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REVIEW OF SCIENTIFIC INSTRUMENTS 82, 016102 (2011)

Note: Scalable multiphoton coincidence-counting electronics
D. Branning,1 S. Khanal,1 Y. H. Shin,1 B. Clary,1 and M. Beck2

1Department of Physics, Trinity College, 300 Summit St., Hartford, Connecticut 06106, USA
2Department of Physics, Whitman College, Walla Walla, Washington 99362, USA

(Received 30 September 2010; accepted 14 November 2010; published online 18 January 2011)

We present a multichannel coincidence-counting module for use in quantum optics experiments. The
circuit takes up to four transistor–transistor logic pulse inputs and counts either twofold, threefold, or
fourfold coincidences, within a user-selected coincidence-time window as short as 12 ns. The module
can accurately count eight sets of multichannel coincidences, for input rates of up to 84 MHz. Due
to their low cost and small size, multiple modules can easily be combined to count arbitrary M-order
coincidences among N inputs. © 2011 American Institute of Physics. [doi:10.1063/1.3524571]

Coincidence counting is the simultaneous detection of
two or more particles at different detectors. While this tech-
nique is widely used in experimental physics, it plays an es-
pecially important role in quantum optics. The coincidence
counting of photons is an essential tool for exploring
and/or exploiting the nonclassical features of correlated light
sources. Many such experiments require only sets of twofold
coincidence measurements, while for others, it is necessary to
count multiphoton coincidences among many detectors.1–3

Historically, the most common method of coincidence
counting has used time-to-amplitude converters (TACs), with
each TAC adding the capability to count one more pair of
photons in coincidence. Multiphoton or multichannel co-
incidence counting quickly becomes cumbersome and ex-
pensive this way, and the maximum coincidence-counting
rate is limited by the conversion time required for each
start/stop event, typically ∼1 μs. In recent years, several so-
lutions to these problems have evolved for particular appli-
cations, including quantum information processing,4–6 fluo-
rescence measurements,7, 8 x-ray microscopy,9 and physics
education.10, 11

Here, we present the details of a new multichannel
coincidence-counting module (CCM) that can be built for less
than $600 with off-the-shelf integrated circuit components.
Starting with up to four transistor–transistor logic (TTL) sig-
nals as inputs, the CCM can register combinations of arbi-
trary twofold, threefold, or fourfold coincidences (or singles
counts), with a coincidence window as short as 12 ns. Eight
onboard registers, programmed into a field programmable
gate array (FPGA), count the user-defined coincidences for
time intervals of between 20 μs and 1 s. The count data
are transferred to a personal computer over a universal se-
rial bus (USB) interface, where the counts are collected,
integrated, displayed, and stored to disk via freely available
software.12

In order to improve the coincidence-time resolution, each
of the detector signals first enters a pulse-shaping circuit
that reduces its width from the 20–50 ns pulse width typi-
cally obtained from commercial single photon counting mod-
ules (SPCMs).11 Toggle switches are used to select the width
of the shaped pulses of all four inputs, or to bypass the
pulse-shaping circuit, leaving the pulse widths unchanged.

The shaped pulses have selectable durations of 7.5, 9.0, or
11.5 ns (±0.5 ns, measured full width at half maximum).

The basic coincidence-determination method of the CCM
is shown in Fig. 1. The shaped signals A, B, C, and D are sent
to OR gates, and then to the inputs of a four-way AND gate.
The output of the AND gate is true if and only if all four inputs
are simultaneously true—that is, if the four detector pulses
arrive at the gate at the same time.

The OR gates allow the user to define arbitrary subsets
of the four detector signals to be counted in coincidence. The
second input of each OR gate is held high or low, as selected
by the user with a switch. When the switch for any particular
input is high, that input is effectively removed from the coin-
cidence logic. Any inputs with their corresponding switches
held low, however, must still arrive simultaneously in order
for the AND gate’s output to be true. In this fashion, the out-
put of the AND gate can determine any combination of two-,
three-, or fourfold coincidences between the four inputs, or
simply deliver the single-channel input rate of any one input
(by excluding the other three). There are eight four-input AND

gates, and the output of each is sent to the input of a counter,
which is implemented on the FPGA. Each counter regularly
delivers its recorded number of counts to a personal com-
puter (PC) over a USB interface, and then resets to continue
counting.

The switches connected to the OR gates that deter-
mine which coincidences are counted are latching push-
buttons, with an embedded orange (590 nm) light-emitting
diode (LED). When a switch is depressed, the center
pole is connected to ground and the LED is lit, indi-
cating that the corresponding input is included in the
four-way AND logic. The switches are arranged in a 4
× 8 grid.13 The four rows correspond to the four inputs, and
the eight columns correspond to the eight counters. In this
way, the user can very easily set (and observe) which coinci-
dences are being registered by which counter.

In addition to being sent to the FPGA, the output of each
four-way AND gate is also connected to a line driver and a
BNC output, providing TTL output pulses which can be mon-
itored externally. By using these output pulses as the inputs
to additional CCMs, coincidences among an arbitrarily high
number of inputs can be monitored.
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FIG. 1. Four-way AND gate with OR gates on each input. For each input
(A, B, C, D), a switch connects one of the OR inputs to 0 or 5 V so that the
input is either included (0 V) or excluded (5 V) from the logic at the AND

gate.

A block diagram is shown in Fig. 2 (a full schematic of
the entire circuit is available online).13 In addition to the coin-
cidence logic, a TTL clock signal is provided at a BNC output
by dividing the FPGA’s 50 MHz oscillator down to a user-
selectable rate from 107 to 1 Hz in decades.

The coincidence determination (OR and AND gates) is
implemented using F-series 5V TTL logic. The FPGA and
USB capabilities are provided by an 80-pin MORPH-IC mod-
ule from Future Technology Devices International (FTDI),
which contains an Altera Acex 1 K FPGA and a USB in-
terface with FTDI’s FT2232D first-in-first-out (FIFO) buffer.
The FPGA is configured by flashing a compiled VHDL pro-
gram onto it. The program creates eight independent counting
registers from cells in the FPGA, with 16 bits in each chan-
nel register, respectively. The number stored in each counting
register is incremented on the leading edge of each TTL pulse
from the four-input AND gate. After a user defined counting
time (20 μs to 1 s) has elapsed, the value in each counting reg-
ister is copied to a storage register, and the counting registers
are reset to zero. While the counting registers begin incre-
menting again, the storage register values are written into the
FIFO buffer. After a predefined number of storage values are
written to the buffer, they are transferred in a block to an ar-
ray in the computer random access memory (RAM) via USB.
The sets of count values in this array are then integrated for
a user defined time interval, displayed on the computer mon-
itor, and/or stored to hard disk. All of these tasks, as well as
the automatic loading of the VHDL program onto the FPGA,
are accomplished by freely-available LABVIEW software.12

The transfer of the counting register values to the storage
registers occupies one cycle of the FPGA’s 50 MHz master

FIG. 3. (Color online) Mean single-channel counting rate in the CCM vs
mean input pulse rate from an LFSR, acquired during 10-s intervals. The
pseudorandom input pulses were counted independently with external 50-
MHz counters. A least-squares fit (solid line) of the form y = mx yielded m
= 1.002 ± 0.002. Similar results were observed in the other input channels.

oscillator; during this 0.2 μs time interval, the counting reg-
isters cannot be incremented, and are therefore “blind” to the
arrival of any new TTL pulses. One such “blind cycle” will
occur after each counting time bin has elapsed; thus, for an
elapsed time T, the true duration of active data acquisition
time is Tactive = T [1 − R/(50 MHz)], where R is the (user-
selected) rate of data acquisition. The available values range
from R = 1 Hz to 50 kHz.

The CCM was tested with a TTL pulse generator and was
able to count coincidences at frequencies of up to 37 MHz
without losses. To achieve this, the pulse generator was phase-
locked to the FPGA clock with the 10 MHz clock output, and
a phase offset was added to prevent input pulses from coin-
ciding with the blind cycles. Above 37 MHz, the blind cycles
could not be avoided, and exactly R counts per second were
missing from the totals. Above 74 MHz, exactly 2R counts
per second were missing. The total remained stable up to
84 MHz; above this input rate, the coincidences fluctuated and
ultimately fell to zero at 147 MHz, as successive pulses over-
lapped within the rise/fall times of the AND gates.

To test the scalability with multiple modules, the phase-
locked pulses from the generator were fanned out to eight

FIG. 2. Block diagram of the CCM architecture. Each input has a selectable impedance of 50 � or 1 k�. The input pulses are shortened and then fanned out to
form the inputs to eight copies of the circuit in Fig. 1. The eight output channels are sent to BNC outputs, and also to the counting registers on the FPGA.
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FIG. 4. (Color online) Coincidence rates RAB in the CCM for pseudorandom
input rates RA and RB on channels A and B, as a function of x = √

RA RB for
various pulse width settings. A least-squares fit (solid line) to the parabola
y = τcx2 yielded coincidence times τc = 12.033 ± 0.006, 14.56 ± 0.02, and
20.38 ± 0.09 ns for settings 00, 01, and 10. Similar results were observed for
coincidences among the other input channels.

copies and delivered to the inputs of two CCMs. The four-
way coincidence output from each CCM was fed to an input
of a third CCM, which then registered up to eightfold coin-
cidence counts at a rate of up to 30 MHz (the limit of the
fan-out), without losses.

The CCM was also tested with pulses from a linear feed-
back shift register (LFSR), which generated a pseudoran-
dom binary TTL output with controllable mean rates of up to
10 MHz. Figure 3 shows the single-channel response of the
CCM for all four input channels. The CCM is observed to
precisely count the input pulses, all the way up to the maxi-
mum output rate of the LFSR.

The coincidence times were measured using two inde-
pendent LFSRs on pairs of inputs. For randomly arriving
pulses with mean rates RA and RB in inputs A and B, the co-
incidence rate RAB is given by

RAB = τc RA RB, (1)

where τc is the coincidence time, equal to twice the pulse
duration τ minus a small amount necessary for sufficient
overlap.14 Single-parameter fits to the data, as shown in
Fig. 4, yielded values of τc = 12.033 ± 0.006, 14.56 ± 0.02,
and 20.38 ± 0.09 ns for the pulse-shaping toggle-switch

positions 00, 01, and 10. The coincidence times were also
measured using two SPCMs and scattered light from a laser
(which should produce independent random streams of pho-
tons at the two detectors), yielding values of τc = 12.140 ±
0.007, 14.133 ± 0.008, and 21.47 ± 0.014 ns via Eq. (1).
These coincidence times differ slightly from those measured
with the LFSRs, due to differences in the input pulse heights
and shapes from the SPCMs. The measured values of τc

from both methods are consistent with the times that we
would expect, given the duration of the output pulses from the
pulse-shaping circuit.

In conclusion, for applications where time-tagging of in-
dividual photon detections is not needed, our CCM offers
some attractive features. It takes four inputs and determines
user selectable two-, three-, or fourfold coincidences (or sin-
gle counts) on eight counting channels. The CCM has a high
maximum count rate of 84 MHz, and its coincidence reso-
lution is as low as 12 ns. Furthermore, several CCMs can
be cascaded together to count arbitrary M-order coincidences
among N inputs. Because of its small size, low cost, and intu-
itive user interface, the CCM is also well-suited to undergrad-
uate physics laboratories.
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