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Abstract – Claims for a “cosmogenic” force that correlates otherwise independent stochastic
processes have been made for at least 10 years, based on visual inspection of histograms whose
shapes were interpreted as suggestive of recurrent patterns. Building on our earlier work to test
nuclear alpha, beta, and electron-capture decay processes for non-randomness, we searched for
correlations in the time series of e+e− annihilations deriving from the β+ decay of 22Na. Coincident
gamma photons were counted within narrow time and energy windows over a period of 167 hours
leading to a time series of more than 1 million events. Statistical tests for correlated fluctuations
in the time series and its histograms were in all cases consistent with statistical control, giving no
evidence of a “cosmogenic” force.

Copyright c© EPLA, 2009

Introduction. – One of the most extraordinary claims
in the scientific literature is that of the observation of
correlated fluctuations between ostensibly independent
stochastic processes. The claims, which have been made
for more than a decade [1,2] and which, to our knowl-
edge, have not been refuted, retracted, or independently
confirmed, were based on visual inspection of the shapes of
the histograms of stochastic processes like disintegration
of radioactive nuclei.
The observation of at least two kinds of histogram

patterns has been the basis for speculation of a “cosmo-
genic force”. The first purportedly manifested what the
authors in ref. [1] believed to be evidence of “discrete
states during macroscopic fluctuations”. The histogram
was constructed of layers in which the first recorded
frequencies of events i= 1 . . . I, the second recorded
frequencies of events i= 1 . . . 2I, and so on, the j -th
layer recording frequencies of events i= 1 . . . jI for some
integer I. A striking pattern of well-defined articulations
in the layers signified “discrete states”. The second kind
of reported evidence was a perceived recurrence in time of
histograms of similar shapes (e.g. for α-decay of 239Pu),
suggesting a “cosmogenic force” with daily and monthly
periods.
We stress here that the “shape” of a histogram is an

ill-defined geometrical feature and not an invariant char-
acteristic. It can take widely differing forms for a given
set of events depending on the number and widths of the
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arbitrary classes (i.e. categories) into which events are
assigned. Moreover, the branch of mathematics known as
Ramsey theory [3] virtually guarantees that any sought-for
pattern can be found in the distribution of a sufficiently
large set of points. Only rigorous statistical analysis can
reveal whether time series and frequency distributions
actually manifest correlated fluctuations. This is the
motivation underlying the present article, a brief report of
which was made at the Fall 2008 Meeting of the American
Physical Society [4].
We have chosen to examine the β+ decay of 22Na for

several reasons. First, the process should be governed by
Poisson statistics; thus the parent probability function is
known and all other pertinent statistical quantities can
be determined analytically. Second, this transmutation is
an example of a weak nuclear interaction with long half-
life, so the time series of decays over the period of our
experiment is very nearly stationary. Third, the decay
yields a stable nuclide of neon and a single outgoing
positron, which immediately interacts with an ambient
electron leading to e+e− annihilation to produce two
counter-propagating 511 keV γ-photons. The simplicity
of the final state together with spatial correlation and
narrow energy uncertainty of the γ’s permits us to make
coincident measurements with very low background and
high signal-to-noise ratio.

Experiment and data structure. –

Test of stationary decay distributions. An initial
0.079µCi 22Na source (half-life T1/2 = 2.6027± 0.0010 y
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Table 1: Distributions of nuclear decay statistics.

Statistic Distribution Symbol Probability density

Counts Poisson ∼ Normal X=P(µ)∼N(µ, µ) fP(x;µ) = e
−µ µx

x!

Amplitude Normal {α,β}=N(0, 12µ) fN(x;µ, σ
2) = 1√

2πσ2
e−(x−µ)

2/2σ2

Squared Amplitude Gamma {|α|2, |β|2}=G( 12 , µ−1) fG(x; r, s) =
sr

Γ(r)x
r−1e−sx

Power Exponential |α|2+ |β|2 =E(µ) fE(x;µ) =
1
µ
e−x/µ

Modulus Rayleigh (|α|2+ |β|2)1/2 =R(µ) fR(x;µ) =
2
µ
xe−x

2/µ

Amplitude Ratio Cauchy β/α=C(0, 1) fC(x; r, s) =
1

πs(1+( x−rs )2)

Autocorrelation Normal R(τ > 0) =N(0, µ2/N) fN(x;µ, σ
2) = 1√

2πσ2
e−(x−µ)

2/2σ2

Fig. 1: (Color online) Observed and theoretical (solid line) distributions of Fourier amplitudes {φj = αj + iβj} of the 22Na decay
time series: (a) real part {αj}, (b) power {α2j +β2j }, (c) modulus {(α2j +β2j )1/2}, (d) ratio {βj/αj}.
[5]) gave rise to correlated γ’s, which were detected in
coincidence by means of NaI(Tl) scintillation detectors
within a coincidence interval of 50 ns and within a 375 keV
energy range from 345 keV to 720 keV. The number of
coincidences were recorded sequentially within sampling
windows (bins) of ∆t= 0.439 s for a total time of 167
hours, resulting in “bags” of data of 8192 bins to the
hour (1 bag), with a mean coincidence count rate of
approximately 441 s−1 and background 0.021 s−1.
The time series of counts X= {xt}(1� t�N = 167×

8192) was partitioned into a temporal sequence {xa,b} of
1� a� 167 bags of 1� b� 8192 bins/bag. A maximum-
likelihood line of regression was fit to the scatter plot
(lnµa vs. a) of bag means {µa} to obtain the station-
ary mean (µX = 193.8), variance (σ

2
µX
= 0.024), and nega-

tive trend of magnitude λ̂= (8.27± 0.57)× 10−9 s−1. The
full data set was then transformed to a series Y= {yt}=
{xt−µX + λ̂t} of 0 mean and 0 trend whose Fourier ampli-
tudes {φj = αj + iβj}(0� j � 12N) were calculated by a
discrete Fourier transform (DFT) algorithm. The auto-

correlation, rτ =Rτ/R0, in which Rτ =N
−1 N−τ∑

t=1
ytyt+τ is

the autocovariance at lag τ , was calculated by inverse DFT

of the power spectrum, {Sj = α2j +β2j } according to the
Wiener-Khinchin theorem.
The null hypothesis throughout this analysis is that the

probability of a single nuclear decay within short sampling
interval ∆t is p= λ̂∆t, independent of outcomes in previ-
ous and subsequent time intervals. The stationary mean
is µX =N0λ̂∆t, where N0 is the initial number of nuclei.
Under the condition µX� 1 pertinent to our experiments,
there then follow all the statistical distributions summa-
rized in table 1. (The order of parameters in the density
functions is the same as in the random variable symbols.)
Figure 1 shows observed distributions with theoretical

densities superposed. Table 2 gives results χ2obs of corre-
sponding χ2 tests of d degrees of freedom with P -values
defined as the probability P (χ2d � χ2obs) and d= (number
of classes) – (number of estimated parameters) – 1. Each
of the distributions, determined exclusively by the single
experimental parameter µX , tests different facets of the
time series and Fourier amplitudes. The figure and table
support the null hypothesis of independent decays.

Histograms and discrete structures. Histograms
{Ha} (a= 1, . . . , 167) with K = 91 classes of unit width
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Table 2: χ2 Test of distributions of Fourier amplitudes.

Distribution χ2obs d P
Real part 45.6 45 0.45
Imaginary part 50.7 40 0.12
Square of the real part 13.3 13 0.43
Square of the imag. part 28.3 26 0.34
Power 38.8 40 0.48
Modulus 44.7 40 0.28
Ratio: imag./real 46.9 40 0.21

Fig. 2: 20-layered histograms (class width = 1) generated by
a Poisson RNG (N = 1000 samples). (a) Correlated layers
showing discrete structure. (b) Uncorrelated layers showing no
discrete structure.

were made of the bag frequencies and subjected to χ2 tests
for fits by Poisson probability functions of corresponding
means {µa}. The distribution of resulting values {χ2a}
was fit by the theoretical density for χ289. A test of this
fit with 14 classes yielded P = 0.26 for χ213 = 15.76, which
supports the null hypothesis.
The assembly of a layered histogram manifested

“discrete structures” when each layer LI was constructed

as previously described, LI =
I∑
a=1
Ha, but showed no such

structure when each layer comprised a non-overlapping
sequence of basis histograms: L1 =H1, L2 =H2+H3,
L3 =H4+H5+H6, etc. The discrete structures reflect
the increasing (with I) degree of correlation of layers
and can be reproduced, as shown in fig. 2, by a Poisson
random number generator (RNG). As such, they are
an artifact of the mode of data presentation and have
nothing whatever to do with correlated fluctuations
arising from any physical force.

Fig. 3: (Color online) (a) Autocorrelation coefficients rτ (0�
τ � 671) of 22Na decay time series (N = 218); lag interval
∆τ = 512 bins ∼ 224.77 s. (b) Distribution of rτ fit by Gaussian
density for N(0, N−1) (solid line); P = 0.81 for χ219 = 13.5.

Recurrence, autocorrelation and periodicity. A
histogram is a graphical representation of a multino-
mial distribution M({nk}, {pk})≡M(n,p) of outcomes
k= 1 . . .K with frequencies {nk} and probabilities {pk}
governed by the (discrete) probability function

fM (n;p) = n!
∏
k

pnkk
nk!
, (1)

subject to the constraint
K∑
k=1

nk = n. If the null hypothesis

is valid, the probability pk of an outcome in the k-th class
is the Poisson probability

pk ≡ fP(xk;µ) = e−µµ
xk

xk!
−→
µ�1
e−(xk−µ)

2/2µ

√
2πµ

(2)

for occurrence of xk decays. The mean frequency and vari-
ance of the k-th class are, respectively, n̄k = npk, var(nk) =
npk(1− pk), and the covariance of two frequency classes is
cov(nj , nk) =−npjpk. (The correlation is negative because
the sum of all events is a constant.)
Since the frequency distribution (1) depends on the

single parameter µ in (2), a periodicity in the chronological
sequence of histograms can occur only if the population
mean is periodic in time. Such periodicity could be
revealed in the power spectrum and/or autocorrelation of
the coincident count time series.
Figure 3a shows the autocorrelation rτ of the time series
{yt} as a function of lag τ up to a maximum lag of 671
units, corresponding to about 41 hours. The coefficients
{rk} (k �= 0) are distributed normally as N(0, N−1) to an
excellent approximation as shown in fig. 3b. The vertical
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Fig. 4: (Color online) Autocorrelation and power spectrum for Poisson RNG simulated time series with periodic mean of
harmonic amplitude β = (a, b) 0, (c,d) 0.3%, (e,f) 0.5%.

scale of fig. 3a is in units of standard deviation σr ≈N−1/2.
A test of Gaussian fit led to P = 0.81 for χ219 = 13.5.
Figure 3a is indicative of white noise; there is no evidence
of statistically significant correlations.
If the null hypothesis is valid, the ordinates {Sj} of

the power spectrum of {yt} are distributed exponentially
(see table 1) with σS = µS = σ

2
X = µX . The statistical

significance of the largest ordinate can be tested by the
Walker-Fisher (W-F) harmonic test [6], whereby the prob-
ability that at least one element of the set {Sj} compris-
ing J elements exceeds the largest observed value Smax is
1− (1− e−Smax/µS )J . By the Shannon sampling theorem,
J = 12N = 687,847 harmonics (corresponding to maximum
period of 83.5 h). In our test the largest ordinate was
Smax = 2894 and µX = 193.8, which yielded the probabil-
ity P (S � Smax) = 0.20, consistent with pure chance. Note
that one ignores harmonic j = 1 because it corresponds in
every DFT spectrum to the length of the time series. Thus,
neither the power spectrum nor the autocorrelation spec-
trum gave evidence of a statistically significant component
of period T � 83.5 h in the time series of coincident counts.
We can place an approximate limit on the sensitivity

of the data to reveal a periodic component by simulating

a decay time series with a Poisson RNG of time-varying
mean: µX(t) = µX0(1+β cos(2πt/T )). Figures 4(a)–(f)
show the progressive change in the power spectrum (right
panels) and autocorrelation (left panels) as the harmonic
amplitude β takes on the sequential values 0 (a,b), 0.003
(c,d), 0.005 (e,f) for a period T less than the duration of
the time series Texp. At a threshold value β � 0.3%, the
power ordinate Smax passes the W-F test for statistical
control and the harmonic variation in rτ merges with
the noise. Thus, if a harmonic with larger amplitude β
were present in the time series {yt}, it would have been
revealed by analysis even though visual inspection of the
sequence of 167 histograms would show no statistically
significant recurrences.
A time series of duration Texp does not permit measure-

ment of a period T > Texp. However, a partial-period
component, if present, would be equivalent to a trend and
thereby lead to low-frequency oscillations in the power
spectrum {Gl} of the autocorrelation {rτ} [7],

Gl = 1+2

m−1∑
τ=1

rs cos

(
πτl

m

)
+(−1)lrm (l= 0, 1, . . . ,m),

(3)
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Table 3: Runs up/down of descending sorted intervals of the mean (194).

Counts Length of Number Number Normalized Probability
category sequence n of runs of runs residual P (z � |zR|)
Ck (observed) (theory) zR

190 37977 25223 25318 −1.15 0.25
191 38606 25800 25737 0.76 0.45
192 39050 26031 26033 −0.02 0.98
193 39464 26366 26309 0.68 0.50
195 39029 26099 26019 0.96 0.34
196 38839 25928 25892 0.43 0.67
197 38280 25466 25520 −0.65 0.52
198 37430 25015 24953 0.76 0.45
199 36728 24467 24485 −0.22 0.82

b.

0

0

Fig. 5: (Color online) Power spectrum of autocorrelation of
coincident-count time series: (a) unadjusted for negative trend
due to natural lifetime; (b) Poisson RNG simulated spectrum
for 1/4-cycle variation in mean with β = 2.0%. Lag interval
∆τ = 83 bins ∼ 36.44 s; relative frequency 1.0 corresponds to
(∆τ)−1.

as shown in fig. 5a for the unadjusted time series {xt};
m= 2048 is the maximum lag in units of sampling time
∆t= 36.44 s. Transforming to the detrended series {yt}
removes the oscillations. From computer simulations of
{Gl} for partial-period components of various amplitudes,
as shown in fig. 5b, together with the fact that no linear
trend other than that attributable to natural lifetime was
manifested by {xt} to within the precision stated earlier,
we conclude that our experiment would have revealed a
trend resulting from an external influence of period up to
5Texp, i.e. 835 h or about 35 days.

Recurrence, intervals and runs. A time series gener-
ated by a random process must display certain recurrent

patterns, otherwise the process would be nonrandom. This
may seem surprising at first, since the concept of random-
ness ordinarily implies the absence of regularity. However,
it is the basis for runs tests, which we applied to vari-
ous nuclear decay processes in our earlier work [8–10]. In
the final set of tests reported here, we searched for recur-
rent histogram shapes by examining the 22Na decays for
correlations in the intervals of different count frequencies.
Recurrence in a time series of histograms requires (by defi-
nition of how a histogram is constructed) a regularity in
recurrence of the frequencies of classes Ck(k= 1 . . .K),
otherwise it is meaningless to say that two histograms have
the same shape.
If the null hypothesis is correct, then the probability

that a decay count takes the value xk is governed by a
Poisson distribution, and the interval between recurrence
of two identical counts xk in the time series of counts
follows a geometric distribution with mean time t̄=
fP(xk;µ)

−1 and variance σ2t = fP(xk;µ)−1[1− fP(xk;µ)].
In the first part of our test, comparison of the observed
and predicted mean intervals for a range of count values
(190–199) about the central value (194) of histograms
{Ha} showed statistical control in all cases.
The second part of our test, employing runs, was

designed to test for correlations among the intervals
of different classes. In a sequence of n observations,
x1, x2, . . . xn, the n− 1 differences xi+1−xi give rise to
a sequence of n− 1 signs, “+” (run up), “−” (run down).
Under statistical control, the mean number of cumulative
runs up and down of length k or longer is given by [9]

Rk =
2

(k+2)!

[
n(k+1)− (k2+ k− 1)] k� n− 1. (4a)

The theoretical total mean number of runs up and down
and its variance are then

R1 =
1

3
(2n− 1), (4b)

var(R1) = σ
2
R1
=
1

90
(16n− 29). (4c)
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For a sufficiently long series (n>∼20), the residual zR =
(R−R1)/σR1 , where R is the observed total, is normally
distributed as N(0, 1).
If there is a causal periodicity to the recurrence of

histograms {Ha}, then intervals for different classes must
be correlated, or there is again no meaning to the idea
of equivalent shapes. We defined the central class C0 =
194, corresponding closest to the mean count per bin
µX . Let Ck signify class 194+ k, where 5� k�−4. Runs
up/down tests were made of the intervals of Ck to establish
that the results were all under statistical control. The
intervals of C0 were then arranged in descending order,
and the intervals of the other classes were sorted in
the corresponding order. Runs up/down tests were again
performed on the intervals of Ck (k �= 0) to test whether
the sequences of intervals were still under statistical
control or whether they were correlated with the now
highly improbable rank ordering of the intervals of C0. The
results, reported for total number of runs in table 3, show
that the re-ordered intervals of Ck are still under statistical
control, signifying no correlation with the intervals of C0
or with each other.
The runs-of-intervals test showed no evidence whatever

that the histograms of a long time series of 22Na decays
gave rise to recurrent shapes.

Conclusions. – We have performed a comprehensive
set of statistical tests on a time series of e+e− annihi-
lations arising from β+ disintegrations of 22Na recorded
continuously over a period of 167 hours. The set of
tests were designed to reveal correlations in the time
series of counts or in the frequencies of counts such as
could lead to recurrence of histogram shapes improba-
bly accounted for by chance alone. In all cases the time
series and count frequencies passed the statistical tests,
revealing no evidence of correlations or pattern forma-
tion outside of statistical control for recurrence periods
� 35 days.
From computer simulations of Poisson time series with

amplitude-modulated means, we determined that evidence
of a periodic influence would have been manifest in the
autocorrelation and power spectrum at a threshold ratio
of harmonic to dc term of ∼ 0.3%. The authors of ref. [1]
claimed to have visually observed shape recurrences in the
histograms of nuclear decay. Had the count frequencies of
our experiment been correlated, our statistical tests would
have revealed this feature even under conditions where
visual inspection of histograms could not.
We note that quantum theory predicts the non-

exponential decay of quasi-stationary states [11] for times
short compared to a coherence time of the system (about
10−18 s for 22Na) or long compared to a mean lifetime
(about 2.5 y for 22Na). The duration of our experiment
(167 h) was well outside both time domains and therefore
consistent with our null hypothesis, which leads to
exponential decay.

The question of whether it is possible within the
framework of the known laws of physics for ostensibly-
independent nuclear processes to be correlated is an
interesting one. The Standard Model of particles and
forces predicts an ever-present background field (Higgs
field) pervading all space. Similarly, the Standard Model
of cosmology (“big bang” + inflation) requires an all-
pervasive field (dark matter) to account for cosmic distri-
bution of mass. Whether such fields could lead to corre-
lated fluctuations in nuclear decay is highly dubious.
Nevertheless, recent reports [12] of variable nuclear decay
rates correlated with the Earth’s orbital position, although
contested [13,14], could conceivably lead, if true, to an
annual periodicity in the histograms of nuclear decay and
would call for novel explanations that may lie outside
the current standard models. To examine this possibil-
ity further, we are presently modifying our experiment to
observe simultaneously and for a longer duration two inde-
pendent nuclear decay processes.
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