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Functional MRI and the Study of Human Consciousness

Dan Lloyd

Abstract

Bl Functional brain imaging offers new opportunities for the
study of that most pervasive of cognitive conditions, human
consciousness. Since consciousness is attendant to so much
of human cognitive life, its study requires secondary analysis
of multiple experimental datasets. Here, four preprocessed
datasets from the National fMRI Data Center are considered:
Hazeltine et al., Neural activation during response competi-
tion; Ishai et al., The representation of objects in the human
occipital and temporal cortex; Mechelli et al., The effects of
presentation rate during word and pseudoword reading; and
Postle et al., Activity in human frontal cortex associated with
spatial working memory and saccadic behavior. The study of
consciousness also draws from multiple disciplines. In this
article, the philosophical subdiscipline of phenomenology
provides initial characterization of phenomenal structures
conceptually necessary for an analysis of consciousness. These
structures include phenomenal intentionality, phenomenal
superposition, and experienced temporality. The empirical
predictions arising from these structures require new
interpretive methods for their confirmation. These methods

INTRODUCTION

Explaining consciousness is widely regarded as one of a
handful of ultimate scientific challenges. For centuries
the study of consciousness has been, at best, indirect,
speculative, and metaphorical. However, the develop-
ment of practical methods for observing the dynamic
human brain, especially functional brain imaging, offers
new prospects for a science of consciousness. Most PET
and fMRI research conscious subjects perform tasks
with normal awareness. One could argue that all of
these studies are already studies of consciousness, and
that for a science of consciousness much of the data is
already in.

The data may be in, but the hypotheses are not.
Contemporary brain imaging informs a developing sci-
ence of cognition, not consciousness. To employ func-
tional brain imaging in consciousness science, one must
first clarify at least some of the distinctive features of
consciousness. From that follow empirical hypotheses,
which in turn inform the methods of exploration. The
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begin with single-subject (preprocessed) scan series, and
consider the patterns of all voxels as potential multivariate
encodings of phenomenal information. Twenty-seven subjects
from the four studies were analyzed with multivariate
methods, revealing analogues of phenomenal structures,
particularly the structures of temporality. In a second
interpretive approach, artificial neural networks were used
to detect a more explicit prediction from phenomenology,
namely, that present experience contains and is inflected by
past states of awareness and anticipated events. In all of 21
subjects in this analysis, nets were successfully trained to
extract aspects of relative past and future brain states, in
comparison with statistically similar controls. This exploratory
study thus concludes that the proposed methods for
“neurophenomenology” warrant further application, includ-
ing the exploration of individual differences, multivariate
differences between cognitive task conditions, and explora-
tion of specific brain regions possibly contributing to the
observations. All of these attractive questions, however, must
be reserved for future research. Wl

philosophical tradition most immediately concerned
with the nature of consciousness is known as “phenom-
enology,” the study of phenomena, or of things as they
appear. It can be divided into two types, ‘‘observational
phenomenology” and “analytic phenomenology.” Ob-
servational phenomenology consists of “field reports’ of
mental states and their content. As collected by philos-
ophers, observational phenomenological reports are in-
formal first-person descriptions of experience. These are
assembled in loose taxonomies, leading to various gen-
eralizations. The method of observation is introspection,
which must be taken as reliable or even infallible in order
to establish the intended phenomenological results.
Examples of observational phenomenology abound, ap-
pearing in Descartes and especially in the empiricist and
associationist tradition of Locke and Hume. It also founds
important works in the history of psychology, such as
those of William James. The informal distinctions among
types of mental states (also known as “‘folk psychology””)
continue to embellish many philosophical books on
consciousness. Nonetheless, even with the determined
efforts of a generation of introspective psychologists, the
observations of observational phenomenology could not
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be stabilized from one observer to another. It was a
scientific failure, and its failure is often cited as a failure of
phenomenology overall.

“Analytic” phenomenology is a different enterprise,
however. It does not rely on introspected data. Rather, it
concerns itself with “the world as it appears,” a world of
which the observing self is a part. And, of the experi-
enced world, analytic phenomenology asks, what must
be true of consciousness in order for experience of the
world to be possible at all? Analytic phenomenology is
thus primarily conceptual rather than empirical. The
classical source for analytic phenomenology is Immanuel
Kant, but it flowers in the work of Edmund Husserl
(1859-1938). Husserl gave the term “phenomenology”
its modern philosophical meaning and method, inaugu-
rating a movement that included Heidegger, Sartre,
Merleau-Ponty, and many others.

A full survey of analytic phenomenology will not be
possible here, but three principal claims delineate the
phenomenological anatomy of consciousness, and thus
inform empirical study:

(1) Intentionality is internal to consciousness. “In-
tentionality” appears widely in recent philosophy as
the general name for the relationship between mind
and the external world, or between states of mind and
their “intentional objects,” what the mental states are
about. But in phenomenology, intentional objects are
always regarded exclusively as they present themselves
within consciousness. Accordingly, phenomenological
intentionality names an always-present duality within
subjective states, the regular correlation between a
subject pole (how the object is experienced) and an
object pole (what the object is experienced as). Inten-
tionality in this sense “moves the world inside the
head.” This shift offsets an exaggerated emphasis on
self-consciousness and introspection—the subject pole
of intentionality—restoring the import of perception,
or the exploration of the world as it is experienced—
the object pole. But at the same time, it demands that
conscious cognition of the objective world be de-
scribed in its subjective presentation. Phenomenology
suggests that conscious percepts are not merely the
detection of external conditions, but have subjective
characteristics that entail that consciousness is far more
than a mechanism for tracking the environment. Within
the superstructure of intentionality, analytic phenome-
nology seeks additional structures of consciousness
necessary to constitute the experience of an objective
reality. This subjective examination of objectivity leads
to two further central claims.

(2) Both sensory and nomnsensory properties are
superposed in all perception. Philosophers and psychol-
ogists often pose a variety of distinctions between
sensation and perception, but in consciousness, neither
appears without the other. The sensory field of proper-
ties directly detected by the senses is always completed
in consciousness with many elaborations. Husserl dis-

cusses a simple example of a hand placed on a sheet of
blank paper (Husserl, 1907, Sec. 22). Rather than seeing
a white expanse with a hand-shaped gap in it, conscious-
ness completes the expanse behind the hand, filling in
visual qualities that are nonetheless not immediately
given in sensation. One also feels the paper beneath
the hand, but rather than feeling a hand-shaped patch of
smoothness, the texture is also extended in conscious-
ness to the edges of the sheet. These sensory properties
fill regions of the object that are not directly sensed, and
fill in the hidden backsides of all objects, with various
degrees of definiteness. Moreover, both tactile and
visual properties coexist in the consciousness of a single,
unitary sheet of paper. Finally, the paper is inflected with
an indefinite swarm of other meanings and interpreta-
tions, which are nonetheless part of the state of con-
sciousness of the object: It may be the page on which
you hope to begin a new piece of writing, or the last
piece of paper in the house, or a random sheet pulled
from a pile in order to illustrate a point in phenomen-
ology. These nonsensory properties are nonetheless
present in awareness (Lloyd, 1995, 1996). All of these
extensions, fillings, wraps, and bundles go beyond what
is immediately sensed of any stimulus, but all are
essential in any consciousness of objects “as” objects.

(3) Temporality is superposed in all states of con-
sciousness. Time appears in psychology as a stimulus
dimension to be detected in judgments of duration and
order, or in planning and memory, but in phenomenol-
ogy, the temporal is a fundamental aspect of all percep-
tion. Husserl uses music as his example: Each tone in a
melody carries with it its melodic context. If it did not,
the perception of the melody could only be a succession
of tones with no relationship among them. A single tone
is also temporal, as its elapsed duration inflects the
present awareness that it is (still) sounding. All objects
of perception share in temporality, as perceptions of
both change and stability inherently involve compari-
sons of present perceptions with past and anticipated
perception (Husserl, 1893-1917).

The phenomenology of temporality entails two
corollaries: (3a.) All objects, whether stable or chang-
ing in themselves, are experienced in continual
temporal flux. Even the most fixed and stable objects
are always adding to their duration, increasing their
fixity and stability. This nonsensory and always un-
folding property is superposed in all perception. You
can’t step in the same stream of consciousness twice
(Lloyd, 2000a). (3b.) All states of consciousness encom-
pass in themselves the awareness of the past leading up
to the present, and an awareness of future possibilities.
The immediately “given” element of direct perceptual
awareness is the primal impression. That is, the
phenomenal present is not exclusively occupied with
present sensory properties and their occurrent super-
positions. Rather, enclosed in the here-and-now is a
nonsensory contrail of past nows and a branching sketch
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of future possible nows. Husserl called the history built
into the present ‘‘retention,” and the anticipation
“protention.” Only with this structure can the objects
of the world appear to us as temporally extended. In
adopting special terms, Husserl explicitly distinguished
the retentive and protentive superpositions of the
experienced present from the phenomenologically
distinct processes of recollection and planning.

Husserl offered a dynamic geometric representation
of his proposal, updated here as Figure 1. In contrast
to a one-dimensional timeline with the experienced
present as a moving point, he envisioned the experi-
enced present as a line sweeping across a plane
(Husserl, 1893-1917, Sec. 10). At each instant, the line
represents past, present, and future, all arrayed within
a present state of consciousness. As time passes, the
current present shifts into conscious retention, as
the current protention slides toward the present. The
vertical line represents a temporal “landscape” that
both changes in itself and continually shifts in all its
content from protention to present to past. But
although only the here and now is sensed, the entire
temporal landscape (the line) is in conscious awareness

PROTENTION

10
Objective Time A oamas PRESS THE
ssssssssmssmnnmnnmnnnnf llll> .t o
. b SUBJECTIVE
o PRESENT

RETENTION

Figure 1. Temporality in human consciousness. Husserl proposed
that the experience of temporally extended objects required that all
awareness, and especially perceptual awareness, must have a temporal
structure. In addition to a “primal impression” of the immediately
present stimulus, consciousness includes “protention” (anticipation)
and “retention” of a stack of former nows stretching back toward a
temporal horizon. This diagram is adapted from Husserl’s own
illustration of temporality. As each now point passes, it is retained as
an ever-changing modification of the next now. As each now subsides,
a new primal impression emerges from the future, which is also a
constant inflection on present experience. So event a, occurring first in
a string of three events, ultimately lies deeper in retention, and the
more recent b is stratified nearer the present. Meanwhile, anticipated
event c¢ also inflects present experience as it approaches. If time is a
point moving along a horizontal line, then experienced time is a
vertical structure. It is “constituted” entirely in the present moment.
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at every moment. Both continuity and change are
presented as continuities and discontinuities in the
landscape, and thus comprise a facet of the experience
of any object.

As conclusions of analytic phenomenology, the three
foundations of intentionality, superposition, and tempo-
rality are proposed to be essential to consciousness.
Establishing this deserves a longer discussion, but, in
brief, they can be tested logically by trying to conceive of
the awareness of any object without each of the three.
Without them, objects collapse into dissociated unre-
lated instantaneous fragments. The remaining richness is
thin, an “awareness” akin to the internal state of a video
camera. Complicated as this state may be, it would not
be a state of consciousness (for further discussion, see
Lloyd, in press.)

Methods for ‘“‘Neurophenomenology”’

Let us suppose that the foundations of analytical phe-
nomenology above do identify distinct and always-
present aspects of consciousness. If so, they suggest
the general empirical hypothesis that separately or
collectively, these aspects of consciousness are imple-
mented in the brain. Applied to functional brain imag-
ing, a preliminary empirical exploration of consciousness
would seek neural correlates of these phenomenal
structures. Because the phenomenological analysis ap-
plies generally to all states of consciousness, its neural
expression should appear in all conscious subjects.
Accordingly, the exploratory analysis of consciousness
should examine many subjects in many task conditions.
While it might be possible for an individual researcher to
collect the number and variety of datasets required for
this analysis, only with a resource like the National fMRI
Data Center is it practical for an individual or research
community to embark.

Phenomenology also impels a number of methodo-
logical choices. Existing interpretive strategies for func-
tional imaging systematically exclude the potential
correlates of consciousness. Thus, new interpretive
approaches will be needed, methods specifically appro-
priate to ‘“neurophenomenology” (a term coined by
Varela, 1996). The initial method outlined below is
exploratory, designed to cast a net widely in search of
functional evidence of the structures of consciousness.
It will be outlined in this section, detailed in the next
section, and revisited in the Discussion. (Other discus-
sions of the interplay of phenomenology and method
can be found in Gazzaniga, 2000; Metzinger, 2000;
Dennett, 1991.) Initial constraints include the following:

Time Points in a Scan Series Should be Considered
Individually. Existing methods partition time points
with reference to task or stimulus conditions, and gen-
erally average time points within and across subjects.
This is inappropriate for neurophenomenology. Tempo-
rality implies that even when task or stimulus conditions
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are static, consciousness at each time point is distinct
from points before and after. Temporality, superposi-
tion, and intentionality jointly imply that repeating
stimuli or tasks are never experienced the same way
twice. In general, we cannot assume that external de-
scriptions of task or stimulus describe more than a small
component of the progression of consciousness.

Subjects Should be Considered Individually. All three
conditions greatly expand the possibilities for individual
differences. Intersubject averaging could eliminate in-
dividual evidence for the expression of consciousness
(see also Aguirre, Zarahn, & D’Esposito, 1997).

Brain States Should be Considered Globally. Initially,
we can make no assumptions about the localization of
any aspect of consciousness, and phenomenology gen-
erally suggests that states of consciousness can incorpo-
rate any combination of cognized properties. We seek
instead “‘distributed” states of activation, possibly involv-
ing large areas of the brain (Ishai, Ungerleider, Martin, &
Haxby, 1999, 2000).

Combining these three methodological constraints,
the general strategy for exploring consciousness will
regard the individual image volume (time point in a
scan series) as the unit for analysis, and the individual
subject as the domain. Since each volume is composed
of more than 10,000 voxels, considering each state
globally entails taking account of more than 10,000
variable dimensions. Since states cannot be partitioned
with respect to a reference function or stimulus con-
dition, we must assess them “internally” in relation to
each other. Multivariate statistics offers various means
for measuring similarity among complex patterns, ena-
bling a schematic description of the high-dimensional
relations between and among volumes. Within this
framework, how would consciousness manifest itself
empirically? The approach taken here considers super-
position and temporality separately, and for each seeks
indirect evidence of its effects. General predictions
include the following:

Temporal Flux

Time is the river that carries all else, so a strong
prediction would be that the flux of time would appear
as a monotonic increase of intervolume multivariate
difference as a function of the intervening interval in
time, or lag between images. We could think of this as a
gradient. From any time point, the next volume will also
be most similar in its global pattern, and as lag increases,
the intervolume difference also increases.

The Tripartite Structure of Temporality

Phenomenologically, each moment of consciousness is a
sandwich of past, present, and future. Accordingly, each
pattern of activity in the brain will be inflected with past

and future as well. But “past” and “future” can only be
understood internally, that is, as past and future states of
the brain. To discover tripartite temporality, then, we
seek to detect some form of continuous neural encoding
of past states, as well as some anticipation of the future.
An indirect method for detecting both forms of encod-
ing will be discussed below.

Superposition

From moment to moment, every object carries a shifting
set of meanings, which to discern in a brain image would
be difficult. Nonetheless, among the many interpreta-
tions present in any state of mind, at least a few do track
stable conditions in the real environment. So if the
multivariate analysis of brain states is valid, among the
discernable relations among volumes should be similar-
ities among volumes sharing task or stimulus conditions.
This would be a multivariate counterpart to the tradi-
tional use of imaging to localize cognitive function.

Superposition and Time

Where sequences are repeated, subjects are also aware
of the passing of time relative to repeated and regular
events during the scan. That is, if task blocks and
intertask intervals are both of fixed length, particular
volumes occupying the same relative time points within
separate sequences should reflect the awareness of
relative duration. This analysis can also be combined
with the analysis by task condition.

In sum, where the goal is to isolate the neural
implementation of specific cognitive capacities, much
of the breadth of conscious cognition is necessarily
considered to be noise and ‘“‘nuisance variables.” In
contrast, phenomenology regards isolated cognitive ca-
pacities as very thin slices of a much broader continuous
consciousness, and thus regards the “noise” as poten-
tially salient data. Accordingly, the established methods
for isolating functional brain areas, resting on the inter-
section of sets of voxel activations (achieved via cog-
nitive conjunction, subtraction, and averaging) are
inappropriate for neurophenomenology. Instead, the
multivariate approach taken here is one of “‘cognitive
disjunction,” seeking global and continuous properties
present in all conscious states.

METHODS AND RESULTS
The Studies

This secondary analysis is based on 27 subjects from five
experiments collected in four datasets provided by
the National fMRI Data Center (Hazeltine, Poldrack, &
Gabrieli, 2000; Ishai et al., 2000; Mechelli, Friston, &
Price, 2000; Postle, Berger, Taich, & D’Esposito, 2000).
Table 1 lists authors, titles, tasks, and total duration of
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Table 1. Scope of the Analysis

Duration
Authors, Title, Reference Task Conditions n Volumes (min)
Hazeltine, Poldrack, and Gabrieli, Visually cued response Congruent flanking stimuli, 8 60 (2.8)
“Neural Activation During Response Incongruent flanking stimuli
Competition,” JOCN 12(2): 118-129
Ishai, Ungerleider, Martin, and Haxby, L. Delayed visual Houses, Faces, Chairs 4 1092 (54.6)
“Representation of Objects in the match-to-sample
Human Occipital and Temporal (photographs)
Cortex,” JOCN 12(2): 35-51
II. Delayed visual Houses, Faces, Chairs 5 1092 (54.6)
match-to-sample
(line drawings)
Mechelli, Friston, and Price, Reading Words, Pseudowords 6 360 (18.9)
“Effects of Presentation Rate (varying rates)
During Word and Pseudoword
Reading: A Comparison of PET
and fMRI,” JOCN 12(2): 145-156
Postle, Berger, Taich, and D’Esposito, Spatial memory, Free horizontal saccade, 4 1632 (54.4)
“Activity in Human Frontal Cortex tracking Guided saccade by moving

Associated with Spatial Working
Memory and Saccadic Behavior,”
JOCN 12(2): 2—14

stimuli, Forward memory of
stimuli path, Manipulate
memory of stimuli path

each experiment. Collectively, the studies fall far short of
canvassing all the varieties of conscious experiences, but
they nonetheless span diverse aspects of human cogni-
tive life. Perceptual targets included photographs and
line drawings of objects from salient perceptual catego-
ries (faces, houses, and chairs); spots viewed with and
without Stroop-like distractors; moving targets; words
and pseudowords presented at differing rates. Tasks
included passive viewing, matching to samples, target
tracking, spatial memory, spatial memory manipulation,
and reading. Motor responses included button presses
and saccades. Subjects were omitted from secondary
analysis only if data were incomplete.

Preprocessing

The original authors preprocessed their raw scanner
data using methods common to many fMRI studies.
These include spatial registration and normalization
(except in Postle et al., 2000), spatial smoothing (again,
except for Postle et al., 2000), and correction for motion
artifacts including bulk head motion and spin-echo
artifacts. After downloading from the fMRIDC, the pre-
processed volumes were thresholded, retaining voxel
time series with activations greater than 10% of the
mean maximum voxel time series magnitudes for each
subject. Multivariate intervolume distances were then
calculated for all volume pairs within each subject, using
a squared Euclidean distance metric. That is, “distance”
between two volumes is the sum of squared differences
between corresponding voxel values in each image.
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Geometrically, Euclidean distance as a multivariate
measure has the same interpretation as familiar distance
measurement in two- or three-dimensional space. By
extension, each active voxel can be regarded as an
abstract dimension, or axis in a high-dimensional space.
Patterns of voxel activity specify vectors, so each pattern
is equivalent to a single point in ‘“‘voxel space,” a space
with as many dimensions as active voxels. Points in voxel
space thus map multivariate relations among patterns of
voxel activity.

Accordingly, in this analysis, the squared Euclidean
distance is a measure of intervolume difference or
dissimilarity. Since it is the sum of squared differences
between corresponding voxels in two images, it repre-
sents a global comparison of patterns of voxel activity.
Smaller distances imply greater global similarity. Smaller
distances also correspond approximately to the inverse
correlation between volumes. (If images are normal-
ized, Euclidean distance corresponds exactly to inverse
correlation.)

Temporal Flux and Superposition

First, two figures present qualitative observations. Figure 2
is an image based on the numerical distance matrix
derived from the subjects in Mechelli et al. (2000). For
each volume, the figure represents its multivariate dis-
tance from all other volumes, represented in order of
the image time series. The organization of the figure
parallels Husserl’s diagram in Figure 1. Time points are
ordered from left to right; from each time point the
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volumes to come are above the equator of the present,
and those past are below. For example, the first column
(x = 1) represents distances from the first image volume
to all the other volumes in the scan series. The lag
between this volume and each of the subsequent vol-
umes is represented on the y-axis. Thus, the distance
between the first and last image volumes is represented
at the top left of the figure. The magnitude of each
volume—volume distance is color-coded. (Alternatively,
the graph can be considered to represent, approxi-
mately, the inverse of the covariance between volumes,
as a function of lag.) As the time series progresses, fewer

volumes remain ahead in the series, while more accu-
mulate behind (relatively past), until the series ends
with image number 360.

The figure shows that, generally, as time passes the
brain is changing globally, incrementally, and monotoni-
cally in the sense that interimage distance is continually
increasing with passing time. This is in broad agreement
with the phenomenological prediction of continual tem-
poral flux. Figure 3B further abstracts and condenses
multisubject data, averaging the intervolume distances
that comprise Figure 2. Figure 3 shows the mean
intervolume distance as a function of lag between
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Figure 2. Multivariate distance and interscan interval in Mechelli et al. The figure represents the mean of six subjects studied by Mechelli et al.
As in Figure 1, time is represented along the x-axis. For each of 360 volumes, the figure represents its multivariate distance to all of the others, with
the y dimension representing time intervals (lag) between volumes. At the start of the scan session, all the other volumes are above the timeline
(i.e., in the future relative to the current time point). With each subsequent scan, the time series sinks one unit toward the relative past. Color
represents multivariate distance between each scan and the current volume. The figure suggests a monotonic correlation between time interval and
distance, consistent with the phenomenological expectation of pervasive temporal flux. The smooth continuous variation also suggests that
volumes can be individuated “internally,” by virtue of their relations to other volumes, consistent with the phenomenological principle of

intentionality (see also Lloyd, 2000).

Lioyd 823



volumes, in this instance based on four of five subjects in
Postle et al. (2000). The figure reflects the monotonic
trend shown in the previous figure, suggesting that this
trend is strongly linear. (The decline at extreme lag
values may reflect the relatively few pairwise distances
at large lag values. The mean of these large lag distances
will be more sensitive to image noise, reducing sensitiv-
ity to temporal flux.)

Figure 3 also suggests either sequence effects or
category effects, visible as distinct multivariate wave-
forms added to the linear effect. The regularity of these
profiles reflects specific frequency components intro-
duced by the experimental design.

This effect and the other predicted effects can be
quantified. The measurements of temporal flux and
superposition proposed here share a common ap-
proach. Global multivariate measures begin with calcu-
lating all the pairwise distances among image volumes.
The result is a distance matrix spanning the entire
experiment for each subject. Global effect measures
are comparative averages based on intervolume distan-
ces within various subsets of each distance matrix. With-
in an experiment, various time points may share a
property of interest (e.g., temporal proximity, position
in sequence, or task condition). If imaging can detect
common neural expressions of a property of interest,
then volumes at the time points with the property in
common should be, on average, more similar to each
other than the grand mean of all intervolume distances.
For example, if the brain exhibits a distinct response
when detecting a specific stimulus, then all the volumes
collected during time points when the stimulus is pre-
sented should express the response (along with many
other responses). The common neural response should
cause the multivariate distances among all the relevant
volumes to be smaller, reflecting the similarity of re-
sponse in the volumes. The null hypothesis in each case
will be that volumes sharing the property of interest are,
on average, no more similar to one another than the
average of all distances in the distance matrix.

The hemodynamic response function presents a sig-
nificant confound, however. The BOLD effect peaks and
attenuates over several seconds following the probable
neural event (Bandettini, 1993; Bandettini & Cox, 2000).
As a result, for any volume, the immediately subsequent
volumes will express the tail of the hemodynamic
response, and this would lead to greater similarity (i.e.,
reduced multivariate distance) between the first volume
and its immediate successors. In the context of large-
scale multivariate comparisons, serial adjacency contrib-
utes only trivially to global measurements (1.6% in the
smallest matrix, 0.06% in the largest). Nonetheless, to
mitigate this effect, all analyses based on distance ma-
trices excluded a minimum of 10 sec of the scan series
immediately preceding and following each volume. This
correction is conservative insofar as the removal of the
HDR confound also eliminates any contribution of the
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Figure 3. Multivariate distance and interscan interval in Postle et al.
(A) The individual volume-volume distances are averaged here,
representing the mean relationship between elapsed time interval
between scans and multivariate distance. Flanking lines are one
standard deviation from the mean. The mean of four subjects from the
Postle et al. study reveals a strongly linear time—distance relationship.
(The other studies exhibit qualitatively similar linearities.) (B) Mean
distance values in A also exhibit a regularity that reflects the structure
or duration of the task block in Postle et al. To display this component
of the time—distance effect, the mean distance values shown in the top
panel were decomposed into subcomponents equal to the task block
length of 17 time points. After normalizing to remove the large overall
time—distance effect from each subcomponent, the mean result
appears in this panel. Error bars represent the standard error of the
mean. The small variance for each lag value suggests a strong
multivariate effect due to relative serial position. That is, in this
instance, the general monotonic and nearly linear temporal flux
measured as multivariate intervolume distance is very sensitive to
intervolume differences at shorter temporal intervals (=7 images, or
14 sec). This regularity seems unaffected by the distinct tasks used by
Postle, including guided and unguided saccades, a sequential spatial
memory task, and a spatial memory manipulation task. At lags of
around 20 sec, multivariate distance becomes a less precise indicator of
elapsed time. This may be an artifact of task block structure in the
Postle study. See text for discussion.
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excluded volumes to the measurements of the variables
of interest here.

The global measurement of temporal flux was calcu-
lated as follows: For each volume, the pairwise distances
to all the other volumes (excluding volumes within 10
sec) were partitioned into two equal groups according
to temporal proximity in the scan series. The mean of
intervolume distances for all of these temporally more
proximate pairings was then compared to the mean for
all intervolume distances. The first column of Table 2
shows this comparison as the ratio of the two means:
(temporally proximate distances)/(all distances). Smaller
values indicate larger effects. Significance was assessed
with a one-tailed ¢ test.

Table 2 shows that 24 of 27 subjects displayed a
significant multivariate distance effect correlated with
temporal interval, or lag, as measured using all the
volumes from the full experiment. Table 2 also shows
three other effects conforming in various degrees in
different subjects to the qualitative predictions above.

Task (Stimulus) Condition

This was calculated by comparing all intervolume dis-
tances among volumes sharing a task or stimulus with
the mean of all intervolume distances. The table reports
the number conditions showing significant (p < .05)
effects as a fraction of the number of different conditions
overall. Twenty-one of 27 subject scan series showed this
effect for at least one task condition.

Position in Sequence

Several studies used task blocks and intertask intervals
(control blocks) of the same duration. Where this
occurred, it was possible to test for an effect reflecting
the relative elapsed time in each sequence, independent
of task similarity or overall serial position in the scan
series. This was calculated similarly to the task compar-
ison. Table 2 shows the count of serial positions within
task blocks, with significant similarities as a fraction of
the overall number of serial positions within each block,
that is, the length (in time points) of each task block.
Seventeen out of 21 subjects exhibited at least one
instance of this serial position effect. (One study,
Mechelli et al.,, 2000, was excluded due to stimulus
sequences mapping onto fractional scanning intervals.)

Tripartite Temporality

Phenomenology’s boldest claim is the assertion that the
experienced present of an object always carries with it a
nonsensory superposition of the object’s history and
possible future. Empirically, we expect the neural ex-
pression of this aspect of consciousness to be complex:
Somehow, the present state of the brain represents a
nested cascade of prior states and an open-ended laby-

rinth of possible futures. Add to this the complication of
this exploratory analysis, namely, that whole brains are
subject to multivariate analysis. As a result, the functional
specificity of particular regions cannot help here.

Thus, in the absence of specific hypotheses about
how tripartite occurrent temporality could be encoded,
a more indirect probe was designed to indicate whether
temporal information was globally encoded without
specifying how this encoding might work. By analogy,
the analysis sought to construct a “‘translator” that uses
the present voxel activations to reconstruct immediately
prior patterns of activations, as well as predict subse-
quent patterns. If such a translator can be shown to
work, then its success shows indirectly that the past and
future information was indeed present to be extracted.
Artificial neural networks were used in this capacity
here. For each subject in four experiments, a network
was created for detecting temporal information in image
volumes. To do this, scan series were segmented in
serially adjacent pairs. To test for retention, the net-
works were trained to use the second image of each pair
as input to produce as desired output the prior image.
To test for protention, another set of networks was
trained to map the first volume of each pair onto the
second. Successful training in either direction will sug-
gest that images (and underlying patterns of neural
activity) contain information about prior or subsequent
states of the brains (as expressed in images), consistent
with phenomenological predictions.

Artificial neural networks have two other attractive
features in this analysis. First, over time, we expect both
“fan out” and “fan in” of information in the dynamic
brain. That is, at any moment, activity at a particular
voxel can be influenced by prior activity in a large and
distributed set of voxels (fan in), and likewise, a partic-
ular voxel can influence many voxels subsequently (fan
out). Neural networks can model this property. Second,
neural networks are well suited to model nonlinear
dynamics, and this seems appropriate to the brain,
considered apart from phenomenology as well. These
two capacities of neural networks allow for broader
detection of temporal dynamics than, for instance, linear
or first-order serial correlations. Overall, the interpretive
strategy casts a broad net—spatially and functionally—
into a complex dynamic system.

The computational load for this analysis prevented
its execution for one of the five experiments (Mechelli
et al., 2000), and for the remainder, it required signifi-
cant preprocessing. Specifically, the subject sets of
voxel time series were decomposed into their principal
components, orthogonal vectors that capture the larg-
est dimensions of variance common to all the voxel
time series. (Principle component analysis was imple-
mented using singular value decomposition in Matlab.)
For this study, 50 principal components were retained
from each subject series, capturing 80-99% of the
variance in the various series. The resulting time series
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Table 2. Results of Secondary Analysis of Individual Subject Scan Series

A. Multivariate Distance/Interscan Time Interval

B. Network Analysis:
MSE/(Control MSE) [Trials]

Full Within Within
Experiment Sequence Condition
[Volumes per Subject] (p <.05) (p <.05) Retention Protention
Hazeltine [60]
(Response Competition)
0.97* 1/6 0/2 0.87#** [100] 0.94°** [100]
0.65%## 2/6 0/2 0.86%*** [100] 0.78*** [100]
ns 2/6 0/2 0.93** [100] 0.95** [100]
0.83%** 1/6 1/2 0.83*** [100] 0.86*** [100]
ns 1/6 1/2 0.88*** [100] 0.87#** [100]
0.87%%* 2/6 1/2 0.96** [300] 0.95%** [100]
0.93%** 1/6 0/2 0.99* [2000] 0.89*** [100]
0.76%%* 3/6 1/2 0.80%*** [100] 0.85%*** [100]
Ishai Exp. 1 [1092]
(Object Representation)
0.88%*%* 3/7 1/2; 1/4 0.72%%% [10] 0.83*** [10]
0.677% 5/7 2/2 5 3/4 0.74%** [10] 0.80%** [10]
0.59%** 077 1/2 5 2/4 0.80*** [10] 0.87*** [10]
0.52%%* 0/7 2/2 5 1/4 0.64*** [10] 0.75%** [10]
Ishai Exp. 2 [1092]
(Object Representation)
0.75%%* 5/7 2/2; 0/4 0.76*** [10] 0.86*** [10]
ns 077 1/2; 0/4 0.65**%* [10] 0.72%** [10]
0.50%** 2/7 2/2;1/4 0.73*** [10] 0.82%** [10]
0.49% % 0/7 2/2 5 2/4 0.68*** [10] 0.63** [10]
0.51%%* 2/7 2/2;1/4 0.79*** [10] 0.92%** [10]
Mechelli (Reading) [360]
0.44%%* n.a 1/2 n.a n.a
0.7G%#% na 1/2 n.a n.a
0.56%%* n.a 1/2 n.a n.a
0.7G%%% na 1/2 n.a n.a
0.57%#* n.a 0/2 n.a n.a
0.78%#: na 1/2 n.a na
Postle (Spatial Memory) [1632]
0.58**%* 8/17 2/4 0.77*** [10] 0.81#** [10]
0.58%** 13/17 1/4 0.75* [10] 0.70%** [10]
0.45%#% 3/17 0/4 0.72%** [10] 0.76*** [10]
0.58%** 9/17 2/4 0.65** [10] 0.80*** [10]
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of principal component images became the inputs to
the neural networks. The time points, mini-volumes of
50 components, are also known as eigen-images. Eigen-
images were separated into a training set and a testing
(validation) set of the same size, with training and
testing pairs alternating in the original sequence. Net-
works were trained so that each volume would pro-
duce its precursor in the test for historical retention,
using a standard three-layer backpropagation network.
After each training epoch, the network was tested on
the novel pairs drawn from the same scan series. This
process of training and test continued until perform-
ance on the novel test pairs reached its asymptotic
best. The residual mean squared error (MSE) measured
overall performance at this point. The probe of pro-
tention was constructed in the same way, except that
the net trained to output subsequent eigen-images in
the scan series.

Meanwhile, a companion neural network was created
to represent the null hypothesis. This was based on a
surrogate dataset that preserved many of the statistical
features of the original data. The surrogate data were
constucted from the original time series in three steps:
First, each voxel time series was decomposed into
frequency components using the discrete Fourier trans-
form. Then the phases of the components were re-
randomized (‘“‘phase shuffling””). Finally, the inverse
Fourier transform reassembled each voxel’s surrogate
time series. Phase shifting shuffled the peaks and valleys
of each voxel time series, thus destroying any systematic
relationship based on temporal proximity within the
training pairs, but preserved the overall statistical fea-
tures of the volumes. (The effect is similar to reordering
the volumes.) Thus, if any network learning was possible
based just on the overall features of the volumes,
learned (as it were) by rote association, this should be
equally possible in both the original and the phase-
shuffled networks and no difference in performance
should be observed. This analysis also controls for the
confound of the attenuating hemodynamic response. In
the original principal component series, the effect of
HDR appeared as a large average 1—lag autocorrelation
in the subject time series. That is, each component time

series was quite similar to a copy of itself shifted one
time point, reflecting the persistence of hemodynamic
patterns. The phase-shuffled surrogate time series have
the nice feature that autocorrelations within time series
are preserved. Thus, the null network also had the same
opportunity to exploit autocorrelation as the original.
Finally, as an additional precaution, the original voxel
time series were detrended using SPM96 prior to the
principal components analysis. In short, if the original
and the null networks performed equivalently, then
temporal information would not be affecting perform-
ance, since in the null networks temporal information
has been removed. In that case, we could infer that
network performance was due to nontemporal informa-
tion, and the original net would not be detecting any
aspect of its inputs that would enable it to extract part of
the pattern of its past.

Both the original and its null counterpart were trained
and validated the same way, with their best perform-
ances (lowest MSE) recorded. Because neural network
connection weights are initially random, individual net-
work performance can depend on initial conditions.
Repeated trials ameliorate these random effects. There-
fore, multiple copies of each were created and tested,
and the means of several trials were compared for
significance. The same process was used to train and
test networks with future volumes as well.

Table 2 shows these results as the ratio of probe
network MSE to null network MSE. Since lower errors
represent better performance, probe/null ratios less
than 1 represent networks that are more successful than
their null controls. The table shows that in all 21 subjects
analyzed, this interpretive strategy resulted in a signifi-
cant positive effect. In all subjects, that is, a neural
network tuned to the specific image series succeeded
in recovering information from images about the imme-
diately prior volume, and a distinct neural network also
succeeded in recovering information about the immedi-
ately subsequent volume. Controls for each probe sug-
gest that the probe network performance depends on
more than simple serial correlation in voxel time series,
and on something other than general statistical profiles
of the training and test images. This suggests that the

Notes to Table 2:

(A) Measures of relationship between multivariate distance and elapsed time or lag. “Full Experiment”” compares all volumes; values are the ratio of
the mean of intervolume distances between each volume and all other volumes at <0.5 of maximum lag, compared to the grand mean of all
intervolume distances. Lower values indicate multivariate similarity correlated with shorter lags, or a “time—distance effect,” in short. “Within
Sequence” compares volumes in the same serial position in task blocks (regardless of task), reporting the number of serial positions with significant
time—distance effects, compared to the length of the repeating sequence (in scans). For example, “2/6” means that significant time—distance effects
were detected in image volumes from two serial positions in task blocks of six images. “Within Condition” compares volumes with the same task,
reporting number of task conditions with significant similarity compared to number of task conditions overall. (With Ishai subjects, two categories
of conditions were compared: [passive viewing, match-to-sample] and [houses, faces, chairs, scrambled controls].)

(B) Network analysis. “Retention” reports relative success of neural networks in reconstructing scans prior to current volumes, compared to
randomly phase-shuffled control scan series. “Protention” reports success of networks in reconstructing scans following the current time point,
compared to controls. “Success” was measured by the MSE in networks, so lower values represent more accurate performance. Accordingly,
comparative values of less than one indicate probe networks that perform better than null networks, consistent with phenomenological predictions.
The number of trials (distinct networks) examined is given in brackets. See text for details.

5 < .05; ¥*p< 01; #5p <001,
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brain encompasses a distributed encoding of its own
past and future. That past and future brain state infor-
mation is embedded in present brain states is consistent
with the phenomenological claim that retention and
protention are superposed in the conscious awareness
of the subjective present.

Finally, it is worth noting that probe neural network
performance was better in discovering retentional
(past) information than protentional (future) informa-
tion (p < .01, paired ¢ test). This asymmetry poten-
tially mirrors a phenomenological asymmetry between
the richness of determinate information available
about the immediate past, and the comparable scarcity
of information available about the immediate, and
open, future.

DISCUSSION
The Gradients

The single strongest effect reported here is the perva-
sive gradient correlated with intervolume lag. It is
hypothesized that this gradient is at least a partial
reflection of an underlying monotonic temporal flow
in consciousness. However, it is also possible that it is
some form of artifact. Indeed, long baseline ““drift,” “1/f
noise,” ‘“global signal,” and other longer-term effects
have been often noted, usually amidst puzzlement and
conjecture (Lowe & Russell, 1999; Turner, Howseman,
Rees, Josephs, & Friston, 1998; Lange, 1996; Bandettini,
1993). Note that, in general, the results derive some
initial validation from their sources. All the analyses here
were based on preprocessed data supplied to the
fMRIDC by the original authors. The same data serve
to support the original studies of these authors. Had the
data been problematic, its problems should have also
affected the published results, or should have led to the
exclusion of subjects. The common database to both
these and the published studies thus offers an initial
validation for these results.

However, notwithstanding this innocence by associa-
tion, the divergent methods employed here might be
open to several artifacts that traditional analyses either
correct or escape (Lowe & Russell, 1999; Turner et al.
1998; Aguirre et al., 1997, Aguirre, Zarahn, & D’Esposito,
1998; Lange, 1996; Bandettini, 1993). While unknown
artifacts cannot be precluded, a few prominent possibil-
ities can be discounted (See also Zarahn, Aguirre, &
D’Esposito, 1997.):

Motion Artifact

A motion artifact could have the effect of producing an
increase in multivariate distance. However, the expected
effect of this artifact would be sporadic. It might occur at
different times, and should be flanked by moments of
relative immobility. The effect on intervolume distance,
accordingly, would be to produce a stepwise change.
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Moreover, the motion artifact effect would not be
expected to be monotonic, as subjects might with equal
likelihood move back toward an earlier position. The
observed gradient shows none of these effects. It is
generally smooth, monotonic, and present in the ma-
jority of subjects. In addition, all subject scans were
preprocessed to remove potential motion artifacts.

Long Baseline Physiological Cycles

Respiration and heart rate both create physiological
artifacts in scan series, so a possible artifact here is
another (undetermined) physiological cycle (Lange,
1996). The most telling counter-consideration is, once
again, the observation that the basic temporal gradient is
monotonic. The duration of the longest study is at least
54 min. (See also Zarahn, Aguirre, & D’Esposito, 1997.)

“Scanner Drift”

Another source of artifact is the scanner itself. Although
explicit efforts to detect and eliminate these artifacts are
brought to bear in scanner design and data processing,
perhaps some elusive component is emerging in the
observed gradient. Here it is helpful that this analysis
depends on the recordings at four different research
sites. Two scanner manufacturers supplied the magnets.
A single type of malfunction, even a subtle one, seems
unlikely to have affected all four machines. In addition,
the diversity of scan series lengths, of voxel size, and of
series structures (discrete runs vs. continuous scan
sessions) all render this artifact somewhat more unlikely.

These three artifacts would most plausibly result in
global changes in voxel magnitudes that would be
detectable as global trends or “linear drift” in mean
activation intensity (Bandettini, 1993). However, the
grand mean of 21 subjects reveals a mean slope of
0.02 (SD = 0.17; again, Mechelli et al. (2000) datasets
were excluded for computational reasons). The rela-
tively large standard deviation derives mainly from the
short (60 scan) series of Hazeltine et al. (2000). Mean
slope for all subjects in Ishai et al. (2000) and Postle
et al. (2000) is —0.03, standard deviation is 0.03. From
this indirect evidence then, it seems that a global
artifact is an unlikely cause of the observed effects.
There may also, however, be artifacts with more
subtle manifestations:

Neural Processes Unrelated to Consciousness

A philosophical skeptic may claim that any alleged
neural expression of consciousness is in fact an uncon-
scious process that is related to, but distinct from,
conscious processing. This philosophical skepticism is
always available, and always refuted in practice by the
general success of science, going about its business
unperturbed by skeptical worries. Since this article rests
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in part of phenomenology, philosophical skepticism is
perhaps a larger worry, but if so, it is a worry for any
attempt at a science of consciousness. In any case, with
respect to global philosophical skepticism, the burden
of proof in the scientific arena is always with the skeptic.

A more plausible skepticism arises within science
itself. In this case, the skeptical possibility is that the
temporal gradient tracks a neural process, but one un-
related to temporal awareness. The weakest possibility is
that this unknown neural effect has no behavioral,
cognitive, or phenomenal manifestation whatsoever.
This seems implausible. The multivariate effect described
here is very large, especially bearing in mind the inherent
noisiness of the fMRI signal. That it would be completely
without cognitive or phenomenal effect would be sur-
prising. A more plausible alternative is that the gradient
reflects another cognitive process, and that the true
temporal gradient (if any) is not responsible for the
observed effects. One candidate is fatigue. Though time
dependent, fatigue is not itself the temporal awareness
described above. It might, in some sense, accumulate
through a scan. It is surprising, however, to see the effect
in the short scan series (Hazeltine et al., 2000), lasting
120 sec. Moreover, the effect seems indifferent to factors
that would seemingly affect fatigue, like age of subject
and time of day.

Tripartite Temporality

The interpretation of the time-distance correlation as
an expression of conscious phenomena is also indirectly
supported by the general success of the neural network
probes of the subject time series. The network probes, if
valid, suggested that encodings of protention and re-
tention were part of the information expressed in voxel
activation patterns. If so, this would suggest an under-
lying temporal structure in the conscious brain that is in
continuous flux. This flux in turn could be detected in
the gradients.

As discussed above, the network analysis was contras-
tive, and the baseline case was constructed to replicate
potential confounds in the original time series. Global
“drift” artifacts should therefore have been controlled,
as discussed above. Detrending prior to the network
analysis reinforced this control.

The network probe is nonetheless limited by several
constraints and assumptions. One of these is the prior
processing using principle component analysis. Network
outputs are accordingly compared to component pat-
terns, not the original voxel patterns. Open questions of
appropriate pre- and postprocessing remain.

These issues are ameliorated by the conservative
conclusion drawn. The networks based on the original
data do better on the task of reconstructing past and
future images than their matched controls. Therefore,
there is some information specific to the original data in
its original temporal order that is lost when that order is

phase-randomized, and the networks are exploiting that
information. The average of MSE for the multiple trials
of the network probe reveals that the nets are still only
approximating their targets (and in some cases, just
barely). The reasons for their marginal performance
could be many; certainly, noise in the original series
might carry over into the component analysis (and even
dominate it), leading to unpredictability of precursors
and successors. There is also evidence in the shortest
scan series (Hazeltine et al., 2000), consisting of 60 time
points, of “overfitting.” The network in this case is
training on just 15 input—output pairs, with 15 others
reserved for testing. Differences in this sample space
were only detectable over many trials: In one of Hazel-
tine et al.’s (2000) subjects, only after around 2,000 trials
did the effect reach significance. The two longer experi-
ments (Ishai et al., 2000; Postle et al., 2000) each
afforded several hundred training and testing pairs.
Generalization and success with novel tests improved,
and robust contrasts with the scrambled controls were
quickly established.

Further Questions

Regarding both the temporal gradients and the network
probes of tripartite temporal structure, the goal of this
article has been to illustrate general effects in accordance
with neurophenomenological predictions. The impor-
tant conclusion is that in each of five diverse experiments,
and in 27 different subjects, these effects occur. Subse-
quent study will turn to the host of specific questions that
remain unexplored. In addition to the general questions
of validation of the methods, it would be useful to
examine the different tasks and many others with respect
to the temporal qualities of specific tasks. No less im-
portant is consideration of the exceptions, the subjects in
which particular effects did not reach significance. Natu-
rally, these subjects were conscious, too, so ultimately
explanations for their failing to display the temporal
effects will be needed.

Another topic, too large to consider here, is the source
of these effects. Do particular brain regions contribute
more or less? A localized “temporalizer” is not excluded,
although on phenomenological grounds one might look
for distributed temporality first. Temporality is continu-
ous and inextricably present in all conscious cognition,
quite unlike the isolable and contingent occurrences of
specific cognitive capacities.

CONCLUSIONS

Daniel Dennett (1991) has raised what may be the
fundamental question for the science of consciousness:
Why should any of the information processing in the
brain be “conscious”? As we examine each of the many
cognitive capacities humans enjoy, Dennett’s question
recurs: Considered one by one, why would any cognitive
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function necessarily be accompanied by awareness?
Traditional fMRI research only sharpens the question
by localizing cognitive capacities in small regions of the
brain, each of which by itself seems unlikely to be a seat
of consciousness.

Phenomenology, I've suggested, offers a new set of
questions. It asks, first, what are the features of con-
sciousness at the most general level of description? Then
the “why” question can be answered, again at the most
general level: The phenomenal structures of conscious-
ness organize information into the composite structure
we experience as reality itself. As such, consciousness
(i.e., reality as it is experienced) is implicated in all
cognitive functions. The global perspectives of phenom-
enology in turn suggest several global multivariate
probes of the conscious brain. The potential for new
methods, I hope, has been illustrated in this article.
More questions are raised than answered, but at this
early moment in the science of consciousness, new
questions may be timely.
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