1, then Aκ∩Aκω = [rτα−1τ−1, sα−1τ−1] and the orders
� and �ω agree on Aκ ∩Aκω,
• if sα−1 ≺α−1 rτα−1, then Aκ ∩ Aκω = ∅, with [sα−1τ−1, rτα−1τ−1] the

bridge connecting Aκ and Aκω, and
• if rτα−1 = sα−1, then both r, s are finite, Aκ ∩ Aκω = [sα−1τ−1, y] =

[rτα−1τ−1, y] for some y, and either y = sα−1τ−1 or the orders � and �ω
disagree on Aκ ∩Aκω.

These three possibilities are illustrated in Figure 8. Hence, one of the following
cases holds.

(1) [r, sα−1τ−1α] = [rτα−1τ−1, sα−1τ−1].
(2) [r, sα−1τ−1α] = [sα−1τ−1, rτα−1τ−1].
(3) [x, r] = [sα−1τ−1, y], rα−1τα = s = rτ , and r, s are both finite.

In case (1), at least one of rτ and sα−1τ−1 (is finite and) lies in Nonsep(α) ∩
Aκ, and hence the following lemma yields the desired contradiction. (Considering
Nonsep(α) in T rather than Fix(α) in TH allows us to take advantage of the partial
order ≤ defined on T .)

Lemma 7.3. Suppose that in T we have Nonsep(α) ∩Aκ 6= ∅.
• If α : (Aκ,≺) → (Aκα,≺α) is orientation preserving, then necessarily the

action is trivial.
• If α : (Aκ,≺) → (Aκα,≺α) is orientation reversing and p 6= 4q, then

necessarily the action is trivial.

Proof. If x ∈ Fix(α) ∩ Aκ 6= ∅, then d(x, xκ) is necessarily even, and hence x and
xκ are comparable with respect to the partial order ≤ on T . Lemma 3.5 therefore
applies.
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So we may assume that Fix(α)∩Aκ = ∅, and choose x ∈ (Nonsep(α)\Fix(α))∩
Aκ. Consider first the possibility that xα ∈ Aκ or xα−1 ∈ Aκ (and therefore
α : (Aκ,≺) → (Aκα,≺α) is orientation reversing). By replacing x with xα−1

as necessary, we may assume that x, xα ∈ Aκ. We consider separately the cases

x
-1

y

y

x x
y

y x x

x

y y x

x

Figure 9.

x ≺ xα and xα ≺ x. Note that since xα ∼ x, we have xτ−1β ∼ xτ−1. Therefore,
as illustrated in Figures 9 and 10, respectively, straightforward computations reveal
that

d(x, xαβα−1β−1) = d(xβα, xαβ) = 4(2nq),
where d(y, yκ) = 2n for all y ∈ Aκ. So 2np = d(x, xγ) = 4(2nq), and hence p = 4q,
which is impossible.

x -1

y

y

x x
y

y xx

x

y y x

x

2 x

Figure 10.

Now assume that if z ∈ Nonsep(α)∩Aκ, then zα−1, zα /∈ Aκ. Consider [x]∩Aκ.
Either [x]∩Aκ = {x} or [x]∩Aκ = {x, y} for some y 6= x. In the first case, Lemma
3.5 applied to the ideal point determined by [x] shows that the action of G on
T is trivial. In the second case, note that yα ∼ xα ∼ x ∼ y, but yα /∈ {x, y} by
assumption. We therefore have the situation modelled in Figure 11. For the details,
proceed as follows, working now in TH . We have

Aκ ∩Aκα = {x} = Aκ ∩Aκα−1.

Hence,

Aκ ∩Aκβ = Aκ ∩Aκτα−1τ−1 = Aκ ∩Aκα−1τ−1 = (Aκ ∩Aκα−1)τ−1 = {xτ−1}.
Furthermore,

Aκ ∩Aκα = {x} =⇒ Aκβ ∩Aκαβ = {xβ}.
Note that xβ 6= xτ−1, since otherwise xα = xτ ∈ Aκ. Therefore, by simple
connectivity,

Aκαβ ∩Aκα = ∅,
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whereas
Aκ ∩Aκβ = {xτ−1} =⇒ Aκα ∩Aκβα = {xτ−1α}.

Since
Aκγ = Aκ =⇒ Aκαβ = Aκβα,

this is impossible and the lemma is proved. �

In case (3), we have sα−1τ−1 = rα−1, so Aκ ∩ Aκω = [rα−1, r]. In particular,
rα−1 � r. If rα−1 = r in TH , then Lemma 7.3 applies. So, we may assume that
rα−1 ≺ r. If s � sα−1, then α determines a homeomorphism from the subinterval
[r, s] to [rα−1, sα−1]. Therefore, α fixes some element of [r, s] and Lemma 7.3
applies again. So we may assume that sα−1 ≺ s. Recall that since rα−1 ≺ sα−1,
the map α : (Aκ,≺) → (Aκα,≺α) is order preserving. Thus s �α sα. Now, since
rα−1τα = s = rτ , relation (B) gives

rβα = rτα−1τ−1α = r.

Therefore,

s = rτ ≺ rκp = rγ−1 = rβαβ−1α−1 = rβ−1α−1 = rτατ−1α−1 = sατ−1α−1.

So sατ−1 = rκpα ∈ Aκα with s ≺α sα ≺α sατ−1. But this in turn gives sα =
(sατ−1)τ /∈ Aκα, a contradiction.

In case (2), we obtain

r = sα−1τ−1 =⇒ s = rτα

(so both r and s are finite) and

sα−1τ−1α = rτα−1τ−1 =⇒ rα = rτα−1τ−1.

Hence,
(rα−1)(ατα−1)τ−1 = rτα−1τ−1 = rα.
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Figure 12.

Next apply (7.1) to the element rα−1:

rα = (rα−1)(κ−p+q)(α−1τ−1α)
=⇒ rτα = (rα−1)(κ−p+q)
=⇒ s = (rα−1)(κ−p+q).

Therefore,

(7.2) sκp−q = rα−1

Since p ≥ q, s ≺ rα−1 on Aκ. So

r � s ≺ rα−1 � sα−1

on Aκ. Since α : (Aκ,≺) → (Aκα,≺α) and α−1 : (Aκ,≺) → (Aκα−1,≺α−1) are
order preserving, we see that

rα �α sα ≺α r �α s
on Aκα and

rα−1 �α−1 sα−1 ≺α−1 rα−2 �α−1 sα−2

on Aκα−1. In particular, [r, rα−1] = [r, s]∪ [s, rα−1], with [r, rα−1]αn ⊂ Aκαn and
[r, s]αn ∩ [r, s]αn+1 = ∅, for all n ∈ Z. This is illustrated in Figure 12. Therefore,

Aα =
∞⋃
−∞

[r, rα−1]αn

is a local axis or axis for α.
Next we investigate the orientation that Aκ inherits from TH . For any vertices

x, y both of which lie on one of the (simplicial) trees Aκ, Aκα, Aκα−1 in TH , let
fx,y be the first edge in the simplicial path from x to y in the given tree.

After reversing the orientation of TH if necessary, we may assume that fr,rτ is
positively oriented. Since sα−1 = rτ and τ preserves orientation, we see that fr,rτ
and fsα−1,sα−1τ have the same orientation, as do fr,rτ−1 and fsα−1,sα−1τ−1 . Since
α−1 preserves orientation, we see that fr,rα and frα−1,r = frα−1,rα−1τ−1 have the
same orientation, as do both edges from each pair fr,rα−1 = fr,rτ and frα−1,rα−2 =
frα−1,rα−1τ ; fr,rτ−1 and frα−1,rτ−1α−1 ; fs,sα = fs,sτ−1 and fsα−1,s = fsα−1,sα−1τ−1 ;
fs,sα−1 = fs,sτ and fsα−1,sα−2 ; and fs,sα−1τα and fsα−1,sα−1τ . Now, using (7.2),
we see that fs,sτ and frα−1,rα−1τ have the same orientation, as do fs,sτ−1 and
frα−1,rα−1τ−1 . Finally, after applying τα to the interval on the right side of the
equality

[r, rα] = [sα−1τ−1, rτα−1τ−1],
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Figure 13.

we see that fr,rα and fs,rτ = fs,sτ have the same orientation. It follows that all of
the edges under consideration have the same orientation, which we have assumed to
be positive. We now see that each of the points r, s, rα−1, sα−1 in TH corresponds to
a pair of (distinct) nonseparated points along Aκ in T , and that the corresponding
branching at Aκα and Aκα−1 is as shown in Figure 13.

So we change viewpoint and consider instead the non-Hausdorff 1-manifold T .
Let n ∈ N such that d(x, xκ) = 2n for all x ∈ Aκ. Then

2nq = d(r, rτ)
= d(r, s) + d(s, sκp−q) + d(rα−1, sα−1)
= 2d(r, s) + 2n(p− q)

=⇒ d(r, s) = n(2q − p).
(In particular, 2q ≥ p.) Also,

d(r, rα−1) = d(r, s) + d(s, sκp−q) = n(2q − p) + 2n(p− q) = np.

(Therefore, np is necessarily even.) Finally, we use relation (A) from Section 3, in
the form

τ(ατ−1α−1)τ−1(ατα−1) = αm−2,

by applying each of the given words to the element r.
Let v = rτ(ατ−1α−1) = (rτα)τ−1α−1 = s2τ

−1α−1. Note that since s1 ≺
s1α
−1 = r1τ , we have s1τ

−1 ≺ r1 along Aκ, and hence s1τ
−1α−1 ≺α−1 r1α

−1 along
Aκα

−1. Therefore, since v ∼ s1τ
−1α−1, we see that [v, r1α−1] is the bridge from v

to Aκ. So [vτ−1, r1α
−1τ−1] is the bridge from vτ−1 to Aκ and hence [vτ−1, r2α

−1]
is the bridge from vτ−1 to Aκα−1. So

[rαm−2, r2α
−1(ατα−1)] = [vτ−1(ατα−1), r2τα

−1]

is the bridge from rαm−2 to Aκα
−1. Since r2τα

−1 ∼ sα−2 and rαm−2 ∈ Aα,
necessarily r2τα

−1 = sα−2. (See Figure 14.)
By computing the length of the path [vτ−1(ατα−1), rα−1] = [rαm−2, rα−1], we

obtain

d(rαm−2, rα−1) = d(rαm−2, sα−2) + d(sα−2, rα−1)
= d(vτ−1, r2α

−1) + d(sα−1, r)
= [d(vτ−1, r1α

−1τ−1) + d(r1α
−1τ−1, s1α

−1τ−1)
+d(r1, r2α

−1)] + d(rτ, r)
= 4nq + np.

On the other hand,

d(rαm−2, rα−1) = |m− 1|d(r, rα−1) = |m− 1|np = (|m|+ 1)np.
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So
4nq + np = (|m|+ 1)np =⇒ 4q = |m|p,

which is impossible since both p and m are odd, and hence we have reached our
contradiction.

Since we have been working under the assumption that rα−1 � sα−1, we con-
clude therefore that sα−1 ≺ rα−1 (and hence r 6= s). Consider first the possibility
that [r, s] ∩ [sα−1, rα−1] 6= ∅. In this case, the Intermediate Value Theorem guar-
antees the existence of an element x ∈ Fix(α) ∩ Aκ ⊂ TH . Since p 6= 4q, Lemma
7.3 therefore applies. So restrict attention to the case that [r, s]∩ [sα−1, rα−1] = ∅.
By appealing to symmetry, we may assume that r ≺ s ≺ sα−1 ≺ rα−1. It follows
that

[s, sα−1] ∩ [s, sα] = {s},
and hence that

Aα =
∞⋃

n=−∞
[s, sα−1]αn

is a local axis or axis for α. Since Aβ = Aατ
−1,

Aβ ∩Aκ = [sτ−1, sα−1τ−1].

Suppose first that sα−1τ−1 6= s and apply each of the words from the relation
τ−1ατ = αβαm−1 to s. Referring to the axes Aκ, Aα and Aβ , a straightforward
computation reveals that the bridge from sτ−1ατ to Aκ has endpoint sτ at Aκ,
whereas the bridge from sαβαm−1 to Aκ has endpoint sα−1 at Aκ. We conclude
that sα−1 = sτ .

Without loss of generality, we may assume that fs,sτ = fs,sα−1 is positively
oriented. Applying τ and α−1 to fs,sτ , we see that fsα−1,sα−1τ and fsα−1,sα−2

are also positively oriented. Now applying α to fsα−1,sα−1τ = fsα−1,rα−1 shows
that fs,sτ−1 = fs,r is positively oriented, and applying τ to fs,sτ−1 shows that
fsα−1,sα−1τ−1 is positively oriented. Finally, applying α to fsα−1,sα−1τ−1 shows
that fs,sα is positively oriented. Hence, in T we have the situation shown in Figure
15, with

d(s, sα−1) = d(s, sτ) = 2nq ≥ 2.
Let u, v, w ∈ [s] be as given in Figure 15. Notice that

sατ = (sτ)(τ−1ατ) = (sτ)αβαm−1.
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Now d(sατ, sτ) = d(sα, s) = 2nq, together with Lemma 4.1, guarantees that

sατ ∈ (sα−2)−.

On the other hand, u 6= sτα ∼ v, and since v ∈ Aβ , d(v, vβ) = 2nq. And d(v, vβ) =
2nq, together with Lemma 4.1, reveals that vβ ∈ (uα)−. So (sτα)β ∈ (uα)−∪{uα},
and hence

sατ = (sταβ)αm−1 ∈ (uαm)− ∪ {uαm}.
Since m ≤ −3, we have reached a contradiction.

7.3. Case (c). Suppose that Aκ ∩ Aκα = ∅, and let ρ = [r, s] be the bridge from
Aκ to Aκα in TH . Once again we consider

Aκω = Aκ · κ−p+q(α−1τ−1α) = Aκ(α−1τ−1α).

Since [r, s] is the bridge from Aκ to Aκα, we see that [r(α−1τ−1α), s(α−1τ−1α)] is
the bridge from Aκω to Aκα. Since sα−1τ−1α 6= s, we see that

[r(α−1τ−1α), r] = [r(α−1τ−1α), s(α−1τ−1α)] t [s(α−1τ−1α), r]

is the bridge from Aκω to Aκ. Next consider Aκω = Aκ(ατα−1)τ−1. Since
[sα−1, rα−1] is the bridge from Aκ to Aκα−1, we know that

[sα−1(ατα−1), rα−1(ατα−1)]

is the bridge from Aκ(ατα−1) to Aκα−1. Hence, [sτα−1, sα−1] is the bridge from
Aκ(ατα−1) to Aκ. So [sτα−1τ−1, sα−1τ−1] is the bridge from Aκω to Aκ. Hence,

[r(α−1τ−1α), r] = [sτα−1τ−1, sα−1τ−1].

(See Figure 16.) In particular, r(α−1τ−1α) = sτα−1τ−1 and s = rτα. Now apply
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both sides of (7.1) to the element rκp−q.

rκp−q · (ατα−1)τ−1 = rκp−q · κ−p+q · (α−1τ−1α)
= r(α−1τ−1α) = sτα−1τ−1

= (rτα)(τα−1τ−1).

So
rκp−q = rτ =⇒ r ∈ Fix(κp−2q).

However, r ∈ Aκ means that no nontrivial power of κ fixes r. Since p is odd, we
have κp−2q 6= 1, giving the final contradiction. �

We conclude this section by recording, for future reference, a lemma which follows
easily from the above arguments restricted to the special case that Aκ ≈ R. Note
that the only way in which we have used the fact that Nonsep(κ) = ∅ in this section
is to guarantee the existence of the axis Aκ. The fact that Aκ is an axis is then
used to control the structure of the intersections of Aκ with some of its translates
and that of the bridges from Aκ to such translates in the case of empty intersection.
The arguments in this section can be easily adjusted to obtain the following result,
which will be used repeatedly in the next section, where we examine the case where
Nonsep(κ) 6= ∅.

Lemma 7.4. Suppose Y is a κ-invariant embedded copy of R in T on which κ acts
freely. If

• ∅ 6= Y ∩ Y α ⊂ [r, s] for some r, s ∈ Y , or
• Y ∩ Y α = ∅, and the bridge from Y to Y α has the form [[r, s]] for some
r ∼ r′ ∈ Y , s ∼ s′ ∈ Y α,

then the action of G on T has a global fixed point.

8. Case II: Nonsep(κ) 6= ∅.

In this section we prove that if Nonsep(κ) 6= ∅, then necessarily the action of G
on T is trivial. First we give some preliminary lemmas, whose primary import is
the fact that in most cases, the argument reduces to the case that T = R.

Lemma 8.1. There is no x ∈ T which is nonseparated by τ and at least one of
α, β.

Lemma 8.2. If u ∼ v < w, then u ∈ w−, with u < w ⇔ u,w are comparable
⇔ w ∈ T{u,v}. Similarly, if u ∼ v > w, then u ∈ w+, with u > w ⇔ u,w are
comparable ⇔ w ∈ T{u,v}.

Lemma 8.3. If Fix(τ)∩Nonsep(κ)∩Cα 6= ∅, then the action of G on T is trivial.

Proof. Let x ∈ Fix(τ) ∩ Nonsep(κ) ∩ Cα. We modify slightly the arguments of
Section 3.1. Once again, we may assume that x < xα. Since x ∈ Nonsep(κ), we
have xγ ∼ x. Therefore,

xβαm ∼ xγβαm = xτ−1ατ = (xα)τ > xτ = x

and hence, by Lemma 8.2, xβαm ∈ x+. Since xα−m > x, xβ ∈ x+α−m ⊂ x+.
On the other hand, xβτ = xτ−1βτ = xα−1 < x ⇒ xβ < xτ−1 = x ⇒ xβ ∈

x−. �

Lemma 8.4. If Nonsep(κ) ∩ Cα 6= ∅, then the action of G on T is trivial.
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Proof. Let x ∈ Nonsep(κ) ∩ Cα. By Lemma 8.3, we may assume that x ∼ xτ but
x 6= xτ . Set T0 = T{x,xτ}. Again, we may assume that x < xα.

If xα−1 ∈ T0 or xα ∈ T0, then the ideal point x̂ ∈ T̂ is fixed by κ and related to
x̂α, and Lemma 3.5 applies.

So we may assume that xα, xα−1 /∈ T0. Since x < xα, either T0 ⊂ x− and
xα−1 ∈ y+ for some y ∼ x, y 6= x, or T0 ⊂ x+ and xα ∈ y− for some y ∼ x,
y 6= x. In each case, by Lemma 8.3, we may assume that yτ 6= y. In fact, by
reversing the orientation on T and exchanging the roles of x and y as necessary,
we may assume that the first possibility holds; namely, T0 ⊂ x− and xα−1 ∈ y+

for some y ∼ x, y 6= x. These possibilities are illustrated in Figure 17. Notice that

yx -1-1x xy yyx -1-1x xy y

Figure 17.

{x, y} ⊂ [[xα−1, xα]] and so d(x, xα) = 2n > 0 for some n ∈ N. In particular, by
Proposition 4.8 and Corollary 4.12, we have Nonsep(α) = ∅ and Cα = Aα.

Consider first the case that y 6= xτ . Since

xτ−1ατ ∼ xατ > xτ,

we have

(8.1) xτ−1ατ ∈ xτ+ ⊆ y−.
Also, xγτα−1τ−1 ∼ xα−1τ−1, and since xα−1 ∈ y+, we have

xγτα−1τ−1 ∈ (yτ−1)+ ⊆ x−.
This gives

(8.2) xτ−1ατ = xγβαm = xγτα−1τ−1αm ∈ (xαm)− ⊆ (xα−1)−.

However, since x ∈ (xα−1)+, we have

y− ∩ (xα−1)− = ∅,
and (8.1) and (8.2) now give a contradiction.

So we may assume that y = xτ . In this case,

d(xτατ, xτ) = d(xτα, x) = 2n− 1 < d(xτα−1, xτ) =⇒ xτατ ∈ (xτα−1)−.

Therefore, since xτ−1ατ ∼ xτατ , we have

(8.3) xτ−1ατ ∈ (xτα−1)− ∪ {xτα−1}.
On the other hand, since d(xα−1τ−1, x) = 2n− 1, we have xα−1τ−1 ∈ (xα)− and
hence (xγτ)α−1τ−1 ∈ (xα)− ∪ {xα}. So, since m ≤ −3, we have

(8.4) xτ−1ατ = xγτα−1τ−1αm ∈ (xαm+1)− ∪ {xαm+1} ⊂ (xα−2)− ∪ {xα−2}.
Since y ∈ (xα−1)+, we have xτα−1 = yα−1 ∈ (xα−2)+, and it follows that

(8.5) ((xτα−1)− ∪ {xτα−1}) ∩ ((xα−2)− ∪ {xα−2}) = ∅.
Now (8.3), (8.4) and (8.5) together give a contradiction. �
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Lemma 8.5. If Nonsep(κ) 6= ∅ and Nonsep(α)∩Cκ 6= ∅, then the action of G on
T is trivial.

Proof. Let x ∈ Nonsep(α) ∩ Cκ. By Lemma 4.10, either x ∈ Fix(κ) or x lies on
some local axis Aiκ ≈ R (in T ) for κ. By Lemma 8.1, we may assume that x lies
on some local axis Aiκ (in T ). Then either x ∈ Fix(α) or the ideal point x̂ ∈ T̂ is
fixed by α and related to x̂κ. In either case, Lemma 3.5 applies. �

Let {Ti}i∈I denote the path components of T \Nonsep(κ); so T \Nonsep(κ) =⊔
i∈I Ti. Notice that for each i ∈ I we have Tiκ = Tj for some j ∈ I. More-

over, whenever Tiκ = Ti, κ acts freely on Ti with local axis Aiκ ⊂ Ti (and since
Nonsep(κ) 6= ∅, Aiκ ≈ R).

Similarly, if Nonsep(α) 6= ∅, let {Xj}j∈J denote the set of path components of
T \ Nonsep(α). Again, either Xjα = Xj , and α acts freely on Xj with local axis
Ajα, or Xjα = Xk 6= Xj. When Nonsep(α) = ∅, we write T = X1 and let A1

α

denote the axis for α.

Lemma 8.6. If G acts nontrivially on T , then
• Cκ ∪Nonsep(κ) ⊂ Xj0 for some j0 ∈ J , and
• Cα ∪Nonsep(α) ⊂ Ti0 for some i0 ∈ I.

Proof. By Lemma 8.5, (Cκ ∪ Nonsep(κ)) ∩ Nonsep(α) = ∅. By Corollary 4.13
therefore, Cκ ∪Nonsep(κ) ⊂ Xj0 for some j0 ∈ J . A symmetric argument proves
the second statement. �
Proposition 8.7. Suppose Nonsep(κ) 6= ∅. Then the action of G on T is trivial.

Proof. Let i0, j0 be as guaranteed in Lemma 8.6.
[Case 1] Suppose first that Ti0κ = Ti0 . As remarked above, Ai0κ ≈ R. By

Lemma 8.6, Nonsep(κ) ∪Ai0κ ⊂ Xj0 .
Consider first the possibility that Xj0α = Xj0 , and hence Aj0α ⊂ Ti0 . In fact,

Ti0 ∩Xj0 is a subtree of T containing both Ai0κ and Aj0α . Therefore, if Ai0κ ∩Aj0α = ∅,
the bridge from Ai0κ to Aj0α lies in Ti0∩Xj0 . If either of the two potential endpoints of
Ai0κ (respectively, Aj0α ) exist in T , they are in Nonsep(κ) (respectively, Nonsep(α))
and hence are not elements of Ti0 (respectively, Xj0), and therefore cannot be on
the bridge. Hence this bridge has the form [[u, v]] or [[u, v)), where u and v are not
separated from points in Ai0κ and Aj0α , respectively. (See Figure 18.) Computing

u
A

Aw
v A

w'

u'

j0

i0

i0

Figure 18.

Ai0κ α in this case, we see that Ai0κ ∩Ai0κ α = ∅, with the bridge from Ai0κ to Ai0κ α of
the form [[u,w]] for some w ∼ w′ ∈ Ai0κ α. So Lemma 7.4 reveals that the action of
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G on T is necessarily trivial. On the other hand, if Ai0κ ∩Aj0α 6= ∅, then Lemma 8.1
guarantees that Ai0κ ∩Aj0α ⊂ [u, v] for some u, v ∈ Ai0κ . (See Figure 19.) Computing

A A

AA
A

i0
j0

A
i0

j0

i0i0

Figure 19.

Ai0κ α in this case, we see that one of the two conditions of Lemma 7.4 is satisfied,
and so once again, the action of G on T must be trivial.

Next consider the possibility that Xj0α = Xj1 6= Xj0 . Let y and yα denote the
roots of Xj0 and Xj0α, respectively. Let [[y, r]] denote the bridge from y to Ai0κ in
T . By Lemma 8.1, we may assume that r ∼ r′ for some r′ ∈ Ai0κ . So Ai0κ ∩Ai0κ α = ∅
with bridge [[r, rα]]. Again, by Lemma 7.4, the action of G on T has a global fixed
point.

[Case 2] Finally, we assume that Ti0κ = Ti1 6= Ti0 . Let x and xκ denote the
roots of Ti0 and Ti1 , respectively. Set T0 = T{x,xκ}. Without loss of generality, we
may assume that T0 ⊂ x+.

If Xj0α = Xj0 , then Aj0α ⊂ Ti0 . Therefore, since x ∈ Nonsep(κ) ⊂ Xj0 , the
bridge from x to Aj0α is of the form [[x, r]] or [[x, r)). Deleting x from this bridge,
we obtain ((x, r]] (or ((x, r)), respectively), which lies in Ti0 ∩Xj0 . In particular,
r(� x) is nonseparated from a point in Aj0α . If Xj0α = Xj1 6= Xj0 , let y and yα
denote the roots of Xj0 and Xj1 , respectively. Note that since x ∈ Xj0 , y ∈ [x, xα].
These two possibilities are illustrated in Figure 20. Note that in either case, d(x, xα)

x

0T

i0

A
j0

T

x

x

i1
T

0T

i0
T i1

T

x xy yx
Xj0

Xj1

Figure 20.

is odd; so d(x, xα) = 2n− 1 for some n ∈ N.
Consider first the case that x 6= xτ . This is illustrated in Figure 21. Note that

since d(xτα, xατ) = 4n and (xτα, xατ ] ⊂ (xτα)+, we have

((xτα, xατ ])α−1τ−1 = (x, xατα−1τ−1] ⊂ x+.
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Therefore, since xα ∈ x−, we have x ∈ [xα, xατα−1τ−1] and hence,

d(xα, xατα−1τ−1) = d(xα, x) + d(x, xατα−1τ−1)
= (2n− 1) + d(xτα, xατ)
= 6n− 1.

On the other hand,

d(xα, xατα−1τ−1) = d(xα, xκ−p+qα−1τ−1α)
= d(x, xκ−p+qα−1τ−1) ≤ d(x, xα−1τ−1) + 1
= d(xτα, x) + 1
= 2n+ 1.

Since n ≥ 1, this is impossible.
Therefore, we may assume that x = xτ . So xατ ∈ x−. Notice that d(x, xα) =

d(x, xατ), and either
• xα ∈ (xατ)−, or
• xατ separates xα and x.

Consider first the case that xα ∈ (xατ)−. Note that since xτ = x, xκ 6= x and
(p, q) = 1, we have xγ 6= x. (See Figure 22.) Now xα ∈ (xατ)− implies that

x = (xα)α−1τ−1 ∈ (xατα−1τ−1)− = (xκ−p+qα−1τ−1α)−

which implies in turn that

xα−1 ∈ (xκ−p+qα−1τ−1)−.

This gives
xα−1 ∈ (xα−1τ−1)+.

But xα ∈ x− implies that

x = (xα)(α−1τ−1) ∈ (xα−1τ−1)−.

x xx

x

0T0T

x
xx

x

0T0T

-1 -1

-1 -1

-1 -1 x -1 -1q-p

-1 -1

Figure 22.
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Therefore,
{xα−1τ−1, xκ−p+qα−1τ−1} ⊂ [xα−1, x],

and hence
d(x, xα−1) > d(x, xα−1τ−1) = d(x, xα−1),

which is impossible.
Hence, necessarily, xατ separates xα and x. In particular, [x, xα]τ ⊂ [x, xα] and

d(x, xα) = d(x, xατ) together imply that d(xα, xατ) = 0. If Xj0α = Xj1 6= Xj0 ,
then {y, yα} ⊂ [x, xα] gives yτ = y. So y ∈ Fix(τ) ∩Nonsep(α), and by Lemma
8.1, the action of G on T is trivial.

Therefore, we may assume that Xj0α = Xj0 . Since d(xα, xατ) = 0, we have

d(xα−1τ, xγα−1) = d((xα)(α−1τ−1α−1τ), (xατ)(α−1τ−1α−1τ)) = 0.

Therefore,
xα−1τ ∈ (xγα−1)− ∪ T0α

−1.

But we also have d(xα−1τ, x) = d(xα−1, x), and hence xα−1τ ∈ T0α
−1. But this

means xα−1 ∈ [x, xα−1τ ], which gives xα−1τ−1 ∈ [x, xα−1]. Therefore,

xατ = xτ−1ατ

= xγβαm

= xγτα−1τ−1αm

∼ xα−1τ−1αm ∈ [xαm, xαm−1].

Since xατ ∈ [x, xα], this is impossible.
�

9. Appendix: Denjoy blow-ups

9.1. Denjoy blow-up of a 1-manifold. We describe a well-known operation from
[De32] in which countably many points in a closed subinterval of R are “blown up”
into nondegenerate closed subintervals so as to obtain a new closed subinterval
of R. Topologically, it is straightforward to check that this operation is well de-
fined and that it extends to arbitrary (not necessarily Hausdorff) 1-manifolds. For
completeness, we do so here.

Let X be any oriented 1-manifold. Let C ⊂ X be countable. For every c ∈ C,
let [c1, c2] denote an associated closed interval in R, with standard orientation
satisfying c1 < c2. We assume that the intervals [c1, c2], c ∈ C, are pairwise disjoint
and disjoint from X . Let Y be the set obtained from X by replacing each c ∈ C
with the corresponding interval [c1, c2], and define a topology on Y as follows.

Let {Ix|x ∈ X} be any oriented basis for X satisfying Ix ≈ R for every x ∈ X .
For each x ∈ X , set

Jx = (Ix ∩ (X \ C)) ∪
( ⋃
c∈C∩Ix

[c1, c2]
)
,

with linear ordering determined uniquely by the following conditions:
• If y < z for some y, z ∈ Ix \ C or y, z ∈ [c1, c2], for some c ∈ C, then y < z.
• If c < z for some z ∈ Ix \ C and for some c ∈ C ∩ Ix, then c2 < z.
• If c > z for some z ∈ Ix \ C and for some c ∈ C ∩ Ix, then c1 > z.
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Then, for every c ∈ C, let J−c = {x ∈ Jc|x < c} and let J+
c = {x ∈ Jc|c < x}, and

for every r ∈ Q ∩ [c1, c2], set

Jr,− = J−c ∪ [c1, r)

and set

Jr,+ = (r, c2] ∪ J+
c .

Let B be any countable basis for
⋃
c∈C(c1, c2) consisting of sets homeomorphic to

R. Finally, let T be the topology on Y with basis

B ∪ {Jx|x ∈ X} ∪ {Jr,−|r ∈ Q ∩ [c1, c2], ∃c ∈ C} ∪ {Jr,+|r ∈ Q ∩ [c1, c2], ∃c ∈ C}.

Note that if X has countable basis consisting of sets homeomorphic to R, then
so does Y . So the space (Y, T ) is again an oriented 1-manifold. Moreover, if X is
simply-connected, so is Y . Notice that if we remove the requirement that manifolds
be second countable, then we may remove the condition that C be countable in this
construction.

Definition 9.1. (Y, T ) is called the Denjoy blow-up of X along C. If we begin with
an action of G on X and extend this action linearly over the intervals [c1, c2], c ∈ C,
we call the resulting action of G on Y the (canonically) induced action.

Now let

C = {x ∈ X |∃y, z ∈ [x] such that y 6∼ z}.

Since X has countable basis, C is necessarily countable. Note that C is the set of
points at which ∼ fails to be transitive. Since for each point c ∈ C, [c] splits up into
two subsets on which ∼ is transitive, we will blow the point c up into a segment
[c1, c2] which then splits the set [c] \ C into two sets, [c1] and [c2], and ∼ will be
transitive on each of these sets. More precisely, choose an orientation for X , and
let X ′ denote the Denjoy blow-up of X along C.

Lemma 9.2. The relation ∼ is transitive on X ′.

Proof. Let C′ = {x ∈ X ′|∃y, z ∈ [x] with y 6∼ z}. We wish to show that C′ = ∅.
Let c ∈ C. Consider y, z ∈ [c] with y 6∼ z. Then ∃y′, z′ such that [[y′, y)) = [[y′, c))

and [[z′, z)) = [[z′, c)) but [[y′, c))∩ [[z′, c)) = ∅. Hence, since X is a 1-manifold, any
other set of the form [[r, c)) must intersect either [[y′, c)) or [[z′, c)) (but of course
not both) in some set [[r′, c)). In addition, since X is an oriented 1-manifold, exactly
one of y′ and z′ is in c+. Hence if w ∈ [c], w distinct from y, z, c, then necessarily
∃w′ such that [[w′, c)) = [[w′, w)), which implies that w ∼ y or w ∼ z, but not
both. Moreover, if v ∈ [c], v distinct from y, z, c, w, and either w ∼ y and v ∼ y, or
w ∼ z and v ∼ z, then w ∼ v.

Hence [c] \ C splits into two subsets: [c]y = {b ∈ [c]|b ∼ y} and [c]z = {b ∈ [c]|
b ∼ z}. Moreover, notice that in X ′, either [c1] = [c]y and [c2] = [c]z if y′ ∈ c+,
or vice versa if y′ ∈ c−. See Figure 23. In particular, C′ ∩ {c1, c2|c ∈ C} = ∅. But
since |[x]| = 1 for all x ∈ (c1, c2), for all c ∈ C, we know that C′ ⊂ {c1, c2|c ∈ C}. So
C′ = ∅.

�



676 R. ROBERTS, J. SHARESHIAN, AND M. STEIN

a

c1 2cc

Figure 23.

9.2. Star Denjoy blow-up of an order tree. We now describe a similar blow-up
construction for an R-order tree T which will result in an order tree T ′ on which
the relation ∼ is transitive. As in the 1-manifold case, we need to replace the set

C = {x ∈ T |∃y, z ∈ [x] such that y 6∼ z}.
However, since T may not be a 1-manifold, it is no longer the case that for each
x ∈ C, [x] splits up into just two sets on which ∼ is transitive. Instead [x] splits
into at most countably many such subsets, one for each T{x,y} where y ∼ x, y 6= x.
So we replace the point x by a union of segments, one for each such tree T{x,y}, all
identified at exactly one common endpoint into a star shape. Then if we denote
the center of the star by x, and the segment [x, xy ] corresponds to the tree T{x,y},
we define a set of segments S ′ for T ′ in the obvious way so that both xy and y are
limit points of the distinguished ray of the tree T{x,y}.

If T is oriented, the orientation extends naturally to T ′. If we begin with an
action of G on T , we may extend to an action on T ′ in the natural way. This
blow-up insures that the relation ∼ is transitive on T ′.

Definition 9.3. Hence, given an R-order tree T we may define the Hausdorff tree
associated to T as follows. Set

TH = {[x]|x ∈ T ′},
and set

SH = {[[i(σ)], [f(σ)]]|σ ∈ S′}.
Then (TH ,SH) is a Hausdorff R-order tree, which we call the Hausdorff tree associ-
ated to the oriented R-order tree T . Given an orientation (S′)+ for T , we say that
the orientation

(SH)+ = {[[i(σ)], [f(σ)]]|σ ∈ (S′)+}
is the orientation on TH induced by, or inherited from, the orientation on T . Define

p : T → TH : x 7→ [x].

9.3. Linear Denjoy blow-up of an oriented order tree. Now let T be any
oriented R-order tree, with set S of segments and orientation S+. Occasionally it
is useful to allow the Denjoy blow-up of points to intervals in a way more closely
following the construction of Section 9.1. In this construction, the orientation of
T plays a crucial role. We proceed as follows. Let C ⊂ T be countable. Let
< denote the partial order on T induced by the orientation S+. Again, for every
c ∈ C, let [c1, c2] denote an associated closed interval in R, with standard orientation
satisfying c1 < c2. We assume that the intervals [c1, c2], c ∈ C, are pairwise disjoint
and disjoint from T . Let Y be the set obtained from T by replacing each c ∈ C
with the corresponding interval [c1, c2], and put an R-order tree structure on Y as
follows.
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For each σ ∈ S+, set

σ′ = (σ ∩ (T \ C)) ∪
( ⋃
c∈C∩σ

[c1, c2]
)
,

with linear ordering determined uniquely by the following conditions:
• If x < y for some x, y ∈ σ \ C or x, y ∈ [c1, c2], for some c ∈ C, then x < y.
• If c < y for some y ∈ σ \ C and for some c ∈ C ∩ σ, then c2 < y.
• If c > y for some y ∈ σ \ C and for some c ∈ C ∩ σ, then c1 > y.

Let (S ′)+ be the smallest orientation on Y containing {σ′|σ ∈ S+}. Let S′ be the
smallest set satisfying the defining axioms of R-order tree and also containing (S′)+.

Then (T ′,S′) with orientation (S′)+ is an oriented R-order tree. Notice that if
we remove the requirement that T be second countable, then we may remove the
condition that C be countable in this construction.

Definition 9.4. (T ′, S′) is called the linear Denjoy blow-up of T along C with
respect to the orientation S+. If we begin with an action of G on T and extend this
action linearly over the intervals [c1, c2], c ∈ C, we call the resulting action of G on
Y the (canonically) induced action.
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